Morfessor 2.0: Toolkit for statistical morphological segmentation
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Abstract

Morfessor is a family of probabilistic ma-
chine learning methods for finding the
morphological segmentation from raw text
data. Recent developments include the de-
velopment of semi-supervised methods for
utilizing annotated data. Morfessor 2.0
is a rewrite of the original, widely-used
Morfessor 1.0 software, with well docu-
mented command-line tools and library in-
terface. It includes new features such as
semi-supervised learning, online training,
and integrated evaluation code.

1 Introduction

In the morphological segmentation task, the goal
is to segment words into morphemes, the small-
est meaning-carrying units. Morfessor is a family
of methods for unsupervised morphological seg-
mentation. The first version of Morfessor, called
Morfessor Baseline, was developed by Creutz and
Lagus (2002) its software implementation, Mor-
fessor 1.0, released by Creutz and Lagus (2005b).
A number of Morfessor variants have been devel-
oped later, including Morfessor Categories-MAP
(Creutz and Lagus, 2005a) and Allomorfessor
(Virpioja et al., 2010). Even though these algo-
rithms improve Morfessor Baseline in some areas,
the Baseline version has stayed popular as a gener-
ally applicable morphological analyzer (Spiegler
et al., 2008; Monson et al., 2010).

Over the past years, Morfessor has been used
for a wide range of languages and applications.
The applications include large vocabulary contin-
uous speech recognition (e.g. Hirsimiki et al.,
2006), machine translation (e.g. Virpioja et al.,
2007), and speech retrieval (e.g. Arisoy et al.,
2009). Morfessor is well-suited for languages with
concatenative morphology, and the tested lan-
guages include Finnish and Estonian (Hirsiméki
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et al., 2009), German (El-Desoky Mousa et al.,
2010), and Turkish (Arisoy et al., 2009).

Morfessor 2.0 is a new implementation of the
Morfessor Baseline algorithm.! It has been writ-
ten in a modular manner and released as an open
source project with a permissive license to encour-
age extensions. This paper includes a summary of
the Morfessor 2.0 software and a description of the
demonstrations that will be held. An extensive de-
scription of the features in Morfessor 2.0, includ-
ing experiments, is available in the report by Vir-
pioja et al. (2013).

2  Morfessor model and algorithms

Models of the Morfessor family are generative
probabilistic models that predict compounds and
their analyses (segmentations) given the model pa-
rameters. We provide a brief overview of the
methodology; Virpioja et al. (2013) should be re-
ferred to for the complete formulas and description
of the model and its training algorithms.

Unlike older Morfessor implementations, Mor-
fessor 2.0 is agnostic in regard to the actual data
being segmented. In addition to morphological
segmentation, it can handle, for example, sentence
chunking. To reflect this we use the following
generic terms: The smallest unit that can be split
will be an atom (letter). A compound (word) is a
sequence of atoms. A construction (morph) is a
sequence of atoms contained inside a compound.

2.1 Model and cost function

The cost function of Morfessor Baseline is derived
using maximum a posteriori estimation. That is,
the goal is to find the most likely parameters 0

"Morfessor 2.0 can be downloaded from the Mor-
pho project website (http://www.cis.hut.fi/
projects/morpho/) or GitHub repository (https:
//github.com/aalto-speech/morfessor).
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given the observed training data Dyy:

Omap = arger)naxp(e)p(DW |19) (1)

Thus we are maximizing the product of the model
prior p(@) and the data likelihood p(Dy | 0). As
usual, the cost function to minimize is set as the
minus logarithm of the product:

L(6,Dyw) = —logp(@) — logp(Dw |0). (2)

During training, the data likelihood is calcu-
lated using a hidden variable that contains the cur-
rent chosen analyses. Secondly, it is assumed that
the constructions in a compound occur indepen-
dently. This simplifies the data likelihood to the
product of all construction probabilities in the cho-
sen analyses. Unlike previous versions, Morfes-
sor 2.0 includes also the probabilities of the com-
pound boundaries in the data likelihood.

For prior probability, Morfessor Baseline de-
fines a distribution over the lexicon of the model.
The prior assigns higher probability to lexicons
that store fewer and shorter constructions. The
lexicon prior consists of to parts, a product over
the form probabilities and a product over the usage
probabilities. The former includes the probability
of a sequence of atoms and the latter the maxi-
mum likelihood estimates of the constructions. In
contrast to Morfessor 1.0, Morfessor 2.0 currently
supports only an implicit exponential length prior
for the constructions.

