
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 673–682,
Gothenburg, Sweden, April 26-30 2014. c©2014 Association for Computational Linguistics

Automatic Food Categorization from Large Unlabeled Corpora and Its
Impact on Relation Extraction

Michael Wiegand and Benjamin Roth and Dietrich Klakow
Spoken Language Systems

Saarland University
D-66123 Saarbrücken, Germany

{Michael.Wiegand|Benjamin.Roth|Dietrich.Klakow}@lsv.uni-saarland.de

Abstract

We present a weakly-supervised induc-
tion method to assign semantic informa-
tion to food items. We consider two tasks
of categorizations being food-type classi-
fication and the distinction of whether a
food item is composite or not. The cate-
gorizations are induced by a graph-based
algorithm applied on a large unlabeled
domain-specific corpus. We show that the
usage of a domain-specific corpus is vi-
tal. We do not only outperform a manually
designed open-domain ontology but also
prove the usefulness of these categoriza-
tions in relation extraction, outperforming
state-of-the-art features that include syn-
tactic information and Brown clustering.

1 Introduction

In view of the large interest in food in many parts
of the population and the ever increasing amount
of new dishes/food items, there is a need of au-
tomatic knowledge acquisition. We approach this
task with the help of natural language processing.

We investigate different methods to assign cate-
gories to food items. We focus on two categoriza-
tions, being a classification of food items to cat-
egories of theFood Guide Pyramid(U.S. Depart-
ment of Agriculture, 1992) and a categorization of
whether a food item is composite or not.

We present a semi-supervised graph-based ap-
proach to induce these food categorizations from
an unlabeled domain-specific text corpus crawled
from the Web. The method only requires mini-
mal manual guidance for the initialization of the
algorithm with seed terms. It depends, however,
on an automatically constructed high-quality sim-
ilarity graph. For that we choose a pattern-based
representation that outperforms a distributional-
based representation. For initialization, we ex-
amine some manually compiled seed words and

a very few simple surface patterns to automati-
cally induce such expressions. As a hard baseline,
we compare the effectiveness of using a general-
purpose ontology for the same types of categoriza-
tions. Apart from an intrinsic evaluation, we also
examine the categories in relation extraction.

The contributions of this paper are a method re-
quiring minimal supervision for a comprehensive
classification of food items and a proof of con-
cept that the knowledge that can thus be gained is
beneficial for relation extraction. Even though we
focus on a specific domain, the induction method
can be easily translated to other domains. In par-
ticular, other life-style domains, such as fashion,
cosmetics or home & gardening, show parallels
since comparable textual web data are available
and similar relation types (e.g. that two items fit
together or can be substituted by each other) exist.

Our experiments are carried out on German data
but our findings should carry over to other lan-
guages since the issues we address are (mostly)
language universal. For general accessibility, all
examples are given as English translations.

2 Data & Annotation

2.1 Domain-Specific Text Corpus

In order to generate a dataset for our experiments,
we used a crawl ofchefkoch.de1 (Wiegand et al.,
2012b) consisting of418, 558 webpages of food-
related forum entries.chefkoch.deis the largest
German web portal for food-related issues.

2.2 Food Categorization

As a food vocabulary, we employ a list of1888
food items: 1104 items were directly extracted
from GermaNet (Hamp and Feldweg, 1997), the
German version of WordNet (Miller et al., 1990).
The items were identified by extracting all hy-
ponyms of the synsetNahrung(English:food). By

1www.chefkoch.de

673



Class Description Size Perc.

MEAT meat and fish (products) 394 20.87

BEVERAGE beverages (incl. alcoholic drinks) 298 15.78

VEGE vegetables (incl. salads) 231 12.24

SWEET sweets, pastries and snack mixes 228 12.08

SPICE spices and sauces 216 11.44

STARCH starch-based side dishes 185 9.80

MILK milk products 104 5.51

FRUIT fruits 94 4.98

GRAIN grains, nuts and seeds 77 4.08

FAT fat 41 2.18

EGG eggs 20 1.06

Table 1: The different food types (gold standard).

consulting the relation tuples from Wiegand et al.
(2012c) a further784 items were added. We man-
ually annotated this vocabulary w.r.t. two tasks:

2.2.1 Task I: Food Types

The food type categories we chose are mainly in-
spired by theFood Guide Pyramid(U.S. Depart-
ment of Agriculture, 1992) that divides food items
into categories with similar nutritional properties.
This categorization scheme not only divides the
set of food items in many intuitive homogeneous
classes but it is also the scheme that is most com-
monly agreed upon. Table 1 lists the specific cat-
egories we use. For category assignment of com-
plex dishes comprising different food items we ap-
plied a heuristics: we always assign the category
that dominates the dish. Ameat sauce, for exam-
ple, would thus be assigned MEAT (even though
there may be other ingredients than meat).

