
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 236–240,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Efficient Online Summarization of Microblogging Streams

Andrei Olariu
Faculty of Mathematics and Computer Science

University of Bucharest
andrei@olariu.org

Abstract

The large amounts of data generated on
microblogging services are making sum-
marization challenging. Previous research
has mostly focused on working in batches
or with filtered streams. Input data has to
be saved and analyzed several times, in or-
der to detect underlying events and then
summarize them. We improve the effi-
ciency of this process by designing an on-
line abstractive algorithm. Processing is
done in a single pass, removing the need to
save any input data and improving the run-
ning time. An online approach is also able
to generate the summaries in real time, us-
ing the latest information. The algorithm
we propose uses a word graph, along with
optimization techniques such as decaying
windows and pruning. It outperforms the
baseline in terms of summary quality, as
well as time and memory efficiency.

1 Introduction

Coined in 2006-2007, the term microblogging is
used to describe social networks that allow users
to exchange small elements of content. The
widespread use of services like Facebook or Twit-
ter means users have access to information that is
otherwise unavailable. Yet, as popular events com-
monly generate hundreds of thousands of tweets,
following them can be difficult. Stream summa-
rization – generating a short text based on a se-
quence of posts – has been seen as the best ap-
proach in solving this problem.

This paper introduces Twitter Online Word
Graph Summarizer. TOWGS is the first online ab-
stractive summarization algorithm and is capable
of state-of-the-art processing speeds. Most previ-
ous algorithms process a stream in batches. They
require several passes through the data or a feed

specifically filtered for an event. Batch summa-
rization is suitable for small experiments, but it
is not capable of efficiently handling thousands of
tweets per second.

We collect a 3.4 million tweets dataset for eval-
uation purposes. We choose as baseline an algo-
rithm designed to summarize related tweets. We
determine a set of important events relative to the
input data. A group of judges rate the summaries
generated by both algorithms for the given events.
Our solution is not only capable of online summa-
rization, but it also outperforms the batch-based
event-filtered baseline in terms of result quality.
The code for our algorithm is available online,
along with the summaries, event keywords, rat-
ings and tweet IDs: https://github.com/
andreiolariu/online-summarizer.

2 Related Work

2.1 Summarization

We distinguish two approaches in performing
multi-document summarization: extractive and
abstractive. With the risk of oversimplification,
we view extractive summarization as a process
of selecting sentences from the documents, while
abstractive summarization generates phrases that
may not appear in the input data.

The extractive approach is usually modeled as
an optimization problem (Erkan and Radev, 2004).
It can be combined with other techniques, such
as clustering (Silveira and Branco, 2012) or topic
modeling (Li and Li, 2013).

Although actually performing word-level ex-
traction, we consider word graph summarization
algorithms abstractive because they are able to
generate summaries not found among the input
sentences. Word graphs are used in compressing
similar sentences (Filippova, 2010) or summariz-
ing product reviews (Ganesan et al., 2010).

A relevant reference for the problem of up-

236

date summarization is TAC update summarization
track (Dang and Owczarzak, 2008).

2.2 Summarization on Twitter

Regarding summarizing Twitter streams, we no-
tice that all approaches are either restricted to spe-
cific filtered streams, or combined with event de-
tection.

Extractive summarization is predominant when
working with Twitter data. It was first used for
streams following simple and structured events,
such as sports matches (Takamura et al., 2011;
Chakrabarti and Punera, 2011; Nichols et al.,
2012; Zubiaga et al., 2012).

The Phrase Reinforcement algorithm, intro-
duced by Sharifi et al. (2010a; 2010b), extracts
frequently used sequences of words. It was first
applied in summarizing topic streams. Subsequent
research emphasized evolving topics (Gao et al.,
2013) or event decomposition (Olariu, 2013).

Other approaches are based on integer linear
programming (Liu et al., 2011) or LDA (Khan et
al., 2013). Yang et al. (2012) develop a frame-
work for summarization, highlighting its scalabil-
ity. Shou et al. (2013) introduce Sumblr, capable
of cluster-based online extractive summarization.

Abstractive summarization is difficult on Twit-
ter streams. It is easily affected by noise or by the
large variety of tweets. Olariu (2013) showed that
abstractive summarization is feasible if posts are
clustered based on similarity or underlying events.

3 Twitter Online Word Graph
Summarizer

3.1 Building the Word Graph

By employing a word graph, TOWGS doesn’t
have to save any of the tweets, like extractive ap-
proaches do. It can also skip the clustering step
applied by the other online algorithm (Shou et al.,
2013), leading to faster summarization.

