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Abstract

Machine reading using differentiable rea-
soning models has recently shown re-
markable progress. In this context,
End-to-End trainable Memory Networks
(MemN2N) have demonstrated promising
performance on simple natural language
based reasoning tasks such as factual rea-
soning and basic deduction. However,
other tasks, namely multi-fact question-
answering, positional reasoning or dialog
related tasks, remain challenging particu-
larly due to the necessity of more com-
plex interactions between the memory and
controller modules composing this family
of models. In this paper, we introduce
a novel end-to-end memory access regu-
lation mechanism inspired by the current
progress on the connection short-cutting
principle in the field of computer vision.
Concretely, we develop a Gated End-to-
End trainable Memory Network architec-
ture (GMemN2N). From the machine learn-
ing perspective, this new capability is
learned in an end-to-end fashion without
the use of any additional supervision sig-
nal which is, as far as our knowledge
goes, the first of its kind. Our experi-
ments show significant improvements on
the most challenging tasks in the 20 bAbI
dataset, without the use of any domain
knowledge. Then, we show improvements
on the Dialog bAbI tasks including
the real human-bot conversion-based Di-
alog State Tracking Challenge (DSTC-2)
dataset. On these two datasets, our model
sets the new state of the art.
∗Work carried out as an intern at XRCE
†Equal contribution

1 Introduction

Deeper Neural Network models are more diffi-
cult to train and recurrency tends to complex-
ify this optimization problem (Srivastava et al.,
2015b). While Deep Neural Network architec-
tures have shown superior performance in numer-
ous areas, such as image, speech recognition and
more recently text, the complexity of optimiz-
ing such large and non-convex parameter sets re-
mains a challenge. Indeed, the so-called vanish-
ing/exploding gradient problem has been mainly
addressed using: 1. algorithmic responses, e.g.,
normalized initialization strategies (LeCun et al.,
1998; Glorot and Bengio, 2010); 2. architec-
tural ones, e.g., intermediate normalization layers
which facilitate the convergence of networks com-
posed of tens of hidden layers (He et al., 2015;
Saxe et al., 2014). Another problem of memory-
enhanced neural models is the necessity of regulat-
ing memory access at the controller level. Mem-
ory access operations can be supervised (Kumar
et al., 2016) and the number of times they are per-
formed tends to be fixed apriori (Sukhbaatar et al.,
2015), a design choice which tends to be based
on the presumed degree of difficulty of the task in
question. Inspired by the recent success of object
recognition in the field of computer vision (Srivas-
tava et al., 2015a; Srivastava et al., 2015b), we in-
vestigate the use of a gating mechanism in the con-
text of End-to-End Memory Networks (MemN2N)
(Sukhbaatar et al., 2015) in order to regulate the
access to the memory blocks in a differentiable
fashion. The formulation is realized by gated con-
nections between the memory access layers and
the controller stack of a MemN2N. As a result, the
model is able to dynamically determine how and
when to skip its memory-based reasoning process.

Roadmap: Section 2 reviews state-of-the-
art Memory Network models, connection short-
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cutting in neural networks and memory dynamics.
In Section 3, we propose a differentiable gating
mechanism in MemN2N. Section 4 and 5 present
a set of experiments on the 20 bAbI reasoning
tasks and the Dialog bAbI dataset. We report
new state-of-the-art results on several of the most
challenging tasks of the set, namely positional
reasoning, 3-argument relation and the DSTC-2
task while maintaining equally competitive perfor-
mance on the rest.

2 Related Work

This section starts with an introduction of the pri-
mary components of MemN2N. Then, we review
two key elements relevant to this work, namely
shortcut connections in neural networks and mem-
ory dynamics in such models.

