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Abstract
This paper presents an overview of the
field of literature-based discovery, as orig-
inally applied in biomedicine. Further-
more it identifies some of the challenges
to employing the results of the field in a
new domain, namely oceanographic cli-
mate science, and elaborates on some of
the research that needs to be conducted to
overcome these challenges.

1 Introduction

The increase in growth rate of the scientific litera-
ture over the past decades has forced researchers to
become increasingly specialized in order to keep
up with the state of the art. This inevitably leads
to the fragmentation of science as researchers from
different (sub-)disciplines rarely have time to read
each other’s papers. Swanson (1986) claimed that
this fragmentation of science can lead to undiscov-
ered public knowledge: Conclusions that can be
made from existing literature, but have never been
made because the knowledge fragments have been
discovered in separate (sub-)disciplines. Adopt-
ing the terminology of Swanson (1991), a litera-
ture can be informally defined as a collection of
papers with a significant amount of cross-citation
related to a single topic. Two literatures are com-
plementary if they contain knowledge fragments
which can be combined to form new knowledge,
and disjoint if they have no articles in common,
and exhibit little or no cross-citation. The implicit
hypothesis is that such complementary but disjoint
(CBD) literatures are common, giving rise to sig-
nificant amounts of undiscovered public knowl-
edge. The field of Literature-based Discovery
(LBD)1 focuses on the development and applica-
tion of computational tools to discover undiscov-
ered public knowledge in scientific literature.

1Also called Literature-based knowledge discovery
(LBKD).

Most work in LBD has been conducted in sub-
fields of the biomedical literature, frequently em-
ploying knowledge resources specific to that do-
main. This paper will present an overview of some
of the research in LBD, and discuss some of the
challenges in reproducing the results made in the
LBD field in a different domain, namely oceano-
graphic climate science. The structure of this pa-
per is as follows: Section 2 will give an overview
of the LBD field, section 3 will discuss differ-
ences between the biomedical domain and that
of oceanographic climate science, and section 4
will discuss directions for research that will be
conducted in order to adapt LBD methods to the
oceanographic climate science domain.

2 Literature-based discovery

Swanson (1986) observed that if a literature L1 as-
serted a → b, and a disjoint literature L2 asserted
b → c, then the concept denoted by b could func-
tion as a bridge between L1 and L2, leading to the
discovery of the hypothesis a → c2. One example
given by Swanson showed that fish oils reduced
blood viscosity (fish oil → blood viscosity),
and that patients of Raynaud’s disease tend to ex-
hibit high blood viscosity (blood viscosity →
Raynaud). These two facts led to the hypothe-
sis that fish oils can be used in the treatment of
Raynaud’s disease (fish oil → Raynaud) when
combined. This hypothesis was subsequently con-
firmed experimentally (Digiacomo et al., 1989).
Although the inference steps are not logically
sound, the procedure is able to produce interest-
ing results. The general approach of bridging dis-

2A note on terminology: In the LBD literature, capital
letters are normally used for the A, B and C concepts. In
this paper, minuscules will be used to represent individual
concepts, while capital letters represent sets.

Also, some authors use A to denote the the goal concept,
and C for the starting concept. This paper follows the most
commonly used terminology, in which a always denotes the
starting concept, and c denotes the goal concept.
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joint literatures by means of intermediary terms
has been dubbed Swanson linking, and is also re-
ferred to as the ABC model.

Swanson and Smalheiser (1997) explain that the
discovery of the ABC structure and the fish oil-
Raynaud’s disease connection happened acciden-
tally. This discovery led Swanson to conduct lit-
erature searches aided by existing information re-
trieval tools to search for more undiscovered pub-
lic knowledge using the ABC model, resulting in
the discovery of eleven connections between mi-
graine and magnesium (Swanson, 1988). As the
discovery process was extremely time consum-
ing, requiring the researcher to read hundreds of
papers, Swanson later developed a computational
tool, Arrowsmith, to streamline the discovery pro-
cess.

