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Abstract a very few simple surface patterns to automati-
cally induce such expressions. As a hard baseline,
we compare the effectiveness of using a general-
purpose ontology for the same types of categoriza-
tions. Apart from an intrinsic evaluation, we also
examine the categories in relation extraction.

The contributions of this paper are a method re-
quiring minimal supervision for a comprehensive
classification of food items and a proof of con-
cept that the knowledge that can thus be gained is
beneficial for relation extraction. Even though we
focus on a specific domain, the induction method
can be easily translated to other domains. In par-
ticular, other life-style domains, such as fashion,
cosmetics or home & gardening, show parallels
since comparable textual web data are available
and similar relation types (e.g. that two items fit
] together or can be substituted by each other) exist.
1 Introduction Our experiments are carried out on German data

In view of the large interest in food in many parts but our findings should carry over to other lan-
of the population and the ever increasing amounguages since the issues we address are (mostly)
of new dishes/food items, there is a need of aulanguage universal. For general accessibility, all
tomatic knowledge acquisition. We approach thisexamples are given as English translations.

task with the help of natural language processing. .
We investigate different methods to assign cate—2 Data & Annotation
gories to food items. We focus on two categoriza2 1  Domain-Specific Text Corpus
tions, being a classification of food items to cat-

egories of thé-ood Guide PyramiqU.S. Depart-

We present a weakly-supervised induc-
tion method to assign semantic informa-
tion to food items. We consider two tasks
of categorizations being food-type classi-
fication and the distinction of whether a
food item is composite or not. The cate-
gorizations are induced by a graph-based
algorithm applied on a large unlabeled
domain-specific corpus. We show that the
usage of a domain-specific corpus is vi-
tal. We do not only outperform a manually
designed open-domain ontology but also
prove the usefulness of these categoriza-
tions in relation extraction, outperforming
state-of-the-art features that include syn-
tactic information and Brown clustering.

In order to generate a dataset for our experiments,
. T we used a crawl othefkoch.de (Wiegand et al.,
ment of Agriculture, 1992) and a categorization Of2012b) consisting 018, 558 webpages of food-

whether a food item is composite or not. . )
. . related forum entries.chefkoch.dds the largest
We present a semi-supervised graph-based ap- .
erman web portal for food-related issues.

proach to induce these food categorizations from
an unlabeled domain-specific text corpus crawleg 2  Food Categorization
from the Web. The method only requires mini-
mal manual guidance for the initialization of the
algorithm with seed terms. It depends, however
on an automatically constructed high-quality sim- ) )
ilarity graph. For that we choose a pattern-base erman version O.f Wo_rgINet (Miller et _al., 1990).
) A he items were identified by extracting all hy-
representation that outperforms a distributional- onyms of the synsétahrung(English:food). B
based representation. For initialization, we ex—p y y 9(ENglish. - BY

amine some manually compiled seed words and *www. chef koch. de

As a food vocabulary, we employ a list @888
food items: 1104 items were directly extracted
from GermaNet (Hamp and Feldweg, 1997), the
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Class Description Size | Perc. Class |Description Examples Perc.

MEAT meat and fish (products) 394 | 20.87 DISH |composite food items  |cake falafel, meatloaf 32.10

BEVERAGE | beverages (incl. alcoholic drinks) 298 | 15.78 ATOM | non-composite food itemspple steak potato 67.90

VEGE vegetables (incl. salads) 231 | 12.24

SWEET sweets, pastries and snack mixes 228 | 12.08 Table 2: Distribution of dishes and atomic food

SPICE spices and sauces 216 | 11.44 .

STARCH starch-based side dishes 185 9.80 ltems among the food vocabulargdld Standard'

MILK milk products 104 5.51

FRUIT fruits 94 4.98

;RTA'N ?T“”S’ nuts and seeds Z ‘2‘22 food categories. The underlying data structure
al . . T ! .

