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Abstract
Recognising entities in social media text is
difficult. NER on newswire text is conven-
tionally cast as a sequence labeling prob-
lem. This makes implicit assumptions re-
garding its textual structure. Social me-
dia text is rich in disfluency and often
has poor or noisy structure, and intuitively
does not always satisfy these assumptions.
We explore noise-tolerant methods for se-
quence labeling and apply discriminative
post-editing to exceed state-of-the-art per-
formance for person recognition in tweets,
reaching an F1 of 84%.

1 Introduction

The language of social media text is unusual
and irregular (Baldwin et al., 2013), with mis-
spellings, non-standard capitalisation and jargon,
disfluency and fragmentation. Twitter is one of the
sources of social media text most challenging for
NLP (Eisenstein, 2013; Derczynski et al., 2013).

In particular, traditional approaches to Named
Entity Recognition (NER) perform poorly on
tweets, especially on person mentions – for exam-
ple, the default model of a leading system reaches
an F1 of less than 0.5 on person entities in a ma-
jor tweet corpus. This indicates a need for ap-
proaches that can cope with the linguistic phe-
nomena apparently common among social media
authors, and operate outside of newswire with its
comparatively low linguistic diversity.

So, how can we adapt? This paper contributes
two techniques. Firstly, it demonstrates that en-
tity recognition using noise-resistant sequence la-
beling outperforms state-of-the-art Twitter NER,
although we find that recall is consistently lower
than precision. Secondly, to remedy this, we intro-
duce a method for automatically post-editing the
resulting entity annotations by using a discrimina-
tive classifier. This improves recall and precision.

2 Background

Named entity recognition is a well-studied prob-
lem, especially on newswire and other long-
document genres (Nadeau and Sekine, 2007; Rati-
nov and Roth, 2009). However, experiments show
that state-of-the-art NER systems from these gen-
res do not transfer well to social media text.

For example, one of the best performing
general-purpose named entity recognisers (hereon
referred to as Stanford NER) is based on linear-
chain conditional random fields (CRF) (Finkel et
al., 2005). The model is trained on newswire
data and has a number of optimisations, includ-
ing distributional similarity measures and sam-
pling for remote dependencies. While excellent
on newswire (overall F1 90%), it performs poorly
on tweets (overall F1 44%) (Ritter et al., 2011).

Rule-based named entity recognition has per-
formed a little better on tweets. Another general-
purpose NER system, ANNIE (Cunningham et al.,
2002), reached F1 of 60% over the same data (Der-
czynski et al., 2013); still a large difference.

These difficulties spurred Twitter-specific NER
research, much of which has fallen into two broad
classes: semi-supervised CRF, and LDA-based.

Semi-supervised CRF: Liu et al. (2011) com-
pare the performance of a person name dictio-
nary (F1 of 33%) to a CRF-based semi-supervised
approach (F1 of 76% on person names), using a
dataset of 12 245 tweets. This, however, is based
on a proprietary corpus, and cannot be compared
to, since the system is also not available.

Another similar approach is TwiNER (Li et al.,
2012), which is focused on a single topic stream
as opposed to general-purpose NER. This leads
to high performance for a topic-sensitive classi-
fier trained to a particular stream. In contrast we
present a general-purpose approach. Further, we
extract a specific entity class, where TwiNER per-
forms entity chunking and no classification.
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LDA and vocabularies: Ritter et al. (2011)’s
T-NER system uses 2,400 labelled tweets, unla-
belled data and Linked Data vocabularies (Free-
base), as well as co-training. These techniques
helped but did not bring person recognition accu-
racy above the supervised MaxEnt baseline in their
experiments. We use this system as our baseline.

3 Experimental Setup

3.1 Corpus
The experiments combine person annotations
from three openly-available datasets: Ritter et
al. (2011), UMBC (Finin et al., 2010) and
MSM2013 (Basave et al., 2013). In line with pre-
vious research (Ritter et al., 2011), annotations on
@mentions are filtered out. The placeholder to-
kens in MSM data (i.e. MENTION , HASHTAG ,
URL ) are replaced with @Mention, #hashtag,

and http://url/, respectively, to give case and char-
acter n-grams more similar to the original values.