There are two modes of discovery in the ABC
model: Open discovery and closed discovery. In
open discovery, the researcher only knows the
starting concept a, and is interested in uncov-
ering undiscovered public knowledge related to
a. A researcher who looks for consequences of
ocean acidification might conduct an open dis-
covery search with a = ocean acidification.
In closed-discovery, the researcher knows both
the starting concept a and the goal concept c,
and is interested in finding concepts B that prove
an explanation of the relationship between the
two terms. A researcher who hypothesizes that
ocean acidification might cause a reduction in phy-
toplankton population and tries to discover the
causality chain might conduct a closed discov-
ery search with a = ocean acidification, c =
phytoplankton population.

This section will present an overview of the
state-of-the-art of the LBD field. As this paper
discusses the adaptation of LBD to new domains,
approaches will be grouped into of three groups
according to their dependence on domain specific
tools and resources, because reliance on these is
likely to hinder cross-domain adaptation3.

2.1 Group 1: Domain-independent
approaches

In the general Swanson linking paradigm, open
discovery is conducted by extracting all relations
a → bi from the literature of a, written L(a). For

3Some of the papers are presented as domain independent,
even though they employ domain specific resources, because
their main research contributions can be adapted in a domain-
independent manner.

every bi, all relations bi → cj are then extracted
from L(bi). The set of all a → bi → cj relations,
dubbed discovery candidates is then are presented
to the user as potential discoveries, sorted accord-
ing to some ranking metric.

In most LBD approaches L(x) is defined
as the set of documents returned when search-
ing for x in a literature database. The litera-
ture database most commonly used in LBD is
Pubmed/Medline4, maintained by the US National
Library of Medicine. The original Arrowsmith
system considered only paper titles, as Swanson
considered these to hold the most compact knowl-
edge, but it has become the standard approach in
LBD to use abstracts and possibly index terms in
addition to the titles. The motivation for this is that
abstracts and index terms contain more knowledge
than only titles.

Somewhat surprisingly, few LBD systems use
full paper texts. Schuemie et al. (2004) show that
30-40% of all information contained in a section
is new to that section, meaning that significant
amounts of knowledge is lost when only looking
at abstracts and index terms of a paper. The need
for full text data is also pointed out by Cameron
et al. (2013). The reason for not using full text
seems to be that paper abstracts and index terms
are available in xml format through the Pubmed
API, while full paper texts require accessing rights
and are normally stored as pdf.

In co-occurrence based systems, a relation x →
y is postulated if x and y exhibit a high degree
of co-occurrence in L(x), either in terms of abso-
lute frequency of co-occurrence, or in terms of sta-
tistical unlikelihood given the statistical promis-
cuity of the two concepts. While a few systems
use the sentence as the domain for counting co-
occurrences, most systems count co-occurrences
across entire abstracts.

To present the user with only potential new dis-
coveries, most LBD systems remove from C all
terms that are already known to be in a relation
with a. In co-occurrence based methods, this is
done by removing any (a, c) pairs that exhibit
higher degrees if co-occurrence than a predefined
threshold (normally 1 co-occurrence) in L(a).

2.1.1 Arrowsmith
The original Arrowsmith system works as follows
(Swanson and Smalheiser, 1997): L(a) is fetched

4http://www.ncbi.nlm.nih.gov/pubmed/
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by conducting a Medline search to retrieve the ti-
tles of papers containing a in the title. The set
of potential B concepts is extracted as the list of
unique words in L(a), after a stop list of approxi-
mately 5000 words has been applied. The B-term
set is further pruned by removing all the words
that have lesser relative frequency in L(a) than in
Medline. The potential B terms are subsequently
presented to the user, who can then remove words
that are thought to be unsuitable. For each bi ∈ B,
L(bi) is retrieved and a set Ci is generated, subject
to the same stopword and frequency restrictions as
before. The terms in the union of the Ci sets are
then ranked according to the number of b-terms
that connect them to the a-term.