2.1 End-to-End Memory Networks

The MemN2N architecture, introduced by
Sukhbaatar et al. (2015), consists of two main
components: supporting memories and final an-
swer prediction. Supporting memories are in turn
comprised of a set of input and output memory
representations with memory cells. The input
and output memory cells, denoted by mi and ci,
are obtained by transforming the input context
x1, . . . , xn (or stories) using two embedding
matrices A and C (both of size d × |V | where
d is the embedding size and |V | the vocabulary
size) such that mi = AΦ(xi) and ci = CΦ(xi)
where Φ(·) is a function that maps the input into
a bag of dimension |V |. Similarly, the question
q is encoded using another embedding matrix
B ∈ Rd×|V |, resulting in a question embedding
u = BΦ(q). The input memories {mi}, together
with the embedding of the question u, are utilized
to determine the relevance of each of the stories in
the context, yielding a vector of attention weights

pi = softmax(u>mi) (1)

where softmax(ai) =
eai∑
j e

aj
. Subsequently, the

response o from the output memory is constructed
by the weighted sum:

o =
∑

i

pici (2)

For more difficult tasks demanding multiple
supporting memories, the model can be extended

to include more than one set of input/output mem-
ories by stacking a number of memory layers. In
this setting, each memory layer is named a hop and
the (k + 1)th hop takes as input the output of the
kth hop:

uk+1 = ok + uk (3)

Lastly, the final step, the prediction of the an-
swer to the question q, is performed by

â = softmax(W (oK + uK)) (4)

where â is the predicted answer distribution, W ∈
R|V |×d is a parameter matrix for the model to learn
and K the total number of hops.

2.2 Shortcut Connections
Shortcut connections have been studied from both
the theoretical and practical point of view in the
general context of neural network architectures
(Bishop, 1995; Ripley, 2007). More recently
Residual Networks (He et al., 2016) and Highway
Networks (Srivastava et al., 2015a; Srivastava et
al., 2015b) have been almost simultaneously pro-
posed. While the former utilizes a residual cal-
culus, the latter formulates a differentiable gate-
way mechanism as proposed in Long-Short Terms
Memory Networks (Hochreiter and Schmidhuber,
1997) in order to cope with long-term dependency
issues in the dataset in an end-to-end trainable
manner. These two mechanisms were proposed as
a structural solution to the so-called vanishing gra-
dient problem by allowing the model to shortcut its
layered transformation structure when necessary.

2.3 Memory Dynamics
The necessity of dynamically regulating the in-
teraction between the so-called controller and the
memory blocks of a Memory Network model has
been studied in (Kumar et al., 2016; Xiong et al.,
2016). In these works, the number of exchanges
between the controller stack and the memory mod-
ule of the network is either monitored in a hard
supervised manner in the former or fixed apriori
in the latter.

In this paper, we propose an end-to-end super-
vised model, with an automatically learned gat-
ing mechanism, to perform dynamic regulation of
memory interaction. The next section presents the
formulation of this new Gated End-to-End Mem-
ory Networks (GMemN2N). This contribution can
be placed in parallel to the recent transition from
Memory Networks with hard attention mechanism
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(Weston et al., 2015) to MemN2N with attention
values obtained by a softmax function and end-to-
end supervised (Sukhbaatar et al., 2015).

3 Gated End-to-End Memory Network

In this section, the elements behind residual learn-
ing and highway neural models are given. Then,
we introduce the proposed model of memory ac-
cess gating in a MemN2N.

3.1 Highway and Residual Networks
Highway Networks, first introduced by Srivastava
et al. (2015a), include a transform gate T and a
carry gate C, allowing the network to learn how
much information it should transform or carry to
form the input to the next layer. Suppose the orig-
inal network is a plain feed-forward neural net-
work:

y = H(x) (5)

where H(x) is a non-linear transformation of its
input x. The generic form of Highway Networks
is formulated as:

y = H(x)� T(x) + x � C(x) (6)

where the transform and carry gates, T(x) and
C(x), are defined as non-linear transformation
functions of the input x and � the Hadamard
product. As suggested in (Srivastava et al., 2015a;
Srivastava et al., 2015b), we choose to focus, in
the following of this paper, on a simplified version
of Highway Networks where the carry gate is re-
placed by 1− T(x):

y = H(x)� T(x) + x � (1 − T(x)) (7)

where T(x) = σ(W T x + bT ) and σ is the sig-
moid function. In fact, Residual Networks can
be viewed as a special case of Highway Networks
where both the transform and carry gates are sub-
stituted by the identity mapping function:

y = H(x) + x (8)

thereby forming a hard-wired shortcut connection
x.