The total corpus has 4 285 tweets, around a third
the size of that in Liu et al. (2011). This dataset
contains 86 352 tokens with 1 741 entity mentions.

Person entity recognition was chosen as it is a
challenging entity type. Names of persons popular
on Twitter change more frequently than e.g. loca-
tions. Person names also tend to have a long tail,
not being confined to just public figures. Lastly,
although all three corpora cover different entity
types, they all have Person annotations.

3.2 Labeling Scheme
Following Li et al. (2009) we used two-class IO la-
beling, where each token is either in-entity or out-
of-entity. In their NER work, this performed better
than the alternative BIO format, since data sparsity
is reduced. The IO scheme has the disadvantage
of being unable to distinguish cases where multi-
ple different entities of the same type follow each
other without intervening tokens. This situation is
uncommon and does not arise in our dataset.

3.3 Features
The Stanford NER tool was used for feature gen-
eration. When required, nominal values were con-
verted to sparse one-hot vectors. Features for
modelling context are included (e.g. ngrams, ad-
joining labels). Our feature sets were:

base: default Stanford NER features, plus the
previous and next token and its word shape.1

1Default plus useClassFeature=true, noMidNGrams=true,

Figure 1: Training curve for lem. Diagonal cross
(blue) is CRF/PA, vertical cross (red) SVM/UM.

lem: with added lemmas, lower-case versions
of tokens, word shape, and neighbouring lemmas
(in attempt to reduce feature sparsity & cope better
with lexical and orthographic noise). Word shape
describes the capitalisation and the type of char-
acters (e.g. letters, numbers, symbols) of a word,
without specifying actual character choices. For
example, Capital may become Ww.

These representations are chosen to compare
those that work well for newswire to those with
scope for tolerance of noise, prevalent in Twitter.

3.4 Classifiers

For structured sequence labeling, we experiment
with conditional random fields – CRF (Lafferty
et al., 2001) – using the CRFsuite implementa-
tion (Okazaki, 2007) and LBFGS. We also use
an implementation of the passive-aggressive CRF
from CRFsuite, choosing max iterations = 500.

Passive-aggressive learning (Crammer et al.,
2006) demonstrates tolerance to noise in training
data, and can be readily adapted to provide struc-
tured output, e.g. when used in combination with
CRF. Briefly, it skips updates (is passive) when
the hinge loss of a new weight vector during up-
date is zero, but when it is positive, it aggres-
sively adjusts the weight vector regardless of the
required step size. This is integrated into CRF us-
ing a damped loss function and passive-aggressive
(PA) decisions to choose when to update. We ex-
plore the PA-I variant, where the objective func-
tion scales linearly with the slack variable.

maxNGramLeng=6, usePrev=true, useNext=true, usePre-
vSequences=true, maxLeft=1, useTypeSeqs=true, useType-
Seqs2=true, useTypeSeqs3=true, useTypeySequences=true,
wordShape=chris2useLC, useDisjunctive=true, lowercaseN-
Grams=true, useShapeConjunctions=true
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Approach Precision Recall F1
Stanford 85.88 50.00 63.20
Ritter 77.23 80.18 78.68
MaxEnt 86.92 59.09 70.35
SVM 77.55 59.16 67.11
SVM/UM 73.26 69.63 71.41
CRF 82.94 62.39 71.21
CRF/PA 80.37 65.57 72.22

Table 1: With base features (base)

Approach Precision Recall F1
Stanford 90.60 60.00 72.19
Ritter 77.23 80.18 78.68
MaxEnt 91.10 66.33 76.76
SVM 88.22 66.58 75.89
SVM/UM 81.16 74.97 77.94
CRF 89.52 70.52 78.89
CRF/PA 86.85 74.71 80.32

Table 2: With shape and lemma features (lem)

For independent discriminative classification,
we use SVM, SVM/UM and a maximum entropy
classifier (MegaM (Daumé III, 2004)). SVM is
provided by the SVMlight (Joachims, 1999) im-
plementation. SVM/UM is an uneven margins
SVM model, designed to deal better with imbal-
anced training data (Li et al., 2009).