2.1.2 Information retrieval-based methods
Gordon and Lindsay (1996) (Lindsay and Gordon,
1999) developed a system in parallel, which dif-
fered from Arrowsmith in several ways: Firstly,
while Arrowsmith was word-based, their system
used n-grams as the unit of analysis. A stop list
was applied by removing all n-grams that con-
tained any stop word occurrence. Secondly, their
system used entire Medline records, comprising
of keywords, abstracts and titles, whereas Arrow-
smith only used paper titles. Thirdly, their sys-
tem employed information retrieval metrics such
as tf*idf to find b-terms among the generated can-
didates, whereas Arrowsmith was based on rela-
tive frequencies.

The lexical statistical approach is so generic that
it lends itself directly to application in different do-
mains. In a later paper, Gordon et al. (2001) em-
ploy this approach to conduct LBD searches di-
rectly on the World Wide Web, searching for ap-
plication areas for genetic algorithms. It should
however be noted that the goal of this experiment
was not LBD in the sense of uncovering undiscov-
ered public knowledge, instead focusing in discov-
ering something that might be “publicly known”
but novel to the user.

2.1.3 Ranking metrics
Wren et al. (2004) pointed out that the structure
of concept co-occurrence relationships is such that
most concepts are connected to any other concept
within few steps. This small world phenomenon
implies that research focus should be shifted away
from retrieving discovery candidates to ranking
them, because a significant portion of the con-
cept space will be retrieved even within two co-

occurrence relation steps. The paper proposes
ranking implicit relationships by comparing the
number of observed indirect connections between
a and c to the number of expected connections in a
random network model, given the relative promis-
cuity of the intermediary terms.

In another paper, Wren (2004) emphasizes the
importance of using a statistically sound method
of ranking relationship strengths, such as “chi-
square tests, log-likelihood ratios, z-scores or t-
scores”, because co-occurrence based measures
bias towards more general, and thus less inter-
esting relationships. The paper further proposes
an extension to the mutual information measure
(MIM) as a ranking measure.

2.1.4 Latent semantic indexing
Gordon and Dumais (1998) propose exploiting
the ability of certain vector-based semantic mod-
els such as Latent semantic indexing (LSI) to
discover implicit relationships between terms for
LBD. They first train the semantic model on L(a),
and let the user choose as b one of the terms most
similar to a. A new semantic model is built from
L(b), and discovery candidates are ranked accord-
ing to their similarity to a in the L(b)-model. Their
experiments showed that the resulting b- and c-
term candidate lists closely resemble the lists pro-
duced by the information retrieval inspired lexical
statistics.

In another experiment they built a semantic
model from a random sample of all of Medline,
and looked directly for c-terms in the semantic
model by considering the terms most similar to a.
This “zoomed-out” approach produced different
results than the previous Swanson linking inspired
approach, which the authors claimed meant that
the two methods are complementary and could
therefore be used in parallel, but no in-depth eval-
uation was conducted on the quality of the results.

2.1.5 Evaluation efforts
LBD has a tradition for questionable evaluation ef-
fort. The original discoveries in LBD were made
manually by Swanson, and most computational
systems are evaluated solely according to their
ability to replicate one or more of Swanson’s dis-
coveries. This is problematic for several reasons:
First of all, Swanson’s discoveries were never in-
tended as a gold standard, and being able to ac-
complish a single task that is known in advance
does not mean that the results are generalizable.
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Secondly, there is no quantitative basis for com-
paring different approaches or metrics.

Yetisgen-Yildiz and Pratt (2009) conducted the
first systematic quantitative evaluation of discov-
ery candidate ranking metrics and relation rank-
ing/generation techniques. They partitioned Med-
line into two parts, according to a cut-off date.
LBD was conducted on the pre-cut-off set, and
the post-cut-off set was used as a gold standard
to compute precision and recall. In the post-cut-
off set, a connection was considered to exist if
two terms co-occurred in any document. The
ranking metrics that were evaluated were Linking
term count (LTC), that is the number of b-terms
connecting a and c, Average minimum weight
(AMW), that is the average weight of the a →
b → c connections, and Literature cohesiveness
(COH), a measure developed by Swanson but not
widely adopted. Experiments showed that LTC
gave better precision at all levels of recall. The re-
lation generation techniques that were considered
were association rules, tf-idf, z-score and MIM.
The experiment showed that association rules give
the best precision score (8.8%) but the worst recall
score (53.76%), while tf-idf gave the best recall
(88.0%) but a rather low precision (2.29%).