EGG eqgs 20 | 106 is a similarity graph connecting different food

items. Food items that belong to the same category
Table 1: The different food typeg@ld standarfl.  should be connected by highly weighted edges. In
order to infer the labels for each respective food

_ _ ) item, one first needs to specify a small set of seeds
consulting the relation tuples from Wiegand et al.to; aach category and then apply a graph-based
(2012c) a furthefr84 items were added. We man- ¢|stering method that divides the graph into clus-
ually annotated this vocabulary w.r.t. two tasks: ars that represent distinct food categories. Our
2.2.1 Task I: Food Types method is a low-resource approach that can also

The food type categories we chose are mainly in-be easily adapted to other domains. The only

spired by theFood Guide PyramidU.S. Depart. ~ (oman-specific information required are an unla-
ment of Agriculture, 1992) that divides food items P '

into categories with similar nutritional properties. 3.1.1  Construction of the Similarity Graph

This categorization scheme not only divides theTO enable a graph-based induction, we generate a

set of food items in many intuitive homogeneous . . . o .
o . similarity graph that connects similar food items.
classes but it is also the scheme that is most con- . o
or that purpose, a list oflomain-independent

monly agreed upon. Table 1 lists the specific cat- . .~ . .
. . similarity-patterns was compiled. Each pattern is a
egories we use. For category assignment of co

: . ) ) Mexical sequence that connects the mention of two
plex dishes comprising different food items we AP~ od items (Table 3). Each pair of food items ob-
or%erved with any of those patterns is connected via

that dominates the dish. #eat saucgefor exam- . )
ple, would thus be assigned MEAT (even thougha weighted edge (the different patterns are treated

there may be other ingredients than meat). equally). The welght |s_the total_frequency of_aII
patterns co-occurring with a particular food pair.

2.2.2 Task II: Dishes vs. Atomic Food ltems Due to the high precision of our patterns, with
In addition to Task I, we include another catego-On€ Of & few prototypical seeds we cannot expect
rization that divides food items into dishes andtC find all items of a food category within the set
atomic food items (Table 2). By dish, we mainly of items to which the seeds ad&ectly connected.
understand food items that are composite foodnstead, one also needs to consider transitive con-
items made of otheratomid food items. This nectedness within the graph. For ex_ample, in Fig-
categorization is orthogonal to the previous clas¥ré 1bananaandredberry are not directly con-
sification of food items. We refrained from adding "€cted but they can be reached piear or rasp-
dishes as a further category of food types in §2.2.10€rTy. However, by considering mediate relation-
as we would have ended up with a very heterogesh'ps it becomes more difficult to determine the
neous class in the set of homogeneous food typB10St appropriate category for each food item since
categories. Thus, dishes that differ greatly in nuinost food items are connected to food items of dif-

trient content, such aaldorf saladandchocolate ~ ferent categories (in Figure 1, there are not only
cake would have been subsumed by one class. edges betweebananaand other types of fruits
but there is also some edge to some sweet, i.e.

3 Method chocolaté. For a unique class assignment, we ap-
) ply a robust graph-based clustering algorithm. (It
3.1 Graph-based Induction will figure out thatbanana pear, raspberryand

We propose a semi-supervised graph-based apedberrybelong to the same category acloco-
proach to label food items with their respectivelate belongs to another category, since it is mostly
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Patterns | food.item; (or|or rather|instead of‘(" ) foodLitem, Patterns Categorization Examples
Example | {apple pineapple pear, fruit, strawberry kiwi} {steak path,cqrst | Food Types fooditem is some foodtype,
schnitzel sausageroast, meat loaf cutlet} food_typesuch afood.item, . . .
patty;snes | Dishes recipe forfood.item
Table 3: Domain-independem)atterns for build- patt,;omm | Atomic Food Items [made ofcontainsfood.item

ing the similarity graph. Table 4: List of patterns to extract seeds.

1 (the second parameter used in our experiments):
o=1 (z;ij:l Wis || o5 Fi = ﬁa +u i I - Yin)
whered; is the degree function div.

The first term inQ is the smoothness constraint,
Figure 1: lllustration of the similarity graph.  its minimization leads to adjacent edges having
similar labels. The second term is the fitting con-
straint, its minimization leads to consistency of the

linked to many other food items not being fruits.) function " with the labeling of the data. The solu-
_ ) L tion to the above cost function is found by solving

3.1.2 Semi-Supervised Graph Optimization 5 gystem of linear equations (Zhou et al., 2004).

Our semi-supervised graph optimization (Belkin  As we do not possess development data for this

and Niyogi, 2004) is a robust algorithm that waswork, we set the two free parameters= 0.5 and

primarily chosen since it only contains few free ;, = 0.01. This setting is used for both induction
parameters to adjust. Itis based on two principlestasks and all configurations. Itis a setting that pro-

First, similar data points should be assigned simivided reasonable results without any notable bias

lar labels, as expressed by a similarity graph of lafor any particular configuration we examine.

