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Abstract

The distributional hypothesis of Harris
(1954), according to which the meaning
of words is evidenced by the contexts
they occur in, has motivated several effec-
tive techniques for obtaining vector space
semantic representations of words using
unannotated text corpora. This paper ar-
gues that lexico-semantic content should
additionally be invariant across languages
and proposes a simple technique based
on canonical correlation analysis (CCA)
for incorporating multilingual evidence
into vectors generated monolingually. We
evaluate the resulting word representations
on standard lexical semantic evaluation
tasks and show that our method produces
substantially better semantic representa-
tions than monolingual techniques.

1 Introduction

Data-driven learning of vector-space word embed-
dings that capture lexico-semantic properties is
a technique of central importance in natural lan-
guage processing. Using cooccurrence statistics
from a large corpus of text (Deerwester et al.,
1990; Turney and Pantel, 2010),1 it is possible
to construct high-quality semantic vectors — as
judged by both correlations with human judge-
ments of semantic relatedness (Turney, 2006;
Agirre et al., 2009) and as features for downstream
applications (Turian et al., 2010).

The observation that vectors representing cooc-
currence tendencies would capture meaning is ex-
pected according to the distributional hypothe-
sis (Harris, 1954), famously articulated by Firth

1Related approaches use the internal representations from
neural network models of word sequences (Collobert and We-
ston, 2008) or continuous bags-of-context wordsels (Mikolov
et al., 2013a) to arrive at vector representations that likewise
capture cooccurence tendencies and meanings.

(1957) as You shall know a word by the company
it keeps. Although there is much evidence in fa-
vor of the distributional hypothesis, in this paper
we argue for incorporating translational context
when constructing vector space semantic models
(VSMs). Simply put: knowing how words trans-
late is a valuable source of lexico-semantic infor-
mation and should lead to better VSMs.

Parallel corpora have long been recognized as
valuable for lexical semantic applications, in-
cluding identifying word senses (Diab, 2003;
Resnik and Yarowsky, 1999) and paraphrase and
synonymy relationships (Bannard and Callison-
Burch, 2005). The latter work (which we build on)
shows that if different words or phrases in one lan-
guage often translate into a single word or phrase
type in a second language, this is good evidence
that they are synonymous. To illustrate: the En-
glish word forms aeroplane, airplane, and plane
are observed to translate into the same Hindi word:
vAy� yAn (vaayuyaan). Thus, even if we did not
know the relationship between the English words,
this translation fact is evidence that they all have
the same meaning.

How can we exploit information like this when
constructing VSMs? We propose a technique that
first constructs independent VSMs in two lan-
guages and then projects them onto a common
vector space such that translation pairs (as deter-
mined by automatic word alignments) should be
maximally correlated (§2). We review latent se-
mantic analysis (LSA), which serves as our mono-
lingual VSM baseline (§3), and a suite of stan-
dard evaluation tasks that we use to measure the
quality of the embeddings (§4). We then turn to
experiments. We first show that our technique
leads to substantial improvements over monolin-
gual LSA (§5), and then examine how our tech-
nique fares with vectors learned using two dif-
ferent neural networks, one that models word se-
quences and a second that models bags-of-context

462



Figure 1: Cross-lingual word vector projection us-
ing CCA.

words. We observe substantial improvements over
the sequential model using multilingual evidence
but more mixed results relative to using the bags-
of-contexts model (§6).

2 Multilingual Correlation with CCA

To gain information from the translation of a given
word in other languages the most basic thing to do
would be to just append the given word represen-
tation with the word representations of its transla-
tion in the other language. This has three draw-
backs: first, it increases the number of dimensions
in the vector; second, it can pull irrelevant infor-
mation from the other language that doesn’t gen-
eralize across languages and finally the given word
might be out of vocabulary of the parallel corpus
or dictionary.

To counter these problems we use CCA2 which
is a way of measuring the linear relationship be-
tween two multidimensional variables. It finds two
projection vectors, one for each variable, that are
optimal with respect to correlations. The dimen-
sionality of these new projected vectors is equal to
or less than the smaller dimensionality of the two
variables.