While the evaluation effort was an important
contribution to the LBD field, more quantitative
evaluation is required. First of all, all candidate
ranking/generation techniques and ranking met-
rics were tested with only one value of the pa-
rameters (for instance the cut-off score for tf-idf,
and the cut-off probability for z-score). Compar-
ing the performance of different settings for the
parameters would yield a better understanding of
each of the metrics, and could lead to results com-
pletely different than those reported. Secondly,
only a small subset of possible relation genera-
tion/ranking techniques and discovery candidate
ranking metrics were tested. For example, no re-
lation extraction-based methods (see section 2.3)
were included in the evaluation.

The evaluation methodology can be critiqued in
several ways. Firstly, building the gold standard
from the post-cut-off set is problematic for several
reasons: A co-occurrence can exist in the post-cut-
off set without necessarily corresponding to a new
discovery. Also, as pointed out in Kostoff (2007),
it is very difficult to verify that a discovery has
not been made before the cut-off date. Another
problem is that the post-cut-off set only contains

discoveries that have been made in the present,
all future discoveries are therefore excluded from
the gold standard. Secondly, it is not obvious that
quantitative measures reflect the usefulness of the
LBD system: When at all is said and done, the
usefulness of a LBD system equates to its ability
to support user in discovering knowledge.

2.2 Group 2: Concept-based approaches

Several researchers advocate using domain spe-
cific concepts taken from an ontology or con-
trolled vocabularies instead of n-gram tokens. Us-
ing concepts provides three benefits over n-gram
models: Firstly, synonyms and spelling variants
are mapped to the same semantic concept. Sec-
ondly, using concepts allows for ranking and fil-
tering according to semantic categories. Finally, it
becomes easier to constrain the search space by re-
moving spurious or irrelevant n-grams at an early
stage, as they don’t map to any concept in the do-
main. On the other hand, concept extraction from
raw text is a non-trivial operation.

In LBD concept extraction is conducted in one
of two ways: One option is to use NLP tools
designed for entity recognition. The most com-
monly used in the biomedical domain is MetaMap
(Aronson and Lang, 2010), which extracts con-
cepts from the Unified Medical Language System
(UMLS) meta-thesaurus5. The other option is to
use Medical Subject Headings (MeSH)6. MeSH
is a controlled vocabulary for indexing biomedical
papers, with which all Medline papers have been
manually tagged. MeSH keywords can be queried
directly from the Medline API. Both MeSH and
UMLS terms are organized hierarchically accord-
ing to semantic categories.

2.2.1 DAD
In their system, DAD (Disease-Adverse reaction-
Drug), Weeber et al. (2001) use MetaMap. They
showed in an experiment that the number of con-
cepts extracted is significantly lower than the num-
ber of n-grams, even after stop lists are applied
(8,362 n-grams vs. 5,998 concepts). DAD also al-
lows the user to specify which semantic categories
to consider, by for instance only allowing concepts
of the type pharmacological substance as c con-
cepts, reducing the number of search paths signif-
icantly.

5http://www.nlm.nih.gov/research/umls/
6http://www.nlm.nih.gov/mesh/
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Their approach was able to replicate both Swan-
son’s Raynaud’s-fish oil and migraine-magnesium
discoveries, but it was discovered that MetaMap
maps both mg (milligram) and Mg (magnesium) to
the concept magnesium, giving optimistic results
for the migraine-magnesium experiment. This is
but one example showing that one of the problems
with employing NLP tools in an LBD system is
that system performance becomes closely tied to
the performance of the tools it employs.

2.2.2 LitLinker
Pratt and Yetisgen-Yildiz (2003) developed a
system, LitLinker, which originally also used
MetaMap, but they later found it too computation-
ally expensive for practical use (Yetisgen-Yildiz
and Pratt, 2006). MeSH terms are therefore em-
ployed instead.

In a preprocessing step, LitLinker calculates the
co-occurrence patterns of every MeSH term across
the literatures of every other MeSh term. For ev-
ery MeSH term, the mean and standard deviation
of co-occurrence counts across the literatures is
calculated. In the discovery process, a term is
considered to be related to another term if their
co-occurrence is higher than statistically expected,
based on its z-score.