beled and unlabeled data. Second, for labeled data

points the prediction of the learnt classifier should3.1.3 Manually vs. Automatically Extracted

be consistent with the (actual) gold labels. Seeds
We construct a weighted transition matfik  We explore two types of seed initializations: (a)

of the graph by normalization of the matrix with a manually compiled list of seed food items and

co-occurrence counts which we obtain from the (b) a small set of patterns (Table 4) by the help of
similarity graph (83.1.1). We use the commonwhich such seeds are automatically extracted.
normalization by a power of the degree function |n order to extract seeds for Task | with the

di = >2;Cijt it definesW; = d?% if i # j, pattern-based approach, we apply the patterns

andW;; = 0. The normalization W(jeighi\ is the from Hearst (1992). These patterns have been de-

first of two parameters used in our experiments fosigned for the acquisition of hyponyms. Task I can
semi-supervised graph optimization. For learningdlso be regarded as some type of hyponym extrac-
the semi-supervised classifier, we use the methoton. The food typesf(uit, meaf sweet} repre-

of Zhou et al. (2004) to find a classifying function Sent the hypernyms for which we extract seed hy-

which is sufficiently smooth with respect to both Ponyms banana beef chocolatg.

the structure of unlabeled and labeled points. In order to extract seeds for Task II, we apply
Given a set of data point’ = {z,...,z,} two domain-specific sets of patterrsafly;;, and
and label sef = {1,...,c}, with z;.1<,<; labeled patt.:.). We rank the food items according to the

asy; € £ andx;,y1<i<, Unlabeled. For predic- frequency of occurring with the respective pattern

tion, a vectorial functiorF : X — R¢is estimated Set. Since food items may occur in both rankings,

assigning a vectoF; of label scores to every;. We merge the two rankings in the following way:

The predicted labeling follows from these scoresscore(fooditem) = #pattaisn(foodit.) — #pattasom (food it.)

asf); = argmax;<. Fj;. Conversely, the gold la- The top end of this ranking represents dishes

beling matrixY is an x ¢ matrix with Y;; = 1if ~ while the bottom end represents atoms.

z; is labeled ag; = j andY;; = 0 otherwise.
Minimizing the cost functior@ aims at a trade-

off between information from neighbours and ini- As a hard baseline, we also make use of the seman-

tial labeling information, controlled by parameter tic relationships encoded in GermaNet. Our two

3.2 Using a General-Purpose Ontology
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types of food categorization schemes can be ap: PLAIN +POSTP
. t d Wlth th h mvm raoh in th t on- Configuration |graph|Acc |Prec|Rec | F1 ||Acc |Prec|Rec | F1
prOXIma e € ype y y g ap ato UNSUP v’ |46.2(43.1|35.7|36.0(|56.1(41.0(42.5|38.4
tology: We manually identify nodes that resemble [reur rain) 25.5(87.9|32.2|42.9|[N/A [N/A |N/A [N/A
our food categories (e.druit, meator dish) and HEUR v |56.4]73.6|52.1|54.7||68.7| 72.3| 64.3]60.7
|abe| any fOOd Item that iS an immediate or a me- PAT-Topl v’ |52.4]160.2|51.2|52.5||64.5(58.2(62.9|57.4
. . PAT-Top5 v’ [61.1{70.7|61.9(64.4||74.5(67.9|76.0|69.7
diate hyponym of these nodes (eagplefor fruit) PAT-Top10 v 160.2]69.6|60.5|62.2||73.4|66.7|74.2|67.3
with the respective category label. The downside|i-ProTO v [58.0[68.0{58.0(59.5([70.2[64.1[71.0[63.8
of this method is that a large amount of food items|>PR°TO v |645]766/63.7168.6)78.6)173.8)78.5/75.2
. .. f h G Net d t b §2 2 10-PROTO v/ [65.8(79.0(65.5(71.0(|80.2(75.9(80.6|77.7
IS mISSIng rom the GermaNet-database ( - ) GermaNet (plain) 52.1(94.0(52.0|65.7||75.4|73.2|75.0|72.4
GermaNet v/ |68.3(84.7|63.4|71.6(|82.7(81.8(77.7|79.1

3.3 Other Baselines & Post-Processing
Table 5: Comparison of different food-type classi-

In addition to the previous methods we imple- e e
fiers @raphindicates graph-based optimization).

ment a heuristic baselinélEUR) that rests on the
observation that German food items of the same
food category often share the same suffix, e.gZ1r Experiments
Schokoladenkuchditnglish: chocolate cakeand

Apfelkucher(English: apple pig. For HEUR, we We report precision, recall and F-score and accu-
manually compiled a set of few typical suffixes for racy? For precision, recall and F-score, we list the
each food type/dish category (ranging fr@no 8  macro-averaged score.