3.2 Gated End-to-End Memory Networks
Arguably, Equation (3) can be considered as a
form of residuality with ok working as the residual
function and uk the shortcut connection. How-
ever, as discussed in (Srivastava et al., 2015b),

in contrast to the hard-wired skip connection in
Residual Networks, one of the advantages of
Highway Networks is the adaptive gating mech-
anism, capable of learning to dynamically control
the information flow based on the current input.
Therefore, we adopt the idea of the adaptive gating
mechanism of Highway Networks and integrate it
into MemN2N. The resulting model, named Gated
End-to-End Memory Networks (GMemN2N) and il-
lustrated in Figure 1, is capable of dynamically
conditioning the memory reading operation on the
controller state uk at each hop. Concretely, we re-
formulate Equation (3) into:

Tk(uk) = σ(W k
T uk + bk

T ) (9)

uk+1 = ok � Tk(uk) + uk � (1 − Tk(uk))
(10)

where W k
T and bk are the hop-specific parameter

matrix and bias term for the kth hop and Tk(x) the
transform gate for the kth hop. Similar to the two
weight tying schemes of the embedding matrices
introduced in (Sukhbaatar et al., 2015), we also
explore two types of constraints on W k

T and bk
T :

1. Global: all the weight matrices W k
T and bias

terms bk
T are shared across different hops,

i.e., W 1
T = W 2

T = . . . = W K
T and b1

T =
b2

T = . . . = bK
T .

2. Hop-specific: each hop has its specific
weight matrix W k

T and bias term bk
T for k ∈

[1,K] and they are optimized independently.

4 QA bAbI Experiments

In this section, we first describe the natural lan-
guage reasoning dataset we use in our experi-
ments. Then, the experimental setup is detailed.
Lastly, we present the results and analyses.

4.1 Dataset and Data Preprocessing
The 20 bAbI tasks (Weston et al., 2016) have been
employed for the experiments (using v1.2 of the
dataset). In this synthetically generated dataset, a
given QA task consists of a set of statements, fol-
lowed by a question whose answer is typically a
single word (in a few tasks, answers are a set of
words). The answer is available to the model at
training time but must be predicted at test time.
The dataset consists of 20 different tasks with vari-
ous emphases on different forms of reasoning. For
each question, only a certain subset of the state-
ments contains information needed for the answer,
and the rest are essentially irrelevant distractors.
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Figure 1: Illustration of the proposed GMemN2N model with 3 hops. Dashed lines indicate elements
different from MemN2N (Sukhbaatar et al., 2015).

As in (Sukhbaatar et al., 2015), our model is fully
end-to-end trained without any additional supervi-
sion other than the answers themselves. Formally,
for one of the 20 QA tasks, we are given example
problems, each having a set of I sentences {xi}
(where I ≤ 320), a question sentence q and an-
swer a. Let the jth word of sentence i be xij , rep-
resented by a one-hot vector of length |V |. The
same representation is used for the question q and
answer a. Two versions of the data are used, one
that has 1,000 training problems per task and the
other with 10,000 per task.

4.2 Training Details

As suggested in (Sukhbaatar et al., 2015), 10% of
the bAbI training set was held-out to form a val-
idation set for hyperparameter tuning. Moreover,
we use the so-called position encoding, adjacent
weight tying, and temporal encoding with 10%
random noise. Stochastic gradient descent is used
for training and the learning rate η is initially as-
signed a value of 0.005 with exponential decay ap-
plied every 25 epochs by η/2 until 100 epochs are
reached. Linear start is used in all our experiments
as proposed by Sukhbaatar et al. (2015). With lin-
ear start, the softmax in each memory layer is re-
moved and re-inserted after 20 epochs. Batch size
is set to 32 and gradients with an `2 norm larger
than 40 are divided by a scalar to have norm 40.
All weights are initialized randomly from a Gaus-

sian distribution with zero mean and σ = 0.1 ex-
cept for the transform gate bias bk

T which we em-
pirically set the mean to 0.5. Only the most re-
cent 50 sentences are fed into the model as the
memory and the number of memory hops is 3. In
all our experiments, we use the embedding size
d = 20. Note that we re-use the same hyper-
parameter configuration as in (Sukhbaatar et al.,
2015) and no grid search is performed.