Yetisgen-Yildiz and Pratt identified three
classes of uninteresting links and terms that
should be pruned automatically by system: (1)
too broad terms (giving the examples medicine,
disease and human), (2) too closely related terms
(giving the example migraine and headache), and
(3) semantically nonsensical connections. The
first class is handled by removing any concept if it
is strictly more specific in the MeSH ontology hi-
erarchy than any included term. The second class
is handled by pruning all links between terms
that are closely related (grandparents, parents,
siblings and children) in the ontology. The third
class is handled by letting the user specify which
semantic classes of concepts are allowed to link.

2.2.3 Bitola
Hristovski et al. (2001) originally developed a
system called Bitola7 that discovered association
rules between MeSH terms. Association rules
mining is a common data mining method for dis-
covering relations between variables in a database.
Association rules are traditionally used for mar-
ket basket analysis, in which rules of the type

7http://ibmi3.mf.uni-lj.si/bitola/

{pizza, steak} → {coca cola} are inferred, stat-
ing that if somebody buys pizza and steak, he/she
is likely to buy coca cola as well. In Bitola’s dis-
covery step, basic associations are first mined from
the co-occurrence patterns of MeSH terms. Sub-
sequently, indirect associations a → c are inferred
by combining association rules on the form a → bi

and bi → c, and ranked according to the sum of
strengths of the connecting association rules.

2.3 Group 3: Relation extraction-based
approaches

Hristovski et al. (2006) point out two prob-
lems with the co-occurrence based LBD systems:
Firstly, no explicit explanation of the relation be-
tween the a and c terms is given. Secondly, a
large number of spurious relations are discovered,
as demonstrated by the low precision values wit-
nessed during system evaluation. Both aspects
increase the time needed to examine the output
of the system by the human user. They suggest
that employing natural language processing (NLP)
techniques to extract explicit relations from the pa-
pers can improve performance on both points.

The biomedical information extraction tool
most commonly used in LBD is SemRep (Rind-
flesch and Fiszman, 2003), which uses lin-
guistically motived rules on top of the ouput
from MetaMap and the Xerox POS Tag-
ger to extract knowledge in the form of <
subject, predicate, object > relation triplets. Al-
though the knowledge expressed in natural lan-
guage is more complex than what can be rep-
resented in simple relation triplets, SemRep is
able to provide a better approximation to the
knowledge content of scientific papers than do co-
occurrence based methods.

While most LBD research employs the same
NLP tool, systems differ as to how the extracted
relations are represented and how reasoning is
conducted in the relation space. Some researchers
closely follow the Swanson linking paradigm, and
use relation extraction based method instead of
or in addition to co-occurrence based methods
for candidate generation and ranking. Other re-
searchers take an approach motivated by Wren’s
observation that a small-world property holds in
the network of concept relations in literature. As
significant portions of the concept-relation space
will have to be explored in a two-step search any-
way, it might be better to extract all relations from
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the entire literature collection or from a random
sample thereof, and rather focus on valid and effi-
cient reasoning within the entire concept-relation
space.

Smalheiser (2012) critiques the usage of rela-
tion extraction in LBD and claims that while rea-
soning over explicit relations may lead to so-called
incremental discoveries, that is, discoveries that
lie close to the existing knowledge and therefore
are less interesting, they are not able to lead to any
radical discoveries, that is discoveries that seem
unlikely at time of discovery. He also claims that
human discoveries, both incremental and radical,
tend to be on a higher level, using analogies and
abstract similarities rather than explicit relations,
and that the benefit from using relation extraction
therefore is minimal8.

2.3.1 Augmented Bitola
In two papers, Hristovski et al. (2006; 2008) ex-
periment with augmenting the Bitola system by
using relation extraction tools. In addition to Sem-
Rep, they also use another tool, BioMedLee, be-
cause each of the tools exhibits better performance
than the other on certain types of relations.