2.2.2 Task II: Dishes vs. Atomic Food Items

In addition to Task I, we include another catego-
rization that divides food items into dishes and
atomic food items (Table 2). By dish, we mainly
understand food items that are composite food
items made of other (atomic) food items. This
categorization is orthogonal to the previous clas-
sification of food items. We refrained from adding
dishes as a further category of food types in §2.2.1,
as we would have ended up with a very heteroge-
neous class in the set of homogeneous food type
categories. Thus, dishes that differ greatly in nu-
trient content, such asWaldorf saladandchocolate
cake, would have been subsumed by one class.

3 Method

3.1 Graph-based Induction

We propose a semi-supervised graph-based ap-
proach to label food items with their respective

Class Description Examples Perc.

DISH composite food items cake, falafel, meat loaf 32.10

ATOM non-composite food itemsapple, steak, potato 67.90

Table 2: Distribution of dishes and atomic food
items among the food vocabulary (gold standard).

food categories. The underlying data structure
is a similarity graph connecting different food
items. Food items that belong to the same category
should be connected by highly weighted edges. In
order to infer the labels for each respective food
item, one first needs to specify a small set of seeds
for each category and then apply a graph-based
clustering method that divides the graph into clus-
ters that represent distinct food categories. Our
method is a low-resource approach that can also
be easily adapted to other domains. The only
domain-specific information required are an unla-
beled corpus and a set of seeds.

3.1.1 Construction of the Similarity Graph

To enable a graph-based induction, we generate a
similarity graph that connects similar food items.
For that purpose, a list ofdomain-independent
similarity-patterns was compiled. Each pattern is a
lexical sequence that connects the mention of two
food items (Table 3). Each pair of food items ob-
served with any of those patterns is connected via
a weighted edge (the different patterns are treated
equally). The weight is the total frequency of all
patterns co-occurring with a particular food pair.

Due to the high precision of our patterns, with
one or a few prototypical seeds we cannot expect
to find all items of a food category within the set
of items to which the seeds aredirectlyconnected.
Instead, one also needs to consider transitive con-
nectedness within the graph. For example, in Fig-
ure 1 bananaand redberry are not directly con-
nected but they can be reached viapear or rasp-
berry. However, by considering mediate relation-
ships it becomes more difficult to determine the
most appropriate category for each food item since
most food items are connected to food items of dif-
ferent categories (in Figure 1, there are not only
edges betweenbananaand other types of fruits
but there is also some edge to some sweet, i.e.
chocolate). For a unique class assignment, we ap-
ply a robust graph-based clustering algorithm. (It
will figure out thatbanana, pear, raspberryand
redberrybelong to the same category andchoco-
late belongs to another category, since it is mostly
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Patterns food item1 (or|or rather|instead of|“(” ) food item2

Example {apple: pineapple, pear, fruit, strawberry, kiwi} {steak:
schnitzel, sausage, roast, meat loaf, cutlet}

Table 3: Domain-independentpatterns for build-
ing the similarity graph.

Figure 1: Illustration of the similarity graph.

linked to many other food items not being fruits.)

3.1.2 Semi-Supervised Graph Optimization

Our semi-supervised graph optimization (Belkin
and Niyogi, 2004) is a robust algorithm that was
primarily chosen since it only contains few free
parameters to adjust. It is based on two principles:
First, similar data points should be assigned simi-
lar labels, as expressed by a similarity graph of la-
beled and unlabeled data. Second, for labeled data
points the prediction of the learnt classifier should
be consistent with the (actual) gold labels.

We construct a weighted transition matrixW
of the graph by normalization of the matrix with
co-occurrence countsC which we obtain from the
similarity graph (§3.1.1). We use the common
normalization by a power of the degree function
di =

∑
j Cij: it definesWij = Cij

dλ
i dλ

j
if i 6= j,

andWii = 0. The normalization weightλ is the
first of two parameters used in our experiments for
semi-supervised graph optimization. For learning
the semi-supervised classifier, we use the method
of Zhou et al. (2004) to find a classifying function
which is sufficiently smooth with respect to both
the structure of unlabeled and labeled points.