3.5 Baselines
The first baseline is the Stanford NER CRF al-
gorithm, the second Ritter’s NER algorithm. We
adapted the latter to use space tokenisation, to
preserve alignment when comparing algorithms.
Baselines are trained and evaluated on our dataset.

3.6 Evaluation
Candidate entity labelings are compared using the
CoNLL NER evaluation tool (Sang and Meulder,
2003), using precision, recall and F1. Following
Ritter, we use 25%/75% splits made at tweet, and
not token, level.

4 Results

The base feature set performs relatively poorly
on all classifiers, with only MaxEnt beating a
baseline on any score (Table 1). However, all
achieve a higher F1 score than the default Stan-
ford NER. Of these classifiers, SVM/UM achieved
the best precision and CRF/PA – the best F1. This
demonstrates that the noise-tolerance adaptations
to SVM and CRF (uneven margins and passive-
aggressive updates, respectively) did provide im-
provements over the original algorithms.

Results using the extended features (lem) are
shown in Table 2. All classifiers improved, in-

Entity length (tokens) Count
1 610
2 1065
3 51
4 15

Table 3: Distribution of person entity lengths.

cluding the baseline Stanford NER system. The
SVM/UM and CRF/PA adaptations continued to
outperform the vanilla models. With these fea-
tures, MaxEnt achieved highest precision and CRF
variants beat both baselines, with a top F1 of
80.32%. We continue using the lem feature set.

5 Discriminative Post-Editing

Precision is higher than recall for most systems,
especially the best CRF/PA (Table 2). To improve
recall, potential entities are re-examined in post-
editing (Gadde et al., 2011). Manual post-editing
improves machine translation output (Green et al.,
2013); we train an automatic editor.

We adopt a gazetteer-based approach to trig-
gering a discriminative editor, which makes deci-
sions about labels after primary classification. The
gazetteer consists of the top 200 most common
names in English speaking countries. The first
names of popular figures over the past two years
(e.g. Helle, Barack, Scarlett) are also included.
This gives 470 case-sensitive trigger terms.

Often the trigger term is just the first in a se-
quence of tokens that make up the person name.
As can be seen from the entity length statistics
shown in Table 3, examining up to two tokens cov-
ers most (96%) person names in our corpus. Based
on this observation, we look ahead just one extra
token beyond the trigger term. This gives a to-
ken sub-sequence that was marked as out-of-entity
by the original NER classifier. Its constituents be-
come candidate person name tokens.

Candidates are then labeled using a high-recall
classifier. The classifier should be instance-based,
since we are not labeling whole sequences. We
chose SVM with variable cost (Morik et al., 1999),
which can be adjusted to prefer high recall.

To train this classifier, we extract a subset of in-
stances from the current training split as follows.
Each trigger term is included. Also, if the trig-
ger term is labeled as an entity, each subsequent
in-entity token is also included. Finally, the next
out-of-entity token is also included, to give exam-
ples of when to stop. For example, these tokens
are either in or out of the training set:
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Overall
Method Missed entity F1 P R F1
No editing - plain CRF/PA 0.00 86.85 74.71 80.32
Naı̈ve: trigger token only 5.82 86.61 78.91 82.58
Naı̈ve: trigger plus one 6.05 81.26 82.08 81.67
SVM editor, Cost = 0.1 78.26 87.38 79.16 83.07
SVM editor, Cost = 0.5 89.72 87.17 80.30 83.60
SVM editor, Cost = 1.0 90.74 87.19 80.43 83.67
SVM editor, Cost = 1.5 92.73 87.23 80.69 83.83
SVM editor, Cost = 2.0 92.73 87.23 80.69 83.83

Table 4: Post-editing performance. Higher Cost sacrifices precision for recall.