As a large variance in the performance of the
model can be observed on some tasks, we follow
(Sukhbaatar et al., 2015) and repeat each train-
ing 100 times with different random initializations
and select the best system based on the validation
performance. On the 10k dataset, we repeat each
training 30 times due to time constraints. Con-
cerning the model implementation, while there are
minor differences between the results of our im-
plementation of MemN2N and those reported in
(Sukhbaatar et al., 2015), the overall performance
is equally competitive and, in some cases, better.
It should be noted that v1.1 of the dataset was
used whereas in this work, we employ the latest
v1.2. It is therefore deemed necessary that we
present the performance results of our implemen-
tation of MemN2N on the v1.2 dataset. To facilitate
fair comparison, we select our implementation of
MemN2N as the baseline as we believe that it is
indicative of the true performance of MemN2N on
v1.2 of the dataset.
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Task
1k 10k

MemN2N
Our GMemN2N

MemN2N
Our GMemN2N

MemN2N +global +hop MemN2N +global +hop

1: 1 supporting fact 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2: 2 supporting facts 91.7 89.9 88.7 91.9 99.7 99.7 100.0 100.0
3: 3 supporting facts 59.7 58.5 53.2 61.2 90.7 89.1 94.7 95.5
4: 2 argument relations 97.2 99.0 99.3 99.6 100.0 100.0 100.0 100.0
5: 3 argument relations 86.9 86.6 98.1 99.0 99.4 99.4 99.9 99.8
6: yes/no questions 92.4 92.1 92.0 91.6 100.0 100.0 96.7 100.0
7: counting 82.7 83.3 83.8 82.2 96.3 96.8 96.7 98.2
8: lists/sets 90.0 89.0 87.8 87.5 99.2 98.1 99.9 99.7
9: simple negation 86.8 90.3 88.2 89.3 99.2 99.1 100.0 100.0
10: indefinite knowledge 84.9 84.6 80.1 83.5 97.6 98.0 99.9 99.8
11: basic coreference 99.1 99.7 99.8 100.0 100.0 100.0 100.0 100.0
12: conjunction 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
13: compound coreference 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
14: time reasoning 98.3 99.6 98.5 98.8 100.0 100.0 100.0 100.0
15: basic deduction 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16: basic induction 98.7 99.9 99.8 99.9 99.6 100.0 100.0 100.0
17: positional reasoning 49.0 48.1 60.2 58.3 59.3 62.1 68.8 72.2
18: size reasoning 88.9 89.7 91.8 90.8 93.3 93.4 92.0 91.5
19: path finding 17.2 11.3 10.3 11.5 33.5 47.2 54.8 69.0
20: agent’s motivation 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 86.1 86.1 86.6 87.3 93.4 94.1 95.2 96.3

Table 1: Accuracy (%) on the 20 QA tasks for models using 1k and 10k training examples.
MemN2N:(Sukhbaatar et al., 2015). Our MemN2N: our implementation of MemN2N. GMemN2N +global:
GMemN2N with global weight tying. GMemN2N +hop: GMemN2N with hop-specific weight tying. Bold
highlights best performance. Note that in (Sukhbaatar et al., 2015), v1.1 of the dataset was used.

4.3 Results

Performance results on the 20 bAbI QA dataset
are presented in Table 1. For comparison pur-
poses, we still present MemN2N (Sukhbaatar et al.,
2015) in Table 1 but accompany it with the accu-
racy obtained by our implementation of the same
model with the same experimental setup on v1.2 of
the dataset in the column “Our MemN2N” for both
the 1k and 10k versions of the dataset. In contrast,
we also list the results achieved by GMemN2Nwith
global and hop-specific weight constraints in the
GMemN2N columns.

GMemN2N achieves substantial improvements
on task 5 and 17. The performance of
GMemN2N is greatly improved, a substantial gain
of more than 10 in absolute accuracy.

Global vs. hop-specific weight tying. Com-
pared with the global weight tying scheme on the
weight matrices of the gating mechanism, apply-
ing weight constraints in a hop-specific fashion

generates a further boost in performance consis-
tently on both the 1k and 10k datasets.