To guide search through the concept-relation
space, they introduce the notion of a discovery pat-
tern. A discovery pattern is a set of concept types
and relations between them that could imply an in-
teresting relationship in the domain. One discov-
ery pattern, maybe treats can informally be stated
as: If a disease leads to a biological change, and
a drug leads to the opposite change, then the drug
may be able to treat the disease.

The integration between Bitola and the NLP
components presented in the system is rather
crude; for a given query term, Bitola outputs a set
of related terms and the set of papers connecting
each related term to the query term. The connect-
ing paper must then be manually input into the
NLP components to extract the relation between
the query term and any related term. Following a
discovery pattern requires extracting relations be-
tween several concepts until a chain of the correct
relations has been found. The possibility to in-
tegrate Bitola and the NLP tools more tightly has
been raised as possible future work, but it has been
noted a concern that the computational load in-

8Smalheiser’s critique also extends to many of the widely
employed co-occurrence based methods. The argument is
that research should focus on developing methods that rank
interesting relations highly.

creases as the NLP component becomes less con-
strained by the co-occurrence based components.

2.3.2 Graph-based reasoning
The extracted relations can be represented as a
Predications Graph in which each concept is rep-
resented by a node and each relation is a labelled,
directed edge from the subject concept to the ob-
ject concept. Representing the concept-relation
space as a graph provides two benefits: As a visual
tool, a graph can display the knowledge extracted
by the system in a way that is easily understood by
the user and can be navigated/explored easily. As
a mathematical object, one can employ graph the-
oretic results when developing algorithms for the
reasoning process.

In the work of Wilkowski et al. (2011) an initial
graph is constructed by querying a pre-compiled
database of predications extracted by SemRep
from Medline for all relations containing the a
concept. The user then incrementally expands the
graph by selecting which terms to query relations
for from a list of concepts ranked by their degree
centrality (i.e. their degree of connectivity in the
graph). After graph construction, potential discov-
ery paths are ranked according to summed degree
centrality.

Although some work has been conducted in
graph-based LBD, seemingly no research has been
conducted on LBD in a global, large-scale pred-
ications graph derived from all of Medline, or a
sample of it.

2.3.3 Predication-based semantic indexing
Cohen et al. (2012a) propose a hyperdimensional
computing technique they call predication-based
semantic indexing (PSI) for efficient representa-
tion and reasoning in the concept-relation space.
In PSI, concepts and relations are represented
as high-dimensional vectors, where the semantic
content of a concept’s vector is a combination of
all the relations it occurs in and all the concepts
it is related to, weighted by the frequency of the
relation. The system uses SemRep to extract rela-
tions from a sample of 8,182,882 Medline records
as input to the training process. Inference in this
hyperdimensional space can be performed by ordi-
nary vector operations. The paper shows how PSI
enables analogical reasoning along the lines of “x
is to what as y is to z?” without explicitly travers-
ing the intermediary relation paths between y and
z, leading to efficient inference.
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The system could originally only infer analo-
gies along a single one of the pathways connect-
ing two concepts x and y. In a later paper Co-
hen et al. (2012b) expanded the PSI to allow for
analogies along multiple pathways, by introducing
a vector operation simulating quantum superposi-
tion, efficiently reasoning over the entire subgraph
connecting x and y. The paper claims that because
real world concepts tend to interact through sev-
eral pathways, literature-based discovery should
strive to be able to reason following a similar pat-
tern.

2.4 Approach type hierarchy
From the previous section, it is easy to see the
LBD approaches can be divided into a three-level
hierarchy according to their dependence on knowl-
edge resources and NLP tools:

Type 1 approaches do not require any knowl-
edge resources: Terms are extracted directly
from text, and relations are hypothesized ac-
cording to co-occurrence patterns. Because
all knowledge is extracted directly from text
they are completely domain-independent.

Type 2 approaches choose terms from a prede-
fined set of concepts. Co-occurrence patterns
are still used to determine relations. The pre-
defined concepts are normally gathered from
a domain-specific ontology or vocabulary.

Type 3 approaches use relation extraction tools
to extract concepts and relations from text.
Because the relations of interest vary widely
between domains, domain-specific NLP tools
are normally used.