Miley O in
Heights O out

Miley PERSON in
Cyrus PERSON in
is O in
famous O out

When post-editing, the window is any trigger
term and the following token, regardless of initial
label. The features used were exactly the same as
with the earlier experiment, using the lem set. This
is compared with two naı̈ve baselines: always an-
notating trigger terms as Person, and always anno-
tating trigger terms and the next token as Person.

Results are shown in Table 4. Naı̈ve editing
baselines had F1 on missed entities of around 6%,
showing that post-editing needs to be intelligent.

At Cost = 1.5, recall increased to 80.69, ex-
ceeding the Ritter recall of 80.18 (raising Cost be-
yond 1.5 had no effect). This setup gave good ac-
curacy on previously-missed entities (second col-
umn) and improved overall F1 to 83.83. It also
gave better precision and recall than the best naı̈ve
baseline (trigger-only), and 6% absolute higher
precision than trigger plus one. This is a 24.2% re-
duction in error over the Ritter baseline (F1 78.68),
and a 17.84% error reduction compared to the best
non-edited system (CRF/PA+lem).

6 Error Analysis
We examine two types of classification error: false
positives (spurious) and false negatives (missed).

False positives occur most often where non-
person entities are mentioned. This occurred with
mentions of organisations (Huff Post), locations
(Galveston) and products (Exodus Porter). De-
scriptive titles were also sometimes mis-included
in person names (Millionaire Rob Ford). Names of
persons used in other forms also presented as false
positives (e.g. Marie Claire – a magazine). Pol-
ysemous names (i.e. words that could have other
functions, such as a verb) were also mis-resolved
(Mark). Finally, proper nouns referring to groups

were sometimes mis-included (Haitians).
Despite these errors, precision almost always

remained higher than recall over tweets. We use
in-domain training data, and so it is unlikely that
this is due to the wrong kinds of person being cov-
ered in the training data – as can sometimes be the
case when applying tools trained on newswire.

False negatives often occurred around incorrect
capitalisation and spelling, with unusual names,
with ambiguous tokens and in low-context set-
tings. Both omitted and added capitalisation gave
false negatives (charlie gibson, or KANYE WEST).
Spelling errors also led to missed names (Rus-
sel Crowe). Ambiguous names caused false neg-
atives and false positives; our approach missed
mark used as a name, and the surname of Jack
Straw. Unusual names with words typically used
for other purposes were also not always correctly
recognised (e.g. the Duck Lady, or the last two
tokens of Spicy Pickle Jr.). Finally, names with
few or no context words were often missed (Video:
Adele 21., and 17-9-2010 Tal al-Mallohi, a 19-).

7 Conclusion

Finding named entities in social media text, par-
ticularly tweets, is harder than in newswire. This
paper demonstrated that adapted to handle noisy
input is useful in this scenario. We achieved the
good results using CRF with passive-aggressive
updates. We used representations rich in word
shape and contextual features and achieved high
precision with moderate recall (65.57–74.71).

To improve recall, we added a post-editing stage
which finds candidate person names based on trig-
ger terms and re-labels them using a cost-adjusted
SVM. This flexible and re-usable approach lead to
a final reduction in error rate of 24.2%, giving per-
formance well above that of comparable systems.

Acknowledgment This work received funding
from EU FP7 under grant agreement No. 611233,
Pheme. We thank Chris Manning and John Bauer
of Stanford University for help with the NER tool.

72



References
T. Baldwin, P. Cook, M. Lui, A. MacKinlay, and

L. Wang. 2013. How noisy social media text,
how diffrnt social media sources. In Proceedings of
the Sixth International Joint Conference on Natural
Language Processing, pages 356–364. ACL.

A. E. C. Basave, A. Varga, M. Rowe, M. Stankovic,
and A.-S. Dadzie. 2013. Making Sense of Micro-
posts (# MSM2013) Concept Extraction Challenge.
In Proceedings of the Concept Extraction Challenge
at the Workshop on ’Making Sense of Microposts’,
volume 1019. CEUR-WS.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research,
7:551–585.

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: an Architecture for Devel-
opment of Robust HLT Applications. In Proceed-
ings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 168–175.
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