State-of-the-art performance on both the
1k and 10k dataset. The best performing
GMemN2N model achieves state-of-the-art perfor-
mance, an average accuracy of 87.3 on the 1k
dataset and 96.3 on the 10k variant. This is a
solid improvement compared to MemN2N and a
step closer to the strongly supervised models de-
scribed in (Weston et al., 2015). Notice that the
highest average accuracy of the original MemN2N
model on the 10k dataset is 95.8. However, it was
attained by a model with layer-wise weight tying,
not adjacent weight tying as adopted in this work,
and, more importantly, a much larger embedding
size d = 100 (therefore not shown in Table 1). In
comparison, it is worth noting that the proposed
GMemN2N model, a much smaller model with em-
beddings of size 20, is capable of achieving better
accuracy.
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5 Dialog bAbI Experiments

In addition to the text understanding and reason-
ing tasks presented in Section 4, we further ex-
amine the effectiveness of the proposed GMemN2N
model on a collection of goal-oriented dialog tasks
(Bordes and Weston, 2016). First, we briefly de-
scribe the dataset. Next, we outline the training
details. Finally, experimental results are presented
with analyses.

5.1 Dataset and Data Preprocessing

In this work, we adopt the goal-oriented dialog
dataset developed by Bordes and Weston (2016)
organized as a set of tasks. The tasks in this
dataset can be divided into 6 categories with each
group focusing on a specific objective: 1. issu-
ing API calls, 2. updating API calls, 3. displaying
options, 4. providing extra-information, 5. con-
ducting full dialogs (the aggregation of the first 4
tasks), 6. Dialog State Tracking Challenge 2 cor-
pus (DSTC-2). The first 5 tasks are synthetically
generated based on a knowledge base consisting of
facts which define all the restaurants and their as-
sociated properties (7 types, such as location and
price range). The generated texts are in the form
of conversation between a user and a bot, each of
which is designed with a clear yet different objec-
tive (all involved in a restaurant reservation sce-
nario). This dataset essentially tests the capac-
ity of end-to-end dialog systems to conduct dialog
with various goals. Each dialog starts with a user
request with subsequent alternating user-bot utter-
ances and it is the duty of a model to understand
the intention of the user and respond accordingly.
In order to test the capability of a system to cope
with entities not appearing in the training set, a
different set of test sets, named out-of-vocabulary
(OOV) test sets, are constructed separately. In
addition, a supplementary dataset, task 6, is pro-
vided with real human-bot conversations, also in
the restaurant domain, which is derived from the
second Dialog State Tracking Challenge (Hender-
son et al., 2014). It is important to notice that the
answers in this dataset may no longer be a single
word but can be comprised of multiple ones.

5.2 Training Details

At a certain given time t, a memory-based
model takes the sequence of utterances
cu1 , c

r
1, c

u
2 , c

r
2, . . . , c

u
t−1, c

r
t−1 (alternating be-

tween the user cui and the system response cri ) as

the stories and cut as the question. The goal of the
model is to predict the response crt .

As answers may be composed of multiple
words, following (Bordes and Weston, 2016), we
replace the final prediction step in Equation (4)
with:

â = softmax(u>W
′
Φ(y1), . . . ,u>W

′
Φ(y|C|))

where W
′ ∈ Rd×|V | is the weight parameter ma-

trix for the model to learn, u = oK +uK (K is the
total number of hops), yi is the ith response in the
candidate set C such that yi ∈ C, |C| the size of
the candidate set, and Φ(·) a function which maps
the input text into a bag of dimension |V |.

As in (Bordes and Weston, 2016), we extend
Φ by several key additional features. First, two
features marking the identity of the speaker of a
particular utterance (user or model) are added to
each of the memory slots. Second, we expand
the feature representation function Φ of candidate
responses with 7 additional features, each, focus-
ing on one of the 7 properties associated with any
restaurants, indicating whether there are any exact
matches between words occurring in the candidate
and those in the question or memory. These 7 fea-
tures are referred to as the match features.

Apart from the modifications described above,
we carry out the experiments using the same ex-
perimental setup described in Section 4.2. We also
constrain ourselves to the hop-specific weight ty-
ing scheme in all our experiments since GMemN2N
benefits more from it than global weight tying as
shown in Section 4.3. As in (Sukhbaatar et al.,
2015), since the memory-based models are sen-
sitive to parameter initialization, we repeat each
training 10 times and choose the best system based
on the performance on the validation set.