It is evident from the description above that
there is a trade-off between reliance on knowledge
resources and system performance, as well as a
strong correlation between reliance on knowledge
resources and domain-dependence. This poses a
challenge when adapting LBD approaches to new
domains.

3 Domain differences

The current work is a part of a project researching
the effects of climate change on the oceanic food
web (i.e. who eats who, and how the relative pop-
ulation sizes affect each other) and the biological
pump (roughly the ocean’s ability to absorb and
retain excess atmospheric CO2). The following

section will discuss some of the research issues
related to adapting the LBD techniques from the
biomedical domain to that of the target domain.

Oceanographic climate science is a cross-
disciplinary domain, bringing together researchers
from fields such as biology, chemistry, earth sci-
ence, climate science and oceanography. The
cross-disciplinary nature gives rise to an abun-
dance of disjoint literatures, providing strong
incentives for LBD. Unfortunately, in a cross-
disciplinary domain, scientists from different
fields bring their own terminologies and scientific
assumptions, creating challenges for LBD work.

While substantial research and engineering ef-
fort has gone into the development of NLP
tools and computational knowledge sources in the
biomedical domain, oceanographic climate sci-
ence is in this respect under-resourced. To the best
of my knowledge, no domain specific NLP tools
exist for any sufficiently closely related domain,
and although ontologies and controlled vocabular-
ies exist for some of the related disciplines, such
as for biology and chemistry, substantial effort is
required to identify and combine the desired re-
sources. As a result, it seems unlikely that any of
the knowledge intensive (type 2 and 3) LBD meth-
ods can be directly applied to oceanographic cli-
mate science. Oceanographic climate science also
lacks an indexed literature database that covers the
entire field, akin to Medline.

Epistemologically there might be a significant
difference between the fields: The objects of study
(the ocean in oceanographic climate science and
the human body in biomedicine) and their pro-
cesses are quite different, requiring different types
of scientific experiments. It therefore seems likely
that the structure of the knowledge produced in the
different fields might be different. In medicine,
experiments can be conducted in a large popula-
tion of complete systems (human bodies), while in
oceanographic experiments must be conducted by
sampling subsystems of a single complete system
(the ocean). It is therefore not surprising that pre-
liminary observations seem to imply that the re-
sults found in oceanographic climate science do
not lend themselves to generalization as easily as
do those in biomedicine, and that the former have
a stronger context dependence (Compare Eicos-
apentaenoic acid AFFECTS Vascular constriction
to Increased labile dissolved organic carbon RE-
DUCES carbon accumulation GIVEN THAT bac-
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teria growth rate is limited). To account for this,
text mining tools must be able to extract precondi-
tions as well as relations, or the user must be in-
volved more closely during discovery pattern ap-
plication to verify that the extracted relations in-
deed hold true in the same context.

Example discovery patterns for oceanographic
climate science have been developed in coopera-
tion with a domain expert, shedding light on some
differences between the domains. One research
goal of biomedicine is to understand the interac-
tions between domain concepts in order to treat
diseases, which is reflected in discovery patterns
such as maybe treats (as mentioned in 2.3.1). The
discovery patterns developed for oceanographic
climate science target the interactions between di-
rectional change events (increase or reduce) in
quantitative variables, such as An increase in CO2

causes a decrease in ocean pH. The types of inter-
actions targeted by these discovery patterns have
a more complex structure than the binary relations
that define maybe treats. Because most relation
extraction tools extract only binary relations, it
seems that simply adapting existing relation ex-
traction tools to the domain will not be sufficient.

Ganiz et al. (2006) discusses that LBD lacks a
solid theoretic foundation, as most research is ap-
plied, rather than theoretical in nature. Although
some inquiry has been conducted into the nature
of discoveries (Smalheiser, 2012), there is little
knowledge about which properties are required to
hold in the domain for the LBD methods to be ap-
plicable, but the current work assumes that all sci-
entific disciplines are sufficiently similar for LBD
methods to be useful.