Let Σ ∈ Rn1×d1 and Ω ∈ Rn2×d2 be vector
2We use the MATLAB module for CCA: http://www.

mathworks.com/help/stats/canoncorr.html

space embeddings of two different vocabularies
where rows represent words. Since the two vo-
cabularies are of different sizes (n1 and n2) and
there might not exist translation for every word
of Σ in Ω, let Σ

′ ⊆ Σ where every word in Σ
′

is translated to one other word3 in Ω
′ ⊆ Ω and

Σ ∈ Rn×d1 and Ω ∈ Rn×d2 .
Let x and y be two corresponding vectors from

Σ
′

and Ω
′
, and v and w be two projection direc-

tions. Then, the projected vectors are:

x
′

= xv y
′

= yw (1)

and the correlation between the projected vectors
can be written as:

ρ(x
′
,y

′
) =

E[x
′
y

′
]√

E[x′2]E[y′2]
(2)

CCA maximizes ρ for the given set of vectors Σ
′

and Ω
′

and outputs two projection vectors v and
w:

v,w = CCA(x,y)
= arg max

v,w
ρ(xv,yw) (3)

Using these two projection vectors we can project
the entire vocabulary of the two languages Σ and
Ω using equation 1. Summarizing:

V ,W = CCA(Σ
′
,Ω

′
) (4)

Σ∗ = ΣV Ω∗ = ΩW (5)

where, V ∈ Rd1×d, W ∈ Rd2×d con-
tain the projection vectors and d =
min{rank(V ), rank(W )}. Thus, the result-
ing vectors cannot be longer than the original
vectors. Since V and W can be used to project
the whole vocabulary, CCA also solves the
problem of not having translations of a particular
word in the dictionary. The schema of performing
CCA on the monolingual word representations of
two languages is shown in Figure 1.

Further Dimensionality Reduction: Since
CCA gives us correlations and corresponding
projection vectors across d dimensions which
can be large, we perform experiments by taking
projections of the original word vectors across
only the top k correlated dimensions. This is
trivial to implement as the projection vectors V ,

3Further information on how these one-to-one translations
are obtained in §5
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W in equation 4 are already sorted in descending
order of correlation. Therefore in,

Σ∗k = ΣV k Ω∗k = ΩW k (6)

Σ∗k and Ω∗k are now word vector projections along
the top k correlated dimensions, where, V k and
W k are the column truncated matrices.

3 Latent Semantic Analysis

We perform latent semantic analysis (Deerwester
et al., 1990) on a word-word co-occurrence ma-
trix. We construct a word co-occurrence frequency
matrix F for a given training corpus where each
row w, represents one word in the corpus and ev-
ery column c, is the context feature in which the
word is observed. In our case, every column is
a word which occurs in a given window length
around the target word. For scalability reasons, we
only select words with frequency greater than 10
as features. We also remove the top 100 most fre-
quent words (mostly stop words) from the column
features.

We then replace every entry in the sparse fre-
quency matrix F by its pointwise mutual infor-
mation (PMI) (Church and Hanks, 1990; Turney,
2001) resulting in X . PMI is designed to give a
high value to xij where there is a interesting rela-
tion between wi and cj , a small or negative value
of xij indicates that the occurrence of wi in cj is
uninformative. Finally, we factorize the matrix X
using singular value decomposition (SVD). SVD
decomposes X into the product of three matrices:

X = UΨV > (7)

where, U and V are in column orthonormal
form and Ψ is a diagonal matrix of singular val-
ues (Golub and Van Loan, 1996). We obtain a re-
duced dimensional representation of words from
size |V | to k:

A = UkΨk (8)

where k can be controlled to trade off between re-
construction error and number of parameters, Ψk

is the diagonal matrix containing the top k singular
values, Uk is the matrix produced by selecting the
corresponding columns from U and A represents
the new matrix containing word vector representa-
tions in the reduced dimensional space.

4 Word Representation Evaluation

We evaluate the quality of our word vector repre-
sentations on a number of tasks that test how well

they capture both semantic and syntactic aspects
of the representations.

4.1 Word Similarity

We evaluate our word representations on four dif-
ferent benchmarks that have been widely used to
measure word similarity. The first one is the WS-
353 dataset (Finkelstein et al., 2001) containing
353 pairs of English words that have been assigned
similarity ratings by humans. This data was fur-
ther divided into two fragments by Agirre et al.
(2009) who claimed that similarity (WS-SIM) and
relatedness (WS-REL) are two different kinds of
relations and should be dealt with separately. We
present results on the whole set and on the individ-
ual fragments as well.