suffixes per category). For classification of a food

item, we assign the food item the category labeft-1 Evaluation of Food Categorization

whose suffix matched with the food item. 4.1.1 Detection of Food Types

We also examine arunsupervisedbaseline Taple 5 compares different classifiers and configu-
(UNSUP) that applies spectral clustering on the ations for the prediction of food types (against the
similarity graph following von Luxburg (2007):  go|d standard from Table 1). Apart from the pre-

« Input: a similarity matrixi¥’ and the number of categories to detect ViOUSIy described baselines, we consigdeman-
* The laplacianL is constructed fromiV. It is the symmetric laplacian uaIIy selected prototype$l(PROTO) and the tOp

L =1 — DY2W D2 whereD is a diagonal degree matrix. ;
. AmatrixU € R™* is constructed that contains as columns the first 72 f00d items produced by Hearst-patter®BA{-

k eigenvectorsy, . .., uy of L. _ L .
» The rows ofU are interpreted as the new data points. The final cluster- Topn) as seeds for graph _ba‘sed o_ptlmlzatlon' The
ing is obtained by:-means clustering of the rows of. table shows that the semi-supervised graph-based

o h with th d tperf the base-
UNSUP (which is completely parameter-free) ﬁrl?g;oiJCNSV\L/JIP aerseHSI(EESRS Oounrl);rgn}zw 25; ase

gives some |nd|ca't|o'n quUt the '””'T‘S'C exlores'prototypical seeds (per category) are required to
siveness of the similarity graph as it lacks any

id i ds th ¢ o5 10 b dicted obtain performance that is even better than us-
guidance towards the categories fo be predicte "ing plain GermaNet. The table also shows that
In graph-based food categorization, one can

| K dicti for food it that post-processing (with our suffix-heuristics) con-
only maxe predictions for food items that are Con'sis'[ently improves performance. Manually choos-
nected (be it directly or indirectly) to seed food

) N T ing prototypes is more effective than instantiatin
items within the similarity graph. To expand labels gp yP g

to unconnected food items, we apply some postseeds via Hearst-patterns. The quality of the out-
. L ) put of Hearst-patterns degrades from top 10 on-
processing POSTP). Similarly to HEUR, it ex- Pu P 9 P

: L : : wards. However, considering that PAT-Togoes
ploits the suffix-similarity of food items. It assigns g

. (;FOt include any manual intervention, it already
each unconnected food item the label of the foo .
item (that Id be labeled by the araph optimiz produces decent results. Finally, even GermaNet
€ (that could be labeled by © graph op @ can be effectively used as seeds.
tion) that shares the longest suffix. Due to their

similar nature, we refrain from applying POSTP4.1.2 Detection of Dishes

on HEUR as it would produce no changes. Table 6 compares different classifiers for the de-
2Unlike German food items, English food items are of- t€ction of dishes (against the gold standard from

ten multi-word expressions. Therefore, we assume that foTable 2). Dishes and atomic food items are very
English, instead of analyzing suffixes the usage of the head

of a multiword expression (i.echocolate_cakewould be an 4All manually labeled resources are available at:
appropriate basis for a similar heuristic. www. | sv. uni - saar | and. de/ per sonal Pages/
3That is,D;; equals to the sum of thigh row. m chael / rel Food. ht m
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PLAIN +POSTP optimization is for this classification task. Af-

Configuration graph |Acc |Prec|Rec [F1 [|Acc |Prec|Rec [F1 t Il . ifi tl d . d f
UNSUP v’ |54.5(59.6(40.2(37.3||67.9/59.0|50.0|40.6 er all, signiicantly more seeds are require or

HEUR (plain) 74.1|84.3]59.9|58.6|[N/A |N/A [N/A |N/A this classification task than for the previous task,

PAT-Top25 v |59.7|72.2|54.6(61.9||74.1|70.1|67.6(68.4 so we need to show that it is not the mere seeds
PAT-Top50 v 160.9|74.4|55.6|63.1||75.9|72.7(69.2|70.3 + ) ; - _
PAT-Top100 | v |62.7|77.6|57.2|65.2||78.4|76.5|71.5(73.0 (+post proceissm_g) that are requwed. for a reason
PAT-Top250 v |59.6|71.8]55.1|62.2||74.2|70.3|68.7|69.3 able categorization. Table 7 examines two key
RAND-25 v [61.4[77.1]54.3]61.8[76.1[74.4]67.1[68.4 configurationswith and without graph-based op-
RAND-50 v |626/76.3/60.1167.2)|77.21740/76.8/744)  timjzation. It shows that also for this classification
RAND-100 v |66.5|82.7|63.071.3||83.0|80.8|79.5|80.1