4 Research directions

The lack of available knowledge resources and
NLP tools for the domain makes it hard to di-
rectly employ any of the knowledge intensive
LBD methods. The development of relation ex-
traction tools for the domain falls outside the scope
of the current thesis, and therefore so does the ap-
plication of type 3 approaches. Instead, the current
thesis will focus on bridging the gap between the
different terminologies and writing styles caused
by different backgrounds in the cross-disciplinary
field. To this end, I propose using an unsuper-
vised approach to jointly learn a semantic parser
and an ontology from the literature, following the
approach of Poon and Domingos (2010).

Poon and Domingos (2009) show that a seman-
tic parser that is able to make non-trivial abstrac-
tions from syntactic structure and word usage can
be successfully learned in an unsupervised fash-
ion. The system they describe is for instance able
to map passive and active form into the same se-
mantic representation and build realistic synonym
hierarchies. One challenge that must be addressed
is that the current state-of-the-art clusters words
based on their argument frames, leading to highly
accurate hierarchical clustering of verbs, but lower
performance for nouns as these have less diverse
argument frames. One research question that will
be addressed is how a larger context can be ex-
ploited to yield higher performance for nouns.

In an LBD context, the learning process can be
seen as bootstrapping a set of concepts for the do-
main. The resulting system can be considered a
hybrid between a type 1 and type 2 approach in
terms of the hierarchy defined in 2.4, as it does
not use any domain knowledge, but still proposes
a set of concepts. A hypothesis that will be evalu-
ated empirically is whether this will provide better
results than a pure type 1 system.

The ontology learned by the system can be
edited by a domain expert, or combined with on-
tologies of related fields as they become available,
thus providing an elegant interface for integration
with domain knowledge in an incremental fashion.
The proposed approach will use Markov Logic, a
probabilistic extension to first-order logic (FOL),
as a knowledge representation language. Back-
ground knowledge can therefore easily be incor-
porated by formulating it as FOL, and the proba-
bilistic aspect enables the system handle contra-
dictions that may occur when combining back-
ground knowledge from multiple sources.

The training data set will consist of paper ab-
stracts collected by querying the Mendeley API9

with a set of keywords that represent the most in-
teresting topics in the domain. The keywords will
be developed with the help of a domain expert. As
a pre-processing step, the training sentences will
be dependency parsed using the Stanford Parser10.
The proposed LBD system, Houyi11, will use syn-
onym clusters as concepts, and generate a → bi

9Mendeley is a web-based reference manager and aca-
demic social network that has a large crowd-sourced database
of meta-data, such as abstracts, on scientific papers.

10nlp.stanford.edu/software/lex-parser.
shtml

11The system is named after a legendary archer in Chinese
mythology.
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and bi → cj relation candidates based on td-idf
scores. The choice of tf-idf as relation genera-
tion/ranking mechanism is motivated by experi-
ments showing that tf-idf gives high recall at the
cost of mediocre precision (see section 2.1.5). Be-
cause the system is intended to be augmented by
relation extraction tools in the future, recall is
favoured over precision, as precision is expected
to increase in the final version. The discovery can-
didates are ranked by the number of paths connect-
ing them to a, also motivated by the quantitative
experiments described in section 2.1.5.

Houyi will be evaluated quantitatively by com-
paring performance on a data set divided into
training and test data by a cut-off date, follow-
ing the approach taken by Yetisgen-Yildiz and
Pratt (2009). As discussed in section 2.1.5, this
is not a perfect evaluation procedure, but it will
at least give an indication as to whether unsuper-
vised semantic parsing and ontology building con-
tributes to LBD performance. The baseline sys-
tem, Sheshou12, will use the same ranking met-
ric and candidate generation mechanism as Houyi,
and uses the NPs extracted by the Stanford Parser
as terms.

Development of domain specific ontologies and
relation extraction tools is required to apply type
3 LBD methods in the domain. Although outside
the scope of the current thesis, it is expected that
the resulting semantic parser and ontology can be
useful for the development of more sophisticated
tools: The semantic parser can function as a pre-
processing step for the relation extraction tool by
resolving syntactic and synonymic variations. The
ontology can be iteratively improved by integrat-
ing existing ontologies and human editing, thus
providing a point of origin for domain knowledge
engineering.
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