Given a set of data pointsX = {x1, . . . , xn}
and label setL = {1, . . . , c}, with xi:1≤i≤l labeled
asyi ∈ L andxi:l+1≤i≤n unlabeled. For predic-
tion, a vectorial functionF : X → Rc is estimated
assigning a vectorFi of label scores to everyxi.
The predicted labeling follows from these scores
as ŷi = arg maxj≤c Fij . Conversely, the gold la-
beling matrixY is an × c matrix with Yij = 1 if
xi is labeled asyi = j andYij = 0 otherwise.

Minimizing the cost functionQ aims at a trade-
off between information from neighbours and ini-
tial labeling information, controlled by parameter

Patterns Categorization Examples

patthearst Food Types food item is some food type,
food typesuch asfood item, . . .

pattdishes Dishes recipe forfood item

pattatom Atomic Food Items made of|containsfood item

Table 4: List of patterns to extract seeds.

µ (the second parameter used in our experiments):
Q = 1

2

(

∑n
i,j=1 Wij

∥

∥

∥

∥

∥

1√
δi

Fi − 1
√

δj
Fj

∥

∥

∥

∥

∥

+ µ
∑n

i=1 ‖Fi − Yi‖
)

whereδi is the degree function ofW .
The first term inQ is the smoothness constraint,

its minimization leads to adjacent edges having
similar labels. The second term is the fitting con-
straint, its minimization leads to consistency of the
functionF with the labeling of the data. The solu-
tion to the above cost function is found by solving
a system of linear equations (Zhou et al., 2004).

As we do not possess development data for this
work, we set the two free parametersλ = 0.5 and
µ = 0.01. This setting is used for both induction
tasks and all configurations. It is a setting that pro-
vided reasonable results without any notable bias
for any particular configuration we examine.

3.1.3 Manually vs. Automatically Extracted
Seeds

We explore two types of seed initializations: (a)
a manually compiled list of seed food items and
(b) a small set of patterns (Table 4) by the help of
which such seeds are automatically extracted.

In order to extract seeds for Task I with the
pattern-based approach, we apply the patterns
from Hearst (1992). These patterns have been de-
signed for the acquisition of hyponyms. Task I can
also be regarded as some type of hyponym extrac-
tion. The food types (fruit, meat, sweets) repre-
sent the hypernyms for which we extract seed hy-
ponyms (banana, beef, chocolate).

In order to extract seeds for Task II, we apply
two domain-specific sets of patterns (pattdish and
pattatom). We rank the food items according to the
frequency of occurring with the respective pattern
set. Since food items may occur in both rankings,
we merge the two rankings in the following way:
score(food item) = #pattdish(food it.)−#pattatom(food it.)

The top end of this ranking represents dishes
while the bottom end represents atoms.

3.2 Using a General-Purpose Ontology

As a hard baseline, we also make use of the seman-
tic relationships encoded in GermaNet. Our two
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types of food categorization schemes can be ap-
proximated with the hypernymy graph in that on-
tology: We manually identify nodes that resemble
our food categories (e.g.fruit, meator dish) and
label any food item that is an immediate or a me-
diate hyponym of these nodes (e.g.applefor fruit)
with the respective category label. The downside
of this method is that a large amount of food items
is missing from the GermaNet-database (§2.2).

3.3 Other Baselines & Post-Processing

In addition to the previous methods we imple-
ment a heuristic baseline (HEUR) that rests on the
observation that German food items of the same
food category often share the same suffix, e.g.
Schokoladenkuchen(English:chocolate cake) and
Apfelkuchen(English: apple pie). For HEUR, we
manually compiled a set of few typical suffixes for
each food type/dish category (ranging from3 to 8
suffixes per category). For classification of a food
item, we assign the food item the category label
whose suffix matched with the food item.2

We also examine anunsupervisedbaseline
(UNSUP) that applies spectral clustering on the
similarity graph following von Luxburg (2007):

• Input: a similarity matrixW and the number of categories to detectk.
• The laplacianL is constructed fromW . It is the symmetric laplacian

L = I − D1/2WD1/2, whereD is a diagonal degree matrix.3

• A matrix U ∈ Rn×k is constructed that contains as columns the first
k eigenvectorsu1, . . . , uk of L.

• The rows ofU are interpreted as the new data points. The final cluster-
ing is obtained byk-means clustering of the rows ofU .

UNSUP (which is completely parameter-free)
gives some indication about the intrinsic expres-
siveness of the similarity graph as it lacks any
guidance towards the categories to be predicted.