2.2 Training and decoding algorithms

A Morfessor model can be trained in multiple
ways. The standard batch training uses a local
search utilizing recursive splitting. The model is
initialized with the compounds and the full model
cost is calculated. The data structures are designed
in such way that the cost is efficient compute dur-
ing the training.

In one epoch of the algorithm, all compounds
in the training data are processed. For each com-
pound, all possible two-part segmentations are
tested. If one of the segmentations yields the low-
est cost, it is selected and the segmentation is tried
recursively on the resulting segments. In each step
of the algorithm, the cost can only decrease or stay
the same, thus guaranteeing convergence. The al-
gorithm is stopped when the cost decreases less
than a configurable threshold value in one epoch.
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An extension of the Viterbi algorithm is used
for decoding, that is, finding the optimal segmen-
tations for new compound forms without changing
the model parameters.

3 New features in Morfessor 2.0

3.1 Semi-supervised extensions

One important feature that has been implemented
in Morfessor 2.0 are the semi-supervised exten-
sions as introduced by Kohonen et al. (2010)

Morfessor Baseline tends to undersegment
when the model is trained for morphological seg-
mentation using a large corpus (Creutz and Lagus,
2005b). Oversegmentation or undersegmentation
of the method are easy to control heuristically
by including a weight parameter « for the likeli-
hood in the cost function. A low « increases the
priors influence, favoring small construction lexi-
cons, while a high value increases the data likeli-
hood influence, favoring longer constructions.

In semi-supervised Morfessor, the likelihood of
an annotated data set is added to the cost function.
As the amount of annotated data is typically much
lower than the amount of unannotated data, its ef-
fect on the cost function may be very small com-
pared to the likelihood of the unannotated data.
To control the effect of the annotations, a sepa-
rate weight parameter 3 can be included for the
annotated data likelihood.

If separate development data set is available for
automatic evaluation of the model, the likelihoods
weights can be optimized to give the best out-
put. This can be done by brute force using a grid
search. However, Morfessor 2.0 implementation
includes a simple heuristic for automatically tun-
ing the value of o during the training, trying to
balance precision and recall. A simple heuristic,
which gives an equivalent contribution to the an-
notated data, is used for (.

3.2 On-line training

In addition to the batch training mode, Morfes-
sor 2.0 supports on-line training mode, in which
unannotated text is processed one compound at a
time. This makes it simple to, for example, adapt
pre-trained models for new type of data. As fre-
quent compounds are encountered many times in
running text, Morfessor 2.0 includes an option for
randomly skipping compounds and constructions
that have been recently analyzed. The random
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Figure 1: Screenshot from the Morfessor 2.0 demo.

skips can also be used to speed up the batch train-
ing.

3.3 Integrated evaluation code

One common method for evaluating the perfor-
mance of a Morfessor model is to compare it
against a gold standard segmentation using seg-
mentation boundary precision and recall. To make
the evaluation easy, the necessary tools for calcu-
lating the BPR metric by (Virpioja et al., 2011)
are included in Morfessor 2.0. For significance
testing when comparing multiple models, we have
included the Wilcoxon signed-rank test. Both the
evaluation code and statistical testing code are ac-
cessible from both the command line and the li-
brary interface.
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In order to generate multiple segmentations for a
single compound, Morfessor 2.0 includes a n-best
Viterbi algorithm. It allows extraction of all possi-
ble segmentations for a compound and the proba-
bilities of the segmentations.

N-best segmentation

4 Demonstration

In the demonstration session, multiple features
and usages of Morfessor will be shown.
4.1 Web-based demonstration

A live demonstration will be given of segmenting
text with Morfessor 2.0 for different language and

training data options. In a web interface, the user
can choose a language, select the size of the train-
ing corpus and other options. After that a word
can be given which will be segmented using n-best
Viterbi, showing the 5 best results.

A list of planned languages can be found in Ta-
ble 1. A screen shot of the demo interface is shown

in Figure 1.
Languages # Words # Word forms
English 62M 384.903
Estonian 212M 3.908.820
Finnish 36M 2.206.719
German 46M 1.266.159
Swedish M 92237
Turkish 12M 617.298

Table 1: List of available languages for Morfessor
2.0 demonstration.

4.2 Command line interface

The new command line interface will be demon-
strated to train and evaluate Morfessor models
from texts in different languages. A diagram of
the tools is shown in Figure 2

4.3 Library interface

Interfacing with the Morfessor 2.0 Python library
will be demonstrated for building own scientific
experiments, as well as integrating Morfessor in
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Figure 2: The standard workflow for Morfessor
command line tools

bigger project. Also the code of the Web based
demonstration will be shown as an example.
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