
Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 89–92,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

RelationFactory: A Fast, Modular and Effective System for Knowledge
Base Population

Benjamin Roth† Tassilo Barth† Grzegorz Chrupała* Martin Gropp† Dietrich Klakow†
†Spoken Language Systems, Saarland University, 66123 Saarbrücken, Germany

*Tilburg University, PO Box 90153, 5000 LE Tilburg, The Netherlands
†{beroth|tbarth|mgropp|dietrich.klakow}@lsv.uni-saarland.de

*g.chrupala@uvt.nl

Abstract

We present RelationFactory, a highly ef-
fective open source relation extraction sys-
tem based on shallow modeling tech-
niques. RelationFactory emphasizes mod-
ularity, is easily configurable and uses a
transparent pipelined approach.

The interactive demo allows the user to
pose queries for which RelationFactory re-
trieves and analyses contexts that contain
relational information about the query en-
tity. Additionally, a recall error analy-
sis component categorizes and illustrates
cases in which the system missed a correct
answer.

1 Introduction and Overview

Knowledge base population (KBP) is the
task of finding relational information in large
text corpora, and structuring and tabulariz-
ing that information in a knowledge base.
Given an entity (e.g. of type PERSON) with
an associated relational schema (a set of re-
lations, e.g. city of birth(PERSON,
CITY), schools attended(PERSON,
ORGANIZATION), spouse(PERSON,
PERSON)), all relations about the entity that
are expressed in a text corpus would be rele-
vant, and the correct answers would have to be
extracted.

The TAC KBP benchmarks1 are an effort to for-
malize this task and give researchers in the field
the opportunity to evaluate their algorithms on a
set of currently 41 relations. In TAC KBP, the
task and evaluation setup is established by well-
defined information needs about query entities of
types PERSON and ORGANIZATION (e.g. who is
the spouse of a person, how many employees

1http://www.nist.gov/tac/about/

does an organization have). A perfect system
would have to return all relevant information (and
only this) contained in the text corpus. TAC KBP
aims at giving a realistic picture of not only pre-
cision but also recall of relation extraction sys-
tems on big corpora, and is therefore an advance-
ment over many other evaluations done for rela-
tion extraction that are often precision oriented
(Suchanek et al., 2007) or restrict the gold key to
answers from a fixed candidate set (Surdeanu et
al., 2012) or to answers contained in a data base
(Riedel et al., 2010). Similar to the classical TREC
evaluation campaigns in document retrieval, TAC
KBP aims at approaching a true recall estimate by
pooling, i.e. merging the answers of a timed-out
manual search with the answers of all participat-
ing systems. The pooled answers are then evalu-
ated by human judges.

It is a big advantage of TAC KBP that the end-
to-end setup (from the query, through retrieval of
candidate contexts and judging whether a relation
is expressed, to normalizing answers and putting
them into a knowledge base) is realistic. At the
same time, the task is very complex and may in-
volve too much work overhead for researchers
only interested in a particular step in relation ex-
traction such as matching and disambiguation of
entities, or judging relational contexts. We there-
fore introduce RelationFactory, a fast, modular
and effective relation extraction system, to the re-
search community as open source software.2 Rela-
tionFactory is based on distantly supervised classi-
fiers and patterns (Roth et al., 2013), and was top-
ranked (out of 18 systems) in the TAC KBP 2013
English Slot-filling benchmark (Surdeanu, 2013).

In this demo, we give potential users the possi-
bility to interact with the system and to get a feel
for use cases, strengths and limitations of the cur-
rent state of the art in knowledge base population.

2https://github.com/beroth/
relationfactory

89

The demo illustrates how RelationFactory arrives
at its conclusions and where future potentials in
relation extraction lie. We believe that Relation-
Factory provides an easy start for researchers in-
terested in relation extraction, and we hope that
it may serve as a baseline for new advances in
knowledge base population.

2 System Philosophy and Design
Principles

The design principles of RelationFactory conform
to what is known as the Unix philosophy.3 For Re-
lationFactory this philosophy amounts to a set of
modules that solve a certain step in the pipeline
and can be run (and tested) independently of the
other modules. For most modules, input and out-
put formats are column-based text representations
that can be conveniently processed with standard
Linux tools for easy diagnostics or prototyping.
Data representation is compact: the system is de-
signed in a way that each module ideally outputs
one new file. Because of modularization and sim-
ple input and output formats, RelationFactory al-
lows for easy extensibility, e.g. for research that
focuses solely on novel algorithms at the predic-
tion stage.