Previous word graph algorithms are based on
bigrams. Words are mapped to nodes in the graph,
while an edge is added for each bigram. When ap-
plied to Twitter messages, the results depend on
the similarity of the summarized tweets (Olariu,
2013). A set of related tweets generates a qual-
ity summary. When applied to unrelated tweets,
the generated summary lacks any meaning. This
happens because event-related signals (in our case
bigrams) stand out when analyzing similar tweets,

but get dominated by noise (bigrams of common
words) when analyzing unrelated tweets.

We solve this issue by building the word
graph from trigrams. In our version, each
node in the graph is a bigram. Having a sen-
tence (w1, w2, w3, w4), we will first add two spe-
cial words (to mark the beginning and end of
the sentence) and generate the following edges:
(S, w1) → (w1, w2), (w1, w2) → (w2, w3),
(w2, w3) → (w3, w4) and (w3, w4) → (w4, E).
Weights are added to nodes and edges in order to
store the count for each bigram or trigram.

A negative effect of building the word graph
from trigrams is that it significantly increases the
number of nodes, leading to an increase in both
memory and time. We approach this issue by
pruning the graph. We implement pruning by pe-
riodically going through the whole graph and re-
moving edges that were not encountered in the
previous time window. The length of this hard
window can be set based on how much memory
we would like to allocate, as well as on the size of
the soft window introduced in the next subsection.

3.2 Word Graph Online Updating

In previous work, word graphs are discarded af-
ter generating the summary. For our online sum-
marization task, the graph is being constantly up-
dated with tweets. It can also respond, at any time,
to queries for generating summaries starting from
given keywords.

In order to keep the results relevant to what is
popular at query time, we would like the graph
to forget old data. We implement this behavior
by using decaying windows (Rajaraman and Ull-
man, 2011). They are applied not only to graph
weights (counts of bigrams and trigrams), but also
to counts of words and word pair cooccurrences.

At each time step (in our case, each second),
all counts are multiplied by 1 − c, where c is a
small constant. For example, after one hour (3600
seconds), a value of 1 would become 0.48 with
c = 0.0002 (given by (1 − c)3600) and 0.05 with
c = 0.0008.

In order to optimize the implementation, we ex-
plicitly multiply the counts only when they are
read or incremented. For each record, we keep
the timestamp for its latest update tk. Knowing
the current timestamp tn, we update the count by
multiplying with (1− c)tn−tk .

The size of the decaying window influences the

237

results and the memory requirements for TOWGS.
A larger window requires less pruning and more
memory, while also leading to more general sum-
maries. For example, given a stream of tweets
related to a sporting event, summaries generated
over very narrow windows would probably high-
light individual goals, touchdowns or penalties.
The summary for a two hour window would in-
stead capture just the final score.

3.3 Generating Summaries
Given a word graph, generating a summary in-
volves finding the highest scoring path in the
graph. That path connects the special words which
mark the beginning and end of each sentence.
Since finding the exact solution is unfeasible given
our real time querying scenario, we will employ a
greedy search strategy.

The search starts by selecting the node (bigram)
with the highest weight. If we are interested in
summarizing an event, we select the top ranking
bigram containing one of the event’s keywords.

At this point, we have a path with one node.
We expand it by examining forward and backward
edges and selecting the one that maximizes the
scoring function:

score(n, e,m, p, k) =
c1 frequency(n) (1a)

+ c2 edge score(e, m) (1b)

+ c3 word score(n, p) (1c)

+ c4 word score(n, k) (1d)

− c5 frequent word pen(n) (1e)

− c6 repeated word pen(n) (1f)

where p is a path representing a partial summary, n
is a node adjacent to one of the path’s endpoints m
by edge e and k is a list of keywords related to an
event. The constants c1 through c6 determine the
influence each helper function has on the overall
score. The node n represents a bigram composed
of the words wi (already in the path as part of m)
and wo (currently being considered for extending
p). The helper functions are defined as:

frequency(n) = log(Wb[n]) (2a)

edge score(e, m) = log
(

Wt[e]
Wb[m]

)
(2b)

word score(n, p)=
∑
w∈p

1
|p| log

(
Wd[w, wo]√

Ww[w]Ww[wo]

)
(2c)

frequent word pen(n) = log(Ww[wo]) (2d)

repeated word pen(n) = 1p(wo) (2e)

where Ww[w] is the weight for word w, Wb[m] is
the weight for the bigram represented by node m,
Wt[e] is the weight for the trigram represented by
edge e and Wd[w, wo] is the weight for the cooc-
currences of words w and wo in the same tweets.
1p(wo) is the indicator function. In all these cases,
weights are counts implemented using decaying
windows (subsection 3.2).