5.3 Results
Performance results on the Dialog bAbI
dataset are shown in Table 2, measured using
both per-response accuracy and per-dialog accu-
racy (given in parentheses). While per-response
accuracy calculates the percentage of correct re-
sponses, per-dialog accuracy, where a dialog is
considered to be correct if and only if every re-
sponse within it is correct, counts the percentage
of correct dialogs. Task 1-5 are presented in the
upper half of the table while the same tasks in the
OOV setting are in the lower half with the dialog
state tracking task as task 6 at the bottom. We
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Task MemN2N GMemN2N
MemN2N GMemN2N
+match +match

T1: Issuing API calls 99.9 (99.6) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
T2: Updating API calls 100.0 (100.0) 100.0 (100.0) 98.3 (83.9) 100.0 (100.0)
T3: Displaying options 74.9 (2.0) 74.9 (0.0) 74.9 (0.0) 74.9 (0.0)
T4: Providing information 59.5 (3.0) 57.2 (0.0) 100.0 (100.0) 100.0 (100.0)
T5: Full dialogs 96.1 (49.4) 96.3 (52.5) 93.4 (19.7) 98.0 (72.5)
Average 86.1 (50.8) 85.7 (50.5) 93.3 (60.7) 94.6 (74.5)
T1 (OOV): Issuing API calls 72.3 (0.0) 82.4 (0.0) 96.5 (82.7) 100.0 (100.0)
T2 (OOV): Updating API calls 78.9 (0.0) 78.9 (0.0) 94.5 (48.4) 94.2 (47.1)
T3 (OOV): Displaying options 74.4 (0.0) 75.3 (0.0) 75.2 (0.0) 75.1 (0.0)
T4 (OOV): Providing information 57.6 (0.0) 57.0 (0.0) 100.0 (100.0) 100.0 (100.0)
T5 (OOV): Full dialogs 65.5 (0.0) 66.7 (0.0) 77.7 (0.0) 79.4 (0.0)
Average 69.7 (0.0) 72.1 (0.0) 88.8 (46.2) 89.7 (49.4)
T6: Dialog state tracking 2 41.1 (0.0) 47.4 (1.4) 41.0 (0.0) 48.7 (1.4)

Table 2: Per-response accuracy and per-dialog accuracy (in parentheses) on the Dialog bAbI tasks.
MemN2N: (Bordes and Weston, 2016). +match indicates the use of the match features in Section 5.2.

choose (Bordes and Weston, 2016) as the baseline
which achieves the current state of the art on these
tasks.

GMemN2N with the match features sets a new
state of the art on most of the tasks. Other than
on task T2 (OOV) and T3 (OOV), GMemN2N with
the match features scores the best per-response
and per-dialog accuracy. Even on T2 (OOV) and
T3 (OOV), the model generates rather competitive
results and remains within 0.3% of the best perfor-
mance. Overall, the best average per-response ac-
curacy in both the OOV and non-OOV categories
is attained by GMemN2N.

GMemN2N with the match features significantly
improves per-dialog accuracy on T5. A break-
through in per-dialog accuracy on T5 from less
than 20% to over 70%.

GMemN2N succeeds in improving the perfor-
mance on the more practical task T6. With or
without the match features, GMemN2N achieves
a substantial boost in per-response accuracy on
T6. Given that T6 is derived from a dataset based
on real human-bot conversations, not syntheti-
cally generated, the performance gain, although
far from perfect, highlights the effectiveness of
GMemN2N in practical scenarios and constitutes an
encouraging starting point towards end-to-end di-
alog system learning.

The effectiveness of GMemN2N is more pro-
nounced on the more challenging tasks. The

performance gains on T5, T5 (OOV) and T6, com-
pared with the rest of the tasks, are more pro-
nounced. Regarding the performance of MemN2N,
these tasks are relatively more challenging than
the rest, suggesting that the adaptive gating mech-
anism in GMemN2N is capable of managing com-
plex information flow while doing little damage on
easier tasks.

6 Visualization and Analysis

In addition to the quantitative results, we fur-
ther look into the memory regulation mechanism
learned by the GMemN2Nmodel. Figure 2 presents
the three most frequently observed patterns of the
Tk(uk) vectors for each of the 3 hops in a model
trained on T6 of the Dialog bAbI dataset with
an embedding dimension of 20. Each row corre-
sponds to the gate values at a specific hop whereas
each column represents a given embedding dimen-
sion. The pattern on the top indicates that the
model tends to only access memory in the first and
third hop. In contrast, the middle and bottom pat-
terns only focus on the memory in either the first
or last hop respectively. Figure 3 is a t-SNE pro-
jection (Maaten and Hinton, 2008) of the flattened
[T1(u1); T2(u2); T3(u3)] vectors obtained on the
test set of the same dialog task with points cor-
responding to the correct and incorrect responses
in red and blue respectively. Despite the relative
uniform distribution of the wrong answer points,
the correct ones tend to form clusters that suggest
the frequently observed behavior of a successful
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Story Support
MemN2N GMemN2N