The single modules are connected by a make-
file that controls the data flow and allows for easy
parallelization. RelationFactory is highly config-
urable: new relations can be added without chang-
ing any of the source code, only by changing con-
figuration files and adding or training respective
relational models.

Furthermore, RelationFactory is designed to be
highly scalable: Thanks to feature hashing, large
amounts of training data can be used in a memory-
friendly way. Predicting relations in real-time is
possible using shallow representations. Surface
patterns, ngrams and skip-ngrams allow for highly
accurate relational modeling (Roth et al., 2013),
without incurring the cost of resource-intensive
processing, such as parsing.

3One popular set of tenets (Gancarz, 2003) summarizes
the Unix philosophy as:

1. Small is beautiful.
2. Make each program do one thing well.
3. Build a prototype as soon as possible.
4. Choose portability over efficiency.
5. Store data in flat text files.
6. Use software leverage to your advantage.
7. Use shell scripts to increase leverage and portability.
8. Avoid captive user interfaces.
9. Make every program a filter.

Figure 1: TAC KBP: Given a set of queries, return
a correct, complete and non-redundant response
with relevant information extracted from the text
corpus.

Figure 2: Data flow of the relation extraction sys-
tem: The candidate generation stage retrieves pos-
sible relational contexts. The candidate validation
stage predicts whether relations actually hold and
produces a valid response.

3 Component Overview

A simplified input and output to RelationFactory
is shown in Figure 1. In general, the pipeline
is divided in a candidate generation stage, where
documents are retrieved and candidate sentences
are identified, and the candidate validation stage,
which predicts and generates a response from the
retrieved candidates (see Figure 2).

In a first step, the system generates aliases for
the query using statistical and rule-based expan-
sion methods, for example:
Query Expansion
Adam Gadahn Azzam the American, Adam Yahiye Gadahn, Gadahn
STX Finland Kvaerner Masa Yards, Aker Finnyards, STX Finland Ltd

The expansions are used for retrieving docu-
ments from a Lucene index. All those sen-

90

tences are retained where the query (or one of
the query aliases) is contained and the named-
entity tagger has identified another entity with
the type of a potential answer for one of the
sought relations. The system is easily con-
figurable to include matching of non-standard
named-entity types from lists. RelationFac-
tory uses lists obtained from Freebase (www.
freebase.com) to match answer candidates
for the types CAUSE-OF-DEATH, JOB-TITLE,
CRIMINAL-CHARGES and RELIGION.

The candidate sentences are output line-by-line
and processed by one of the validation modules,
which determine whether actually one of the rela-
tions is expressed. RelationFactory currently uses
three standard validation modules: One based on
SVM classifiers, one based on automatically in-
duced and scored patterns, and one based on man-
ually crafted patterns. The validation modules
function as a filter to the candidates file. They
do not have to add a particular formatting or con-
form to other requirements of the KBP task such
as establishing non-redundancy or finding the cor-
rect offsets in the text corpus. This is done by
other modules in the pipeline, most notably in
the post-processing step, where statistical meth-
ods and heuristics are applied to produce a well-
formed TAC KBP response.

4 User Perspective

From a user perspective, running the system is as
easy as calling:
./run.sh system.config
The configuration file contains all information

about the general run configuration of the system,
such as the query file to use, the format of the re-
sponse file (e.g. TAC 2012 or TAC 2013 format),
the run directory that will contain the response,
and the Lucene index with the corpus. Optional
configuration can control non-standard validation
modules, and special low or high-recall query ex-
pansion schemes.