The scoring function gives a higher score to fre-
quent bigrams (equations 1a and 2a). In the same
time, individual words are penalized on their fre-
quency (equations 1e and 2d). Such scores favor
words used in specific contexts as opposed to gen-
eral ones. Trigrams are scored relative to bigrams
(equations 1b and 2b). Again, this favors context
specific bigrams. The word score function (equa-
tion 2c) computes the average correlation between
a word (wo from the bigram represented by node
n) and a set of words. The set of words is either
the current partial summary (equation 1c) or the
event-related keywords (equation 1d).

We use logarithms in order to avoid floating
point precision errors.

4 Evaluation

4.1 Corpus and Baseline

Our corpus is built using the Twitter Search API.
We gathered an average of 485000 tweets per
day for a total of seven days, between the 4th

and the 10th of November 2013. This volume of
tweets represents around 0.1% of the entire Twit-
ter stream. Because of Twitter’s terms of service,
sharing tweets directly is not allowed. Instead, the
source code we’ve released comes with the tweet
IDs needed for rebuilding the corpus.

The algorithm chosen as baseline is Multi-
Sentence Compression (or MSC), as presented in
(Olariu, 2013). MSC is a batch algorithm for
abstractive summarization. It performs best on
groups of similar tweets, such as the ones related
to an event. After receiving a summarization query
for a set of keywords, the tweets are filtered based
on those keywords. MSC processes the remaining
tweets and generates a word graph. After building
the summary, the graph is discarded.

Because it has to store all tweets, MSC is not as
memory-efficient as TOWGS. It is also not time-
efficient. Each summarization query requires fil-

238

tering the whole stream and building a new word
graph. The advantage MSC has is that it is work-
ing with filtered data. Olariu (2013) has shown
how susceptible word graphs are to noise.

4.2 Evaluation Procedure

The list of 64 events to be summarized was de-
termined using a frequency based approach. A
simple procedure identified words that were used
significantly more in a given day compared to a
baseline. The baselines were computed on a set
of tweets posted between the 1st and the 3rd of
November 2013. Words that often appeared to-
gether were grouped, with each group represent-
ing a different event.

The MSC algorithm received a cluster of posts
for each event and generated summaries of one
sentence each. TOWGS processed the posts as a
stream and answered to summarization requests.
The requests were sent after the peak of each event
(at the end of the hour during which that event reg-
istered the largest volume of posts).

The metrics used for assessing summary qual-
ity were completeness (how much information is
expressed in the summary, relative to the event
tweets) and grammaticality. They were rated on
a scale of 1 (lowest) to 5 (highest).

We asked five judges to rate the summaries us-
ing a custom built web interface. The judges were
not native English speakers, but they were all pro-
ficient. Three of them were Twitter users. While
the judges were subjective in assessing summary
quality, each one did rate all of the summaries and
the differences between the two algorithms’ rat-
ings were consistent across all judges.

The constants c1 through c6 (introduced in sub-
section 3.3) were set to 2, 3, 3, 10, 1 and 100,
respectively. These values were manually deter-
mined after experimenting with a one day sample
not included in the evaluation corpus.

5 Results

The average ratings for completeness are very sim-
ilar, with a small advantage for TOWGS (4.29 ver-
sus MSC’s 4.16). We believe this is a good result,
considering TOWGS doesn’t perform clustering
and summarizes events that account for less than
1% of the total volume. Meanwhile, MSC pro-
cesses only the event-related tweets. The average
rating for grammaticality is significantly higher
for TOWGS (4.30), as compared to MSC (3.78).

Figure 1: The ratings distribution by algorithm
and metric.

While not engineered for speed, our implemen-
tation can process a day of data from our corpus
(around 485000 tweets) in just under three minutes
(using one 3.2 GHz core). In comparison, Sum-
blr (Shou et al., 2013) can process around 30000
tweets during the same interval. TOWGS requires
an average of 0.5 seconds for answering each sum-
marization query. Regarding memory use, pruning
kept its value constant. In our experiments, the
amount of RAM used by the algorithm was be-
tween 1.5 - 2 GB.

The code for TOWGS is available online,
along with the summaries, keywords, ratings
and tweet IDs: https://github.com/
andreiolariu/online-summarizer.

6 Conclusion

Summarizing tweets has been a popular research
topic in the past three years. Yet developing effi-
cient algorithms has proven a challenge, with most
work focused on small filtered streams.