Hop 1 Hop 2 Hop 3 Hop 1 Hop 2 Hop 3
Fred took the football there. 0.05 0.10 0.07 0.06 0.00 0.00
Fred journeyed to the hallway. 0.45 0.09 0.01 0.00 0.00 0.00
Fred passed the football to Mary. yes 0.10 0.64 0.93 0.29 1.00 1.00
Mary dropped the football. 0.40 0.17 0.00 0.64 0.00 0.00
Avg. transform gate cell values,

∑
i Tk(uk)i/d N/A N/A N/A 0.22 0.23 0.45

Question: Who gave the football? Answer: Fred, MemN2N: Mary, GMemN2N: Fred

Table 3: MemN2N vs. GMemN2N- bAbI dataset - Task 5 - 3 argument relations
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Figure 2: 3 most frequently observed gate value
Tk(uk) patterns on T6 of the Dialog bAbI
dataset

inference. Lastly, Table 3 shows the comparison
of the attention shifting process between MemN2N
and GMemN2N on a story on bAbI task 5 (3 ar-
gument relations). Not only does GMemN2N man-
age to focus more accurately on the supporting fact
than MemN2N, it has also learned to rely less in this
case on hop 1 and 2 by assigning smaller transform
gate values. In contrast, MemN2N carries false and
misguiding information (caused by the distracting
attention mechanism) accumulated from the previ-
ous hops, which eventually led to the wrong pre-
diction of the answer.

7 Related Reading Tasks

Apart from the datasets adopted in our exper-
iments, the CNN/Daily Mail (Hermann et al.,
2015) has been used for the task of machine read-
ing formalized as a problem of text extraction from
a source conditioned on a given question. How-
ever, as pointed out in (Chen et al., 2016), this
dataset not only is noisy but also requires little
reasoning and inference, which is evidenced by
a manual analysis of a randomly selected subset
of the questions, showing that only 2% of the ex-
amples call for multi-sentence inference. Richard-
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Correct Answers

Figure 3: t-SNE scatter plot of the flattened gate
values

son et al. (2013) constructed an open-domain read-
ing comprehension task, named MCTest. Al-
though this corpus demands various degrees of
reasoning capabilities from multiple sentences, its
rather limited size (660 paragraphs, each asso-
ciated with 4 questions) renders training statisti-
cal models infeasible (Chen et al., 2016). Chil-
dren’s Book Test (CBT) (Hill et al., 2015) was
designed to measure the ability of models to ex-
ploit a wide range of linguistic context. Despite
the claim in (Sukhbaatar et al., 2015) that increas-
ing the number of hops is crucial for the perfor-
mance improvements on some tasks, which can
be seen as enabling MemN2N to accommodate
more supporting facts, making such performance
boost particularly more pronounced on those tasks
requiring complex reasoning, Hill et al. (2015)
admittedly reported little improvement in perfor-
mance by stacking more hops and chose a single-
hop MemN2N. This suggests that the necessity of
multi-sentence based reasoning in this dataset is
not mandatory. In the future, we plan to investi-
gate into larger dialog datasets such as (Lowe et
al., 2015).
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8 Conclusion and Future Work

In this paper, we have proposed and developed
what is, as far as our knowledge goes, the first
attempt at incorporating an iterative memory ac-
cess control to an end-to-end trainable memory-
enhanced neural network architecture. We showed
the added value of our proposition on a set of,
natural language based, state-of-the-art reasoning
tasks. Then, we offered a first interpretation of
the resulting capability by analyzing the attention
shifting mechanism and connection short-cutting
behavior of the proposed model. In future work,
we will investigate the use of such mechanism in
the field of language modeling and more gener-
ally on the paradigm of sequential prediction and
predictive learning. Furthermore, we plan to look
into the impact of this method on the recently in-
troduced Key-Value Memory Networks (Miller et
al., 2016) on larger and semi-structured corpus.
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