GermaNet (plair)) 49.5|81.3|46.5(59.3|(79.0(|75.9|75.5|75.7 t‘_"‘Sk{ graph-bgsed optimization prOduceS a catego-
GermaNet v |60.8[79.4|51.3|57.6|(75.9|78.2|64.4|65.4 rization superior to the mere seeds. Moreover, the
suffix-based post-processing is complementary to

T_ab"? 6 Comparison_of different cla§sifiers_ OIiS"the improvement by the graph-based optimization.
tinguishing between dishes and atomic food items

(graphindicates graph-based optimization). 4.1.3 Comparison of Initialization Methods
Table 8 compares for each food type 5 manually

PLAIN +POSTP selected prototypical seeds (i.&-PROTO) and
Configuration graph |Acc |Prec |Rec [F1 ||Acc |Prec|Rec |F1 the 5 fOOd items most frequently been ObserVEd
PAT-Top100 (plain 9.5| 89.5/10.5(18.6|(63.6|61.5|63.5(61.3 . .
PAT-Top100 v |627| 77.6/57.2|65.2||78.4|76.5|71.5|73.0]  With path,cq.s; (Table 4). While the manually cho-
RAND-100 (plain) 10.6]100.0[12.2[21.4|[70.2[69.7[69.0[69.0, Sen seeds represent the spectrum of food items
RAND-100 v' |66.5| 82.7(63.0/71.3|/83.0(/80.8(79.5|80.1 Within each particular class (eg fOf STARCH,

some type of pasta, rice and potato was chosen),
it is not possible to enforce such diversity with

the automatically extracted seeds. However, most
food items are correct. Table 9 displays the 10

heterogeneous classes which is why more seedgost highly. ranked dishes and atomic food items
are required for initialization. This means that &xtracted with pajks, and pat;,,, (Table 4). Un-

we cannot look forprototypes For simplicity, like the previous task ('I_'aple 8), we obtain more
we resorted to randomly sample seeds from ouP€térogeneous seeds within the same class.

gold standard RAND-n). For HEUR, we could 4.1.4 Distributional Similarity

not find a small and intuitive set of suffixes that

are shared bynanyatomic food types, therefore Since many recent methods for related tasks, such

we considered all food types from our vocabulary"",S ”‘?““ cla_ssificgtion,_ are based on so-calied
whose suffix did not match a typical dish suffix astr_lbutlonal similarity (Riloff and Shepherd, 1997,
atomic. As this leaves no unspecified food items if-In, 1998; Snow et al., 2004; Weeds et al., 2004,

our vocabulary, we cannot use the output ofHEURYam‘”?lda et al,, 2009; Huang and Rilo_ff, 20,10;
as seeds for graph-based optimization. Lenci and Benotto, 2012), we also examine this as

In contrast to the previous experiment, HEUR isan alternative representation to the pattern-based

. . ._similarity graph (Table 3). We represent each food
a more robust baseline. But again, post-processin o .
em as a vector which itself is an aggregate of

mostly improves performance, and patterns are noi . ;
e contexts of all mentions of a particular food

t
as good as manual (random) seeds yet the former . o

g ( ) y item. We weighted the individual (context) words
co-occurring with the food item at a fixed window

are notably better than HEUR w.r.t. F-Score. Un-
ize of 5 words with tf-idf. We can now apply

like in the food-type classification, graph-based

optimization applied on GermaNet does not resulf N oL .

in some improvement. We assume that the precigraph—_based optlmlzat_lop on the similarity matrix

sion of plain GermaNet wit81.3% is too low?® epcodlng the cosine S|m|Iar|t|e_s between any pos-
Since GermaNet cannot effectively be used a5|ble pair of vectors representing two food items.

A s seeds, we use the best configuration (not em-
seeds fgr the graph-based opt|m|zaju.o n and pOSEloying GermaNet), i.e10-PROTCOfor food type
processing has already a strong positive effect, w

mav wonder how effective the actual ara h_loase(i:lassification andRAND-100for the dish classi-
y grap ication. Since, however, the graph clustering is

SFor other seeds for which it worked, we usually mea- 0t actually necessary, as we have a full similar-
sured a precision ¢f0% or higher. ity matrix (rather than a sparse graph) that also al-

Table 7: Impact of graph-based optimization
(graph) for the detection of dishes.
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Class 5 Manually Chosen Seeds (5-PROTO) 5 Hearst-Pattern Seeds (PAT-Top5)