This paper introduces TOWGS, a highly effi-
cient algorithm capable of online abstractive mi-
croblog summarization. TOWGS was tested on
a seven day 0.1% sample of the entire Twitter
stream. We asked five judges to rate the sum-
maries it generated, along with those from a base-
line algorithm (MSC). After aggregating the re-
sults, the summaries generated by TOWGS proved
to have a higher quality, despite the fact that MSC
processed just the batches of event-filtered tweets.
We also highlighted the state-of-the-art time effi-
ciency of our approach.

239

References

Deepayan Chakrabarti and Kunal Punera. 2011. Event
summarization using tweets. In Proceedings of the
5th Int’l AAAI Conference on Weblogs and Social
Media (ICWSM).

Hoa Trang Dang and Karolina Owczarzak. 2008.
Overview of the tac 2008 update summarization
task. In Proceedings of text analysis conference,
pages 1–16.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
graph-based lexical centrality as salience in text
summarization. J. Artif. Int. Res., 22(1):457–479,
December.

Katja Filippova. 2010. Multi-sentence compression:
finding shortest paths in word graphs. In Proceed-
ings of the 23rd International Conference on Com-
putational Linguistics, COLING ’10, pages 322–
330, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: a graph-based approach to abstrac-
tive summarization of highly redundant opinions. In
Proceedings of the 23rd International Conference
on Computational Linguistics, COLING ’10, pages
340–348, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Dehong Gao, Wenjie Li, and Renxian Zhang. 2013.
Sequential summarization: A new application for
timely updated twitter trending topics. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics, ACL ’13, pages 567–
571. Association for Computational Linguistics.

Muhammad Asif Hossain Khan, Danushka Bollegala,
Guangwen Liu, and Kaoru Sezaki. 2013. Multi-
tweet summarization of real-time events. In Social-
Com, pages 128–133. IEEE.

Jiwei Li and Sujian Li. 2013. Evolutionary hierarchi-
cal dirichlet process for timeline summarization. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, ACL ’13,
pages 556–560. Association for Computational Lin-
guistics.

Fei Liu, Yang Liu, and Fuliang Weng. 2011. Why
is ”sxsw” trending?: exploring multiple text sources
for twitter topic summarization. In Proceedings of
the Workshop on Languages in Social Media, LSM
’11, pages 66–75, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Jeffrey Nichols, Jalal Mahmud, and Clemens Drews.
2012. Summarizing sporting events using twitter. In
Proceedings of the 2012 ACM international confer-
ence on Intelligent User Interfaces, IUI ’12, pages
189–198, New York, NY, USA. ACM.

Andrei Olariu. 2013. Hierarchical clustering in im-
proving microblog stream summarization. In Pro-
ceedings of the 14th international conference on
Computational Linguistics and Intelligent Text Pro-
cessing - Volume 2, CICLing’13, pages 424–435,
Berlin, Heidelberg. Springer-Verlag.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of Massive Datasets. Cambridge University
Press, New York, NY, USA.

Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita.
2010a. Summarizing microblogs automatically.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT
’10, pages 685–688, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Beaux Sharifi, Mark-Anthony Hutton, and Jugal K.
Kalita. 2010b. Experiments in microblog sum-
marization. In Proceedings of the 2010 IEEE Sec-
ond International Conference on Social Computing,
SOCIALCOM ’10, pages 49–56, Washington, DC,
USA. IEEE Computer Society.

Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen.
2013. Sumblr: Continuous summarization of evolv-
ing tweet streams. In Proceedings of the 36th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13,
pages 533–542, New York, NY, USA. ACM.

S.B. Silveira and A. Branco. 2012. Combining a dou-
ble clustering approach with sentence simplification
to produce highly informative multi-document sum-
maries. In Information Reuse and Integration (IRI),
2012 IEEE 13th International Conference on, pages
482–489.

Hiroya Takamura, Hikaru Yokono, and Manabu Oku-
mura. 2011. Summarizing a document stream. In
Proceedings of the 33rd European conference on
Advances in information retrieval, ECIR’11, pages
177–188, Berlin, Heidelberg. Springer-Verlag.

Xintian Yang, Amol Ghoting, Yiye Ruan, and Srini-
vasan Parthasarathy. 2012. A framework for sum-
marizing and analyzing twitter feeds. In Proceed-
ings of the 18th ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
KDD ’12, pages 370–378, New York, NY, USA.
ACM.

Arkaitz Zubiaga, Damiano Spina, Enrique Amigó, and
Julio Gonzalo. 2012. Towards real-time summa-
rization of scheduled events from twitter streams. In
Proceedings of the 23rd ACM Conference on Hyper-
text and Social Media, HT ’12, pages 319–320, New
York, NY, USA. ACM.

240