In graph-based food categorization, one can
only make predictions for food items that are con-
nected (be it directly or indirectly) to seed food
items within the similarity graph. To expand labels
to unconnected food items, we apply some post-
processing (POSTP). Similarly to HEUR, it ex-
ploits the suffix-similarity of food items. It assigns
each unconnected food item the label of the food
item (that could be labeled by the graph optimiza-
tion) that shares the longest suffix. Due to their
similar nature, we refrain from applying POSTP
on HEUR as it would produce no changes.

2Unlike German food items, English food items are of-
ten multi-word expressions. Therefore, we assume that for
English, instead of analyzing suffixes the usage of the head
of a multiword expression (i.e.chocolate cake) would be an
appropriate basis for a similar heuristic.

3That is,Dii equals to the sum of theith row.

PLAIN +POSTP

Configuration graph Acc Prec Rec F1 Acc Prec Rec F1

UNSUP X 46.2 43.1 35.7 36.0 56.1 41.0 42.5 38.4

HEUR (plain) 25.5 87.9 32.2 42.9 N/A N/A N/A N/A

HEUR X 56.4 73.6 52.1 54.7 68.7 72.3 64.3 60.7

PAT-Top1 X 52.4 60.2 51.2 52.5 64.5 58.2 62.9 57.4

PAT-Top5 X 61.1 70.7 61.9 64.4 74.5 67.9 76.0 69.7

PAT-Top10 X 60.2 69.6 60.5 62.2 73.4 66.7 74.2 67.3

1-PROTO X 58.0 68.0 58.0 59.5 70.2 64.1 71.0 63.8

5-PROTO X 64.5 76.6 63.7 68.6 78.6 73.8 78.5 75.2

10-PROTO X 65.8 79.0 65.5 71.0 80.2 75.9 80.6 77.7

GermaNet (plain) 52.1 94.0 52.0 65.7 75.4 73.2 75.0 72.4

GermaNet X 68.3 84.7 63.4 71.6 82.7 81.8 77.7 79.1

Table 5: Comparison of different food-type classi-
fiers (graph indicates graph-based optimization).

4 Experiments

We report precision, recall and F-score and accu-
racy.4 For precision, recall and F-score, we list the
macro-averaged score.

4.1 Evaluation of Food Categorization

4.1.1 Detection of Food Types

Table 5 compares different classifiers and configu-
rations for the prediction of food types (against the
gold standard from Table 1). Apart from the pre-
viously described baselines, we considern man-
ually selected prototypes (n-PROTO) and the top
n food items produced by Hearst-patterns (PAT-
Topn) as seeds for graph-based optimization. The
table shows that the semi-supervised graph-based
approach with these seeds outperforms the base-
lines UNSUP and HEUR. Only as few as5
prototypical seeds (per category) are required to
obtain performance that is even better than us-
ing plain GermaNet. The table also shows that
post-processing (with our suffix-heuristics) con-
sistently improves performance. Manually choos-
ing prototypes is more effective than instantiating
seeds via Hearst-patterns. The quality of the out-
put of Hearst-patterns degrades from top 10 on-
wards. However, considering that PAT-Topn does
not include any manual intervention, it already
produces decent results. Finally, even GermaNet
can be effectively used as seeds.

4.1.2 Detection of Dishes

Table 6 compares different classifiers for the de-
tection of dishes (against the gold standard from
Table 2). Dishes and atomic food items are very

4All manually labeled resources are available at:
www.lsv.uni-saarland.de/personalPages/
michael/relFood.html
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PLAIN +POSTP

Configuration graph Acc Prec Rec F1 Acc Prec Rec F1

UNSUP X 54.5 59.6 40.2 37.3 67.9 59.0 50.0 40.6

HEUR (plain) 74.1 84.3 59.9 58.6 N/A N/A N/A N/A

PAT-Top25 X 59.7 72.2 54.6 61.9 74.1 70.1 67.6 68.4

PAT-Top50 X 60.9 74.4 55.6 63.1 75.9 72.7 69.2 70.3

PAT-Top100 X 62.7 77.6 57.2 65.2 78.4 76.5 71.5 73.0

PAT-Top250 X 59.6 71.8 55.1 62.2 74.2 70.3 68.7 69.3

RAND-25 X 61.4 77.1 54.3 61.8 76.1 74.4 67.1 68.4

RAND-50 X 62.6 76.3 60.1 67.2 77.2 74.0 76.8 74.4

RAND-100 X 66.5 82.7 63.0 71.3 83.0 80.8 79.5 80.1

GermaNet (plain) 49.5 81.3 46.5 59.3 79.0 75.9 75.5 75.7

GermaNet X 60.8 79.4 51.3 57.6 75.9 78.2 64.4 65.4

Table 6: Comparison of different classifiers dis-
tinguishing between dishes and atomic food items
(graph indicates graph-based optimization).