MEAT schnitzelrissole bologna redfish trout salmon beef chicken turkey henpoultry
BEVERAGE |coffee tea water, beer, coke coffee beer, mineral watey lemonadetea

VEGE peas green saladtomatq cauliflower, carrot zucchinj lamb’s saladbroccoli, leek cauliflower
SWEET chocolate torte, popcorn apple pie potato crisps wine gum marzipan custard pancakebiscuits
SPICE pepper cinnamon salt, gravy, remoulade cinnamon laurel, clove tomato saucebasil
STARCH spaghettibasmati rice white bread potatq french fries au gratin potatoegjacket potatppotatq pita, jam
MILK yoghurt gouda cream chees&ream butter milk butter milk bovine milk soured milkgoat chee?e;our cream
FRUIT banana apple strawberriesapricot, orange banana strawberries pear, melon kiwi

GRAIN hazelnut pumpkin seedye flour, semolinawheat sesamespelt wheat millet, barley

FAT margaring lard, colza oil spread butter margarine lard, resolidified butteycoconut oil tartar
EGG scrambled eggsried eggs chicken eggomelette pickled egg yolk, fried eggs albumen offal, easter egg

Table 8: Comparison of different seed initializations foe food type categorization task (underlined
food items represent erroneously extracted food items).

lows us to compare any arbitrary pair of food items Class 10 Seeds Extracted with Patterns (PAT-Top10)

. e DISH cookies cake praline, bread dumplingjam, biscuit cheese
directly, we also employ a second classifier (for cake black-and-whitesonion tart pasta salad
comparison) based on timearest neighbouprin- ATOM Imfrzipﬁ(n{lour,tpotatq olive oil, water, sugar, cream choco-

. . . ate, milk, tomato
ciple. We assign each food item the label of the

most similar seed food item. Table 9: lllustration of seed initialization for the
Table 10 compares these two classifiers with thelistinction between dishes and atomic food items.
best previous result. It shows that the pattern-

based representation consistently outperforms the[ Task Similarity Classifier [ Acc [ F1
distributional representation. The former may be | Food Type | distributional | nearest neighbour| 53.4 | 51.1
sparse but it produces high-precision similarity g;ttr::;"f:i 5 Eiﬁﬂ zgg 2
Iink5.6 The vector representation, on the other i distributional | nearest neighbour| 76.8 | 75.2
hand, may not be sparse but it contains a high distributional | graph 715 | 712

pattern-based| graph 83.0 | 80.1

degree of noise. The major problem is that not
only vectors of similar food items, such abips  Table 10: Impact of the similarity representation.
(fries), potatoesandrice, are similar to each other,

but also vectors of different food items that are

typically consumed with each other (e.gfish  corpus ¢hefkoch.dg is also important. For that
andchipg. This is because of their frequent co- purpose, we compare our current corpus against
occurrence (as in collocations liKesh & chipg.  an open-domain corpus. We consider the German
Unfortunately, these pairs belong to different foodyersion ofWikipediasince this resource also con-
types. For the dish classification, however, theains encyclopedic knowledge about food items.
vector representation is less of a problém. Table 11 compares the graph-based induction. As
The distributional representation works betterin the previous section, we only consider the best
with the simple nearest neighbour classifier. Weprevious configuration. The table clearly shows
assume that graph-based optimization adds furth@éhat our domain-specific text corpus is a more ef-

noise to the classification since, unlike the nearestctive resource for our purpose thdfkipedia
neighbour which only calculates th@ectsimilar-

ity between two vectors, it also incorporates indi-4.2 Evaluation for Relation Extraction

rECt rer:at:;)_nshlpsl (vx_/h|cr;]_maybbe more frr?jrjproneWe now examine whether automatic food cate-
than the direct relationships) between foo Items'gorization can be harnessed for relation extrac-

4.1.5 Do we need a domain-specific corpus?  tion. The task is to detect instances of the relation

In this section, we want to provide evidence thatlyPeSSUItSTo SubstitutedByand IngredientOfin-

apart from the similarity graph and seeds the tex{roduced Wiegand et al. (2012b) (repeated in Ta-

tual source for the graph, i.e. our domain-specifid’/€ 12) and motivated in Wiegand et al. (2012a).
- These relation types are highly relevant for cus-
_°By the label propagation within the graph-based opti-tomer advice/product recommendation. In partic-
mization, the sparsity problem is also mitigated. . . . .
"Fish andchipsare both atoms, so in the dish classifica- ular, SwtsToandSubstltutedB)are famy domain-
tion, it is no mistake to consider them similar food items.  independent relation types. Customers want to
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know which items can be used togeth8uitsT9, PLAIN +POSTP
. . Task Corpus graph Acc F1 Acc F1