The second and third benchmarks are the RG-
65 (Rubenstein and Goodenough, 1965) and the
MC-30 (Miller and Charles, 1991) datasets that
contain 65 and 30 pairs of nouns respectively and
have been given similarity rankings by humans.
These differ from WS-353 in that it contains only
nouns whereas the former contains all kinds of
words. The fourth benchmark is the MTurk-287
(Radinsky et al., 2011) dataset that constitutes of
287 pairs of words and is different from the above
two benchmarks in that it has been constructed by
crowdsourcing the human similarity ratings using
Amazon Mechanical Turk.

We calculate similarity between a given pair
of words by the cosine similarity between their
corresponding vector representation. We then re-
port Spearman’s rank correlation coefficient (My-
ers and Well, 1995) between the rankings pro-
duced by our model against the human rankings.

4.2 Semantic Relations (SEM-REL)

Mikolov et al. (2013a) present a new semantic re-
lation dataset composed of analogous word pairs.
It contains pairs of tuples of word relations that
follow a common semantic relation. For example,
in England : London :: France : Paris, the two
given pairs of words follow the country-capital re-
lation. There are three other such kinds of rela-
tions: country-currency, man-woman, city-in-state
and overall 8869 such pairs of words4.

The task here is to find a word d that best fits
the following relationship: a : b :: c : d given a, b
and c. We use the vector offset method described

4107 pairs were out of vocabulary for our vectors and
were ignored.
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in Mikolov et al. (2013a) that computes the vector
y = xa − xb + xc where, xa,xb and xc are word
vectors of a, b and c respectively and returns the
vector xw from the whole vocabulary which has
the highest cosine similarity to y:

xw = arg max
xw

xw · y
|xw| · |y|

It is worth noting that this is a non-trivial |V |-way
classification task where V is the size of the vo-
cabulary.

4.3 Syntactic Relations (SYN-REL)
This dataset contains word pairs that are differ-
ent syntactic forms of a given word and was pre-
pared by Mikolov et al. (2013a). For exam-
ple, in walking and walked, the second word is
the past tense of the first word. There are nine
such different kinds of relations: adjective-adverb,
opposites, comaparative, superlative, present-
participle, nation-nationality, past tense, plural
nouns and plural verbs. Overall there are 10675
such syntactic pairs of word tuples. The task here
again is identifying a word d that best fits the fol-
lowing relationship: a : b :: c : d and we solve it
using the method described in §4.2.

5 Experiments

5.1 Data
For English, German and Spanish we used the
WMT-20115 monolingual news corpora and for
French we combined the WMT-2011 and 20126

monolingual news corpora so that we have around
300 million tokens for each language to train the
word vectors.

For CCA, a one-to-one correspondence be-
tween the two sets of vectors is required. Obvi-
ously, the vocabulary of two languages are of dif-
ferent sizes and hence to obtain one-to-one map-
ping, for every English word we choose a word
from the other language to which it has been
aligned the maximum number of times7 in a paral-
lel corpus. We got these word alignment counts
using cdec (Dyer et al., 2010) from the paral-
lel news commentary corpora (WMT 2006-10)
combined with the Europarl corpus for English-
{German, French, Spanish}.

5http://www.statmt.org/wmt11/
6http://www.statmt.org/wmt12/
7We also tried weighted average of vectors across all

aligned words and did not observe any significant difference
in results.

5.2 Methodology

We construct LSA word vectors of length 6408 for
English, German, French and Spanish. We project
the English word vectors using CCA by pairing
them with German, French and Spanish vectors.
For every language pair we take the top k cor-
related dimensions (cf. equation 6), where k ∈
10%, 20%, . . . 100% and tune the performance on
WS-353 task. We then select the k that gives
us the best average performance across language
pairs, which is k = 80%, and evaluate the cor-
responding vectors on all other benchmarks. This
prevents us from over-fitting k for every individual
task.

5.3 Results

Table 1 shows the Spearman’s correlation ratio ob-
tained by using word vectors to compute the sim-
ilarity between two given words and compare the
ranked list against human rankings. The first row
in the table shows the baseline scores obtained
by using only the monolingual English vectors
whereas the other rows correspond to the multi-
lingual cases. The last row shows the average per-
formance of the three language pairs. For all the
tasks we get at least an absolute gain of 20 points
over the baseline. These results are highly assur-
ing of our hypothesis that multilingual context can
help in improving the semantic similarity between
similar words as described in the example in §1.
Results across language pairs remain almost the
same and the differences are most of the times sta-
tistically insignificant.