PLAIN +POSTP

Configuration graph Acc Prec Rec F1 Acc Prec Rec F1

PAT-Top100 (plain) 9.5 89.5 10.5 18.6 63.6 61.5 63.5 61.3

PAT-Top100 X 62.7 77.6 57.2 65.2 78.4 76.5 71.5 73.0

RAND-100 (plain) 10.6 100.0 12.2 21.4 70.2 69.7 69.0 69.0

RAND-100 X 66.5 82.7 63.0 71.3 83.0 80.8 79.5 80.1

Table 7: Impact of graph-based optimization
(graph) for the detection of dishes.

heterogeneous classes which is why more seeds
are required for initialization. This means that
we cannot look forprototypes. For simplicity,
we resorted to randomly sample seeds from our
gold standard (RAND-n). For HEUR, we could
not find a small and intuitive set of suffixes that
are shared bymanyatomic food types, therefore
we considered all food types from our vocabulary
whose suffix did not match a typical dish suffix as
atomic. As this leaves no unspecified food items in
our vocabulary, we cannot use the output of HEUR
as seeds for graph-based optimization.

In contrast to the previous experiment, HEUR is
a more robust baseline. But again, post-processing
mostly improves performance, and patterns are not
as good as manual (random) seeds yet the former
are notably better than HEUR w.r.t. F-Score. Un-
like in the food-type classification, graph-based
optimization applied on GermaNet does not result
in some improvement. We assume that the preci-
sion of plain GermaNet with81.3% is too low.5

Since GermaNet cannot effectively be used as
seeds for the graph-based optimization and post-
processing has already a strong positive effect, we
may wonder how effective the actual graph-based

5For other seeds for which it worked, we usually mea-
sured a precision of90% or higher.

optimization is for this classification task. Af-
ter all, significantly more seeds are required for
this classification task than for the previous task,
so we need to show that it is not the mere seeds
(+post-processing) that are required for a reason-
able categorization. Table 7 examines two key
configurationswith and without graph-based op-
timization. It shows that also for this classification
task, graph-based optimization produces a catego-
rization superior to the mere seeds. Moreover, the
suffix-based post-processing is complementary to
the improvement by the graph-based optimization.

4.1.3 Comparison of Initialization Methods

Table 8 compares for each food type 5 manually
selected prototypical seeds (i.e.5-PROTO) and
the 5 food items most frequently been observed
with patthearst (Table 4). While the manually cho-
sen seeds represent the spectrum of food items
within each particular class (e.g. for STARCH,
some type of pasta, rice and potato was chosen),
it is not possible to enforce such diversity with
the automatically extracted seeds. However, most
food items are correct. Table 9 displays the 10
most highly ranked dishes and atomic food items
extracted with pattdish and pattatom (Table 4). Un-
like the previous task (Table 8), we obtain more
heterogeneous seeds within the same class.

4.1.4 Distributional Similarity

Since many recent methods for related tasks, such
as noun classification, are based on so-calleddis-
tributional similarity (Riloff and Shepherd, 1997;
Lin, 1998; Snow et al., 2004; Weeds et al., 2004;
Yamada et al., 2009; Huang and Riloff, 2010;
Lenci and Benotto, 2012), we also examine this as
an alternative representation to the pattern-based
similarity graph (Table 3). We represent each food
item as a vector which itself is an aggregate of
the contexts of all mentions of a particular food
item. We weighted the individual (context) words
co-occurring with the food item at a fixed window
size of 5 words with tf-idf. We can now apply
graph-based optimization on the similarity matrix
encoding the cosine similarities between any pos-
sible pair of vectors representing two food items.
As seeds, we use the best configuration (not em-
ploying GermaNet), i.e.10-PROTOfor food type
classification andRAND-100for the dish classi-
fication. Since, however, the graph clustering is
not actually necessary, as we have a full similar-
ity matrix (rather than a sparse graph) that also al-
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Class 5 Manually Chosen Seeds (5-PROTO) 5 Hearst-Pattern Seeds (PAT-Top5)

MEAT schnitzel, rissole, bologna, redfish, trout salmon, beef, chicken, turkey hen, poultry