be it two food items that can be used as a mea} Wikipedia

or two fashion items that can be worn together.| 004 P8 (1cioch.dd

Substitutes are also relevant for situations in which .. Wikipedia

item A is out of stock but item B can be offered as chefkoch.dd

an alternative. Therefore, insights from this workTaple 11: Comparison of Wikipedia and domain-

should carry over to other domains. specific corpus as a source for the similarity graph.
We randomly extracted500 sentences from

our text corpus (82.1) in which (at least) two food

items co-occur. Each food pair mention was mandientOffollow the lexical patterrfood itermy with

ually assigned one label. In addition to the thre€food.item, (1). However, the same pattern also

relation types from above, we introduce the la-covers15% of the instances duitsTo(2).

bel Other for cases in which either another rela- (1) We had a stewith red lentis (Relation: Ingredientof)

tion between the target food items is expressed oOr (2) We had salmowith broccoli (Relation: SitsTo)

the co-occurrence is co-incidental. On a subset of ] ]
200 sentences, we measuredsabstantialinter- The food type information we learned from our

annotation agreement of Cohem's= 0.67 (Lan- text corpus might tell us which of the food items
dis and Koch, 1977). are dishes. Only in (1), there is a dish, isew

We train a supervised classifier and incorporateso’_ on.e may infer. that the presence_ of dishes is
the knowledge induced from our domain—specific'nd'cat've ofIngredientOfrather tharSuitsTo

corpus as features. We chose Support Vector Ma- food.itemy and fooditem; is another amb_igu—
chines with 5-fold cross-validation usigy/Mignt. ~ OUS context. It cannot only be observed with the
multi-class(Joachims, 1999) relation SuitsTo as in (3) (6% of all instantia-

Table 13 displays all features that we examinetionS of that pattern), but alssubstitutedBy20%

for supervised classification. Most features areOf all mentions of that relation match that pattern),

widely used throughout different NLP tasks. one®s in (4)_'ﬁ ForSuitlsTo two food items that belong
special featurdrowntakes into consideration the to two different classes (e. ¢EATand STARCH

output of Brown clustering(Brown et al., 1992) or MEAT andVEGE) are quite characteristic. For

which like our graph-based optimization producess’ubStitUteolB‘ythe two food items are very often of

a corpus-driven categorization of words. Simi-the same category of tii@od Guide Pyramid
lar to UNSUR this method is unsupervised but it (3) 1 very often eatfistand chips (Relation: SuitsTo)
considers the entire vocabulary of our text corpus @ £ o= vhes o7 d10s vou Per offer beth Bugundy vend
rather than only food items. Therefore, this in- -
formation can be considered as a generalization Since the second ambiguous context involves
of all contextual words. Such type of informa- the two general relation typeluitsToand Substi-
tion has been shown to be useful for named-entityutedBy resolving this ambiguity with automati-
recognition (Turian et al., 2010) and relation ex-cally induced type information has some signifi-
traction (Plank and Moschitti, 2013). cance for other domains. In particular, for other
For syntactic parsing, Stanford Parser (Raffertylife-style domains, domain-specific type informa-
and Manning, 2008) was used. For Brown clustertion could be obtained following our method from
ing, the SRILM-toolkit (Stolcke, 2002) was used. §3.1. The disambiguation rule that two entities of
Following Turian et al. (2010), we induced00 the same type impl$ubstitutedBwtherwise they
clusters (from our domain-specific corpus 82.1). imply SuitsToshould also be widely applicable.

40.3 | 49.4 61.4 | 59.8
65.8 | 71.0 80.2 | 77.7
50.4 | 53.1 754 | 711
66.5 | 71.3 83.0 | 80.1

NNRNENEN

4.2.1 Why should food categories be helpful 4.2.2 Results

for relation extraction? Table 14 displays the performance of the different
All relation types we consider comprise pairs offeature sets for relation extraction. The features
two food items which makes these relation typesdesigned from graph-based induction (iggaph)
likely to be confused. Contextual information may work slightly better than GermaNet. The perfor-
be used for disambiguation but there may also benance ofpattis not impressively high. However,
frequent contexts that are not sufficiently informa-one should consider thattt can be used directly
tive. For example25% of the instances dhgre-  without a supervised classifier (as each pattern is
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Relation Description Example Freq. Perc.