The relevant parts of the configuration file for a
standard 2013 TAC KBP run would look like the
following:
query /TAC_EVAL/2013/query.xml
goal response2013
rundir /TAC_RUNS/run2013/
index /TAC_CORPORA/2013/index
rellist /CFG/rellist2013
relations.config /CFG/relations2013.config

The last two lines refer to relation-specific con-

figuration files: The list of relations to use and in-
formation about them. Changing these files (and
adding respective models) allows for inclusion of
further relations. The relation-specific configura-
tion file contains information about the query en-
tity type, the expected answer named-entity tag
and whether a list of answers is expected (com-
pared to relations with just one correct answer):

per:religion enttype PER
per:religion argtag RELIGION
per:religion listtype false
org:top_members_employees enttype ORG
org:top_members_employees argtag PERSON
org:top_members_employees listtype true

RelationFactory comes with batteries included:
The models and configurations for TAC KBP 2013
work out-of-the-box and can easily be used as a
relation extraction module in a bigger setting or as
a baseline for new experiments.4

5 Illustrating RelationFactory

In TAC KBP 2013, 6 out of 18 systems achieved
an F1 score of over 30%. RelationFactory as
the top-performing system achieved 37.28% com-
pared to 68.49% achieved by human control an-
notators (Surdeanu, 2013). These numbers clearly
show that current systems have just gone halfway
toward achieving human-like performance on an
end-to-end relation extraction task.

The aim of the RelationFactory demo is to il-
lustrate what the current challenges in TAC KBP
are. The demonstration interface therefore not
only shows the answers generated for populating
a potential knowledge base, but also what text was
used to justify the extraction.

The real-time performance of RelationFactory
allows for trying arbitrary queries and changing
the configuration files and immediately seeing the
effects. Different expansion schemes, validation
modules and patterns can be turned on and off, and
intuitions can be obtained about the bottlenecks
and error sources of relation extraction. The demo
also allows for seeing the effect of extracting infor-
mation from different corpora: a Wikipedia corpus
and different TAC KBP corpora, such as newswire
and web text.

4Training models for new relations requires is a bigger
effort and includes generation of distant supervision train-
ing data by getting argument pairs from relational patterns
or a knowledge base like Freebase. RelationFactory includes
some training scripts but since they are typically run once
only, they are significantly less documented.

91

Figure 3: Screenshot of the RelationFactory demo user interface.

RelationFactory contains a number of diagnos-
tic tools: With a gold key for a set of queries, error
classes can be broken down and examples for cer-
tain error classes can be shown. For example, the
diagnostic tool for missed recall performs the fol-
lowing checks:

1. Is document retrieved?
2. Is query matched? This determines whether a sen-

tence is considered for further processing.

3. Is answer in query sentence? Whether the answer is
in one of the sentences with the query. Our system only
can find answers when this is the case, as there is no co-
reference module included.

4. Do answer tags overlap with gold answer?
5. Do they overlap exactly?
6. Other (validation). If all previous checks are passed,

the candidate has correctly been generated by the can-
didate generation stage, but the validation modules
have failed to predict the relation.

On the TAC KBP 2013 queries, the resulting re-
call error analysis is:

error class missing recall
Doc not retrieved 5.59%
Query not matched 10.37%
Answer not in query sentence 16.63%
Answer tag inexact 5.36%
Answer not tagged 24.85%
Other (validation) 37.17%

The demonstration tool allows for inspection of
instances of each of the error classes.

6 Conclusion

This paper illustrates RelationFactory, a modular
open source knowledge-base population system.
We believe that RelationFactory will become es-
pecially valuable for researchers in the field of re-
lation extraction that focus on one particular prob-
lem of knowledge-base-population (such as entity

expansion or relation prediction) and want to inte-
grate their algorithms in an end-to-end setting.

Acknowledgments

Benjamin Roth is a recipient of the Google Europe
Fellowship in Natural Language Processing, and
this research is supported in part by this Google
Fellowship. Tassilo Barth was supported in part
by IARPA contract number W911NF-12-C-0015.

References
Mike Gancarz. 2003. Linux and the Unix philosophy.

Digital Press.

Sebastian Riedel, Limin Yao, and Andrew McCal-
lum. 2010. Modeling relations and their men-
tions without labeled text. In Machine Learning and
Knowledge Discovery in Databases, pages 148–163.
Springer.

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mit-
tul Singh, and Dietrich Klakow. 2013. Effective slot
filling based on shallow distant supervision methods.
In Proceedings of the Sixth Text Analysis Conference
(TAC 2013).

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th international con-
ference on World Wide Web, pages 697–706. ACM.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Conference on Empirical Meth-
ods in Natural Language Processing and Natural
Language Learning (EMNLP-CoNLL), pages 455–
465. ACL.

Mihai Surdeanu. 2013. Overview of the tac2013
knowledge base population evaluation: English slot
filling and temporal slot filling. In Proceedings of
the Sixth Text Analysis Conference (TAC 2013).

92