BEVERAGE coffee, tea, water, beer, coke coffee, beer, mineral water, lemonade, tea

VEGE peas, green salad, tomato, cauliflower, carrot zucchini, lamb’s salad, broccoli, leek, cauliflower

SWEET chocolate, torte, popcorn, apple pie, potato crisps wine gum, marzipan, custard, pancake, biscuits

SPICE pepper, cinnamon, salt, gravy, remoulade cinnamon, laurel, clove, tomato sauce, basil

STARCH spaghetti, basmati rice, white bread, potato, french fries au gratin potatoes, jacket potato, potato, pita, jam

MILK yoghurt, gouda, cream cheese, cream, butter milk butter milk, bovine milk, soured milk, goat cheese, sour cream

FRUIT banana, apple, strawberries, apricot, orange banana, strawberries, pear, melon, kiwi

GRAIN hazelnut, pumpkin seed, rye flour, semolina, wheat sesame, spelt, wheat, millet, barley

FAT margarine, lard, colza oil, spread, butter margarine, lard, resolidified butter, coconut oil, tartar

EGG scrambled eggs, fried eggs, chicken egg, omelette, pickled egg yolk, fried eggs, albumen, offal, easter egg

Table 8: Comparison of different seed initializations for the food type categorization task (underlined
food items represent erroneously extracted food items).

lows us to compare any arbitrary pair of food items
directly, we also employ a second classifier (for
comparison) based on thenearest neighbourprin-
ciple. We assign each food item the label of the
most similar seed food item.

Table 10 compares these two classifiers with the
best previous result. It shows that the pattern-
based representation consistently outperforms the
distributional representation. The former may be
sparse but it produces high-precision similarity
links.6 The vector representation, on the other
hand, may not be sparse but it contains a high
degree of noise. The major problem is that not
only vectors of similar food items, such aschips
(fries), potatoesandrice, are similar to each other,
but also vectors of different food items that are
typically consumed with each other (e.g.fish
andchips). This is because of their frequent co-
occurrence (as in collocations likefish & chips).
Unfortunately, these pairs belong to different food
types. For the dish classification, however, the
vector representation is less of a problem.7

The distributional representation works better
with the simple nearest neighbour classifier. We
assume that graph-based optimization adds further
noise to the classification since, unlike the nearest
neighbour which only calculates thedirectsimilar-
ity between two vectors, it also incorporates indi-
rect relationships (which may be more error-prone
than the direct relationships) between food items.

4.1.5 Do we need a domain-specific corpus?

In this section, we want to provide evidence that
apart from the similarity graph and seeds the tex-
tual source for the graph, i.e. our domain-specific

6By the label propagation within the graph-based opti-
mization, the sparsity problem is also mitigated.

7Fish andchipsare both atoms, so in the dish classifica-
tion, it is no mistake to consider them similar food items.

Class 10 Seeds Extracted with Patterns (PAT-Top10)

DISH cookies, cake, praline, bread dumpling, jam, biscuit, cheese
cake, black-and-whites, onion tart, pasta salad

ATOM marzipan, flour, potato, olive oil, water, sugar, cream, choco-
late, milk, tomato

Table 9: Illustration of seed initialization for the
distinction between dishes and atomic food items.

Task Similarity Classifier Acc F1

Food Type distributional nearest neighbour 53.4 51.1

distributional graph 25.6 25.6

pattern-based graph 80.2 77.7

Dish distributional nearest neighbour 76.8 75.2

distributional graph 71.5 71.2

pattern-based graph 83.0 80.1

Table 10: Impact of the similarity representation.

corpus (chefkoch.de), is also important. For that
purpose, we compare our current corpus against
an open-domain corpus. We consider the German
version ofWikipediasince this resource also con-
tains encyclopedic knowledge about food items.
Table 11 compares the graph-based induction. As
in the previous section, we only consider the best
previous configuration. The table clearly shows
that our domain-specific text corpus is a more ef-
fective resource for our purpose thanWikipedia.

4.2 Evaluation for Relation Extraction

We now examine whether automatic food cate-
gorization can be harnessed for relation extrac-
tion. The task is to detect instances of the relation
typesSuitsTo, SubstitutedByand IngredientOfin-
troduced Wiegand et al. (2012b) (repeated in Ta-
ble 12) and motivated in Wiegand et al. (2012a).
These relation types are highly relevant for cus-
tomer advice/product recommendation. In partic-
ular, SuitsToandSubstitutedByare fairly domain-
independent relation types. Customers want to
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know which items can be used together (SuitsTo),
be it two food items that can be used as a meal
or two fashion items that can be worn together.
Substitutes are also relevant for situations in which
item A is out of stock but item B can be offered as
an alternative. Therefore, insights from this work
should carry over to other domains.