SuitsTo food items that are typically consumed together My kids love the simple combination of fish fingers 633 | 42.20
with mashed potatoes

SubstitutedBy | similar food items commonly consumed in the same situatigndMVe usually buy margarinestead of butter 336 | 22.40

IngredientOf ingredient of a particular dish Falafelis made of chickpeas 246 | 16.40

Other other relatioror co-occurrence of food items are co-incidental On my shopping list, I've got breadauliflower ... 285 | 19.00

Table 12: The different relation types and their respedt®@guency on our dataset.

Features| Description Features Acc |Prec|Rec |F1
patt lexical surface patterns used in Wiegand et al. (2012b) germanet 45.3(41.3(37.2|37.3
word bag-of-words features: all words within the sentence graph 46.0(39.4(39.7|38.6
brown features using Brown clustering: all features frevord but patt 59.8|49.8(41.1|38.7

words are replaced by induced clusters word 60.1156.9/54.555.1
pos part—of—speegh sequence between target food_ items and|tags word-+patt 60.3/57.3|54.9/55.5

of the words immediately preceding and following them

. ) . word+brown 59.5|56.1|54.6|54.9

synt path from syntactic parse tree from first target food item|to

second target food item word+synt 60.3|57.7|55.4|56.0
conj conjunctive featurespatt with brown classes of target food word+pos 59.8156.6/54.6|55.1

items; possequence with brown classes of target food items; word+germanet 61.3|58.6(56.0|56.7

syntwith brown classes of target food items word+graph 62.9/59.2(57.6|58.1°
graph semantic food information induced by graph optimizatipn word-+patt+brown+synt+pos 60.4|57.3/56.2|56.5

(conflg._:1O-PR_OTO(+PIOSTPa_ndRAND-109(+POSTB) word+patt+brown+synt+pos+conj 61.7(59.0(57.8|58.2
germane{ semantic food information derived from (plain) GermaNet word+patt+brown+synt+pos+conj+germanet63.1| 60.2 | 58.6|59.1°

. .. word+patt+brown+synt+pos+conj+graph  [64.7[62.1|60.3|60.9"
Table 13: Descrlptlon of the feature set. statistical significance testing (paired t-test): bettantvord * atp < 0.1/

°atp < 0.05; T better tharword+patt+brown+synt+pos+conatp < 0.05

designed for a particular relation type, one canfable 14: Comparison of various features (Ta-
read off from the matching pattern which class isble 13) for (unrestricted) relation extraction.
predicted).word s slightly better but, unlikeatt,
it is dependent on supervised learning.

The only feature that individually manages to
significantly outperformword is graph The tra-
ditional features (i.e.pos syntandbrown) only

The task of data-driven lexicon expansion has
also been explored before (Kanayama and Na-
sukawa, 2006; Das and Smith, 2012), however,

produce some mild improvement when addedll Paper presents the.firs_t attempt to carry out
jointly to word along some conjunctive fea- a comprehensiveategorization for the food do-

tures. Whengraph is added to this feature set main. For the first time, we also show that type
(i.e. word+patt+pos+synt+brown-+cor), we ob- information can effectively improve the extraction
tain another significant improvement. I Con_ofvery common relations. For the twitter domain,

clusion, the information we induced from our (N€ usage of type information based on cluster-

domain-specific corpus cannot be obtained bg}ng has already been found effective for supervised

other NLP-features, including other state-of-the-Iearning (Bergsma etal., 2013).

art induction methods such as Brown clustering. .
6 Conclusion

5 Related Work We presented an induction method to assign se-

While many of the previous works on noun catego-mantic information to food items. We considered
rization also address the task of hypernym classifitwo types of categorizations being food-type infor-
cation (Hearst, 1992; Caraballo, 1999; Widdowsmation and information about whether a food item
2003; Kozareva et al., 2008; Huang and Riloff,is composite or not. The categorization is induced
2010; Lenci and Benotto, 2012) and some includéby graph-based optimization applied on a large
examples involving food items (Widdows and unlabeled domain-specific text corpus. We pro-
Dorow, 2002; Cederberg and Widdows, 2003),duce categorizations that outperform a manually
only van Hage et al. (2005) and van Hage et alcompiled resource. The usage of such a domain-
(2006) specifically focus on the classification of specific corpus based on a pattern-based represen-
food items. van Hage et al. (2005) deal with on-tation is vital and largely outperforms other text
tology mapping whereas van Hage et al. (2006)orpora or a distributional representation. The in-
explore part-whole relations. duced knowledge improves relation extraction.
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