We randomly extracted1500 sentences from
our text corpus (§2.1) in which (at least) two food
items co-occur. Each food pair mention was man-
ually assigned one label. In addition to the three
relation types from above, we introduce the la-
bel Other for cases in which either another rela-
tion between the target food items is expressed or
the co-occurrence is co-incidental. On a subset of
200 sentences, we measured asubstantialinter-
annotation agreement of Cohen’sκ = 0.67 (Lan-
dis and Koch, 1977).

We train a supervised classifier and incorporate
the knowledge induced from our domain-specific
corpus as features. We chose Support Vector Ma-
chines with 5-fold cross-validation usingSVMlight-
multi-class(Joachims, 1999).

Table 13 displays all features that we examine
for supervised classification. Most features are
widely used throughout different NLP tasks. One
special featurebrown takes into consideration the
output of Brown clustering(Brown et al., 1992)
which like our graph-based optimization produces
a corpus-driven categorization of words. Simi-
lar to UNSUP, this method is unsupervised but it
considers the entire vocabulary of our text corpus
rather than only food items. Therefore, this in-
formation can be considered as a generalization
of all contextual words. Such type of informa-
tion has been shown to be useful for named-entity
recognition (Turian et al., 2010) and relation ex-
traction (Plank and Moschitti, 2013).

For syntactic parsing, Stanford Parser (Rafferty
and Manning, 2008) was used. For Brown cluster-
ing, the SRILM-toolkit (Stolcke, 2002) was used.
Following Turian et al. (2010), we induced1000
clusters (from our domain-specific corpus §2.1).

4.2.1 Why should food categories be helpful
for relation extraction?

All relation types we consider comprise pairs of
two food items which makes these relation types
likely to be confused. Contextual information may
be used for disambiguation but there may also be
frequent contexts that are not sufficiently informa-
tive. For example,25% of the instances ofIngre-

PLAIN +POSTP

Task Corpus graph Acc F1 Acc F1

Food Type
Wikipedia X 40.3 49.4 61.4 59.8

chefkoch.de X 65.8 71.0 80.2 77.7

Dish
Wikipedia X 50.4 53.1 75.4 71.1

chefkoch.de X 66.5 71.3 83.0 80.1

Table 11: Comparison of Wikipedia and domain-
specific corpus as a source for the similarity graph.

dientOffollow the lexical patternfood item1 with
food item2 (1). However, the same pattern also
covers15% of the instances ofSuitsTo(2).

(1) We had a stewwith red lentils. (Relation: IngredientOf)
(2) We had salmonwith broccoli. (Relation: SuitsTo)

The food type information we learned from our
text corpus might tell us which of the food items
are dishes. Only in (1), there is a dish, i.e.stew.
So, one may infer that the presence of dishes is
indicative ofIngredientOfrather thanSuitsTo.

food item1 and fooditem2 is another ambigu-
ous context. It cannot only be observed with the
relation SuitsTo, as in (3) (66% of all instantia-
tions of that pattern), but alsoSubstitutedBy(20%
of all mentions of that relation match that pattern),
as in (4). ForSuitsTo, two food items that belong
to two different classes (e.g.MEATandSTARCH
or MEATandVEGE) are quite characteristic. For
SubstitutedBy, the two food items are very often of
the same category of theFood Guide Pyramid.

(3) I very often eat fishand chips. (Relation: SuitsTo)
(4) For these types of dishes you can offer both Burgundy wineand

Champagne. (Relation: SubstitutedBy)

Since the second ambiguous context involves
the two general relation typesSuitsToandSubsti-
tutedBy, resolving this ambiguity with automati-
cally induced type information has some signifi-
cance for other domains. In particular, for other
life-style domains, domain-specific type informa-
tion could be obtained following our method from
§3.1. The disambiguation rule that two entities of
the same type implySubstitutedByotherwise they
imply SuitsToshould also be widely applicable.

4.2.2 Results

Table 14 displays the performance of the different
feature sets for relation extraction. The features
designed from graph-based induction (i.e.graph)
work slightly better than GermaNet. The perfor-
mance ofpatt is not impressively high. However,
one should consider thatpatt can be used directly
without a supervised classifier (as each pattern is
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Relation Description Example Freq. Perc.

SuitsTo food items that are typically consumed together My kids love the simple combination of fish fingers
with mashed potatoes.

633 42.20

SubstitutedBy similar food items commonly consumed in the same situationsWe usually buy margarineinstead of butter. 336 22.40

IngredientOf ingredient of a particular dish Falafelis made of chickpeas. 246 16.40

Other other relationor co-occurrence of food items are co-incidental On my shopping list, I’ve got bread, cauliflower, ... 285 19.00

Table 12: The different relation types and their respectivefrequency on our dataset.

Features Description

patt lexical surface patterns used in Wiegand et al. (2012b)

word bag-of-words features: all words within the sentence

brown features using Brown clustering: all features fromword but
words are replaced by induced clusters

pos part-of-speech sequence between target food items and tags
of the words immediately preceding and following them

synt path from syntactic parse tree from first target food item to
second target food item

conj conjunctive features:patt with brown classes of target food
items;possequence with brown classes of target food items;
syntwith brown classes of target food items

graph semantic food information induced by graph optimization
(config.:10-PROTO(+POSTP)andRAND-100(+POSTP))

germanet semantic food information derived from (plain) GermaNet

Table 13: Description of the feature set.

designed for a particular relation type, one can
read off from the matching pattern which class is
predicted).word is slightly better but, unlikepatt,
it is dependent on supervised learning.

The only feature that individually manages to
significantly outperformword is graph. The tra-
ditional features (i.e.pos, synt and brown) only
produce some mild improvement when added
jointly to word along some conjunctive fea-
tures. Whengraph is added to this feature set
(i.e. word+patt+pos+synt+brown+conj), we ob-
tain another significant improvement. In con-
clusion, the information we induced from our
domain-specific corpus cannot be obtained by
other NLP-features, including other state-of-the-
art induction methods such as Brown clustering.

5 Related Work

While many of the previous works on noun catego-
rization also address the task of hypernym classifi-
cation (Hearst, 1992; Caraballo, 1999; Widdows,
2003; Kozareva et al., 2008; Huang and Riloff,
2010; Lenci and Benotto, 2012) and some include
examples involving food items (Widdows and
Dorow, 2002; Cederberg and Widdows, 2003),
only van Hage et al. (2005) and van Hage et al.
(2006) specifically focus on the classification of
food items. van Hage et al. (2005) deal with on-
tology mapping whereas van Hage et al. (2006)
explore part-whole relations.

Features Acc Prec Rec F1

germanet 45.3 41.3 37.2 37.3

graph 46.0 39.4 39.7 38.6

patt 59.8 49.8 41.1 38.7

word 60.1 56.9 54.5 55.1

word+patt 60.3 57.3 54.9 55.5

word+brown 59.5 56.1 54.6 54.9

word+synt 60.3 57.7 55.4 56.0

word+pos 59.8 56.6 54.6 55.1

word+germanet 61.3 58.6 56.0 56.7

word+graph 62.9 59.2 57.6 58.1◦

word+patt+brown+synt+pos 60.4 57.3 56.2 56.5

word+patt+brown+synt+pos+conj 61.7 59.0 57.8 58.2∗

word+patt+brown+synt+pos+conj+germanet63.1 60.2 58.6 59.1◦

word+patt+brown+synt+pos+conj+graph 64.7 62.1 60.3 60.9◦†

statistical significance testing (paired t-test): better thanword∗ atp < 0.1/
◦ atp < 0.05; † better thanword+patt+brown+synt+pos+conjatp < 0.05

Table 14: Comparison of various features (Ta-
ble 13) for (unrestricted) relation extraction.

The task of data-driven lexicon expansion has
also been explored before (Kanayama and Na-
sukawa, 2006; Das and Smith, 2012), however,
our paper presents the first attempt to carry out
a comprehensivecategorization for the food do-
main. For the first time, we also show that type
information can effectively improve the extraction
of very common relations. For the twitter domain,
the usage of type information based on cluster-
ing has already been found effective for supervised
learning (Bergsma et al., 2013).

6 Conclusion

We presented an induction method to assign se-
mantic information to food items. We considered
two types of categorizations being food-type infor-
mation and information about whether a food item
is composite or not. The categorization is induced
by graph-based optimization applied on a large
unlabeled domain-specific text corpus. We pro-
duce categorizations that outperform a manually
compiled resource. The usage of such a domain-
specific corpus based on a pattern-based represen-
tation is vital and largely outperforms other text
corpora or a distributional representation. The in-
duced knowledge improves relation extraction.
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