Table 1 also shows the accuracy obtained on
predicting different kinds of relations between
word pairs. For the SEM-REL task the average
improvement in accuracy is an absolute 30 points
over the baseline which is highly statistically sig-
nificant (p < 0.01) according to the McNemar’s
test (Dietterich, 1998). The same holds true for
the SYN-REL task where we get an average im-
provement of absolute 8 points over the baseline
across the language pairs. Such an improvement
in scores across these relation prediction tasks fur-
ther enforces our claim that cross-lingual context
can be exploited using the method described in §2
and it does help in encoding the meaning of a word
better in a word vector than monolingual informa-
tion alone.

8See section 5.5 for further discussion on vector length.
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Lang Dim WS-353 WS-SIM WS-REL RG-65 MC-30 MTurk-287 SEM-REL SYN-REL
En 640 46.7 56.2 36.5 50.7 42.3 51.2 14.5 36.8

De-En 512 68.0 74.4 64.6 75.5 81.9 53.6 43.9 45.5
Fr-En 512 68.4 73.3 65.7 73.5 81.3 55.5 43.9 44.3
Es-En 512 67.2 71.6 64.5 70.5 78.2 53.6 44.2 44.5

Average – 56.6 64.5 51.0 62.0 65.5 60.8 44 44.7

Table 1: Spearman’s correlation (left) and accuracy (right) on different tasks.

Figure 2: Monolingual (top) and multilingual (bottom; marked with apostrophe) word projections of the
antonyms (shown in red) and synonyms of “beautiful”.

5.4 Qualitative Example

To understand how multilingual evidence leads to
better results in semantic evaluation tasks, we plot
the word representations obtained in §3 of sev-
eral synonyms and antonyms of the word “beau-
tiful” by projecting both the transformed and un-
transformed vectors onto R2 using the t-SNE
tool (van der Maaten and Hinton, 2008). The
untransformed LSA vectors are in the upper part
of Fig. 2, and the CCA-projected vectors are in
the lower part. By comparing the two regions,
we see that in the untransformed representations,
the antonyms are in two clusters separated by the
synonyms, whereas in the transformed representa-
tion, both the antonyms and synonyms are in their
own cluster. Furthermore, the average intra-class
distance between synonyms and antonyms is re-
duced.

Figure 3: Performance of monolingual and mul-
tilingual vectors on WS-353 for different vector
lengths.

5.5 Variation in Vector Length
In order to demonstrate that the gains in perfor-
mance by using multilingual correlation sustains
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for different number of dimensions, we compared
the performance of the monolingual and (German-
English) multilingual vectors with k = 80% (cf.
§5.2). It can be see in figure 3 that the perfor-
mance improvement for multilingual vectors re-
mains almost the same for different vector lengths
strengthening the reliability of our approach.

6 Neural Network Word Representations

Other kinds of vectors shown to be useful in many
NLP tasks are word embeddings obtained from
neural networks. These word embeddings capture
more complex information than just co-occurrence
counts as explained in the next section. We test
our multilingual projection method on two types
of such vectors by keeping the experimental set-
ting exactly the same as in §5.2.

6.1 RNN Vectors

The recurrent neural network language model
maximizes the log-likelihood of the training cor-
pus. The architecture (Mikolov et al., 2013b) con-
sists of an input layer, a hidden layer with recur-
rent connections to itself, an output layer and the
corresponding weight matrices. The input vector
w(t) represents input word at time t encoded us-
ing 1-of-N encoding and the output layer y(t) pro-
duces a probability distribution over words in the
vocabulary V . The hidden layer maintains a repre-
sentation of the sentence history in s(t). The val-
ues in the hidden and output layer are computed as
follows:

s(t) = f(Uw(t) + Ws(t− 1)) (9)

y(t) = g(V s(t)) (10)

where, f and g are the logistic and softmax func-
tions respectively. U and V are weight matri-
ces and the word representations are found in the
columns of U . The model is trained using back-
propagation. Training such a purely lexical model
will induce representations with syntactic and se-
mantic properties. We use the RNNLM toolkit9 to
induce these word representations.

6.2 Skip Gram Vectors

In the RNN model (§6.1) most of the complexity
is caused by the non-linear hidden layer. This is
avoided in the new model proposed in Mikolov

9http://www.fit.vutbr.cz/˜imikolov/
rnnlm/

et al. (2013a) where they remove the non-linear
hidden layer and there is a single projection layer
for the input word. Precisely, each current word is
used as an input to a log-linear classifier with con-
tinuous projection layer and words within a cer-
tain range before and after the word are predicted.
These vectors are called the skip-gram (SG) vec-
tors. We used the tool10 for obtaining these word
vectors with default settings.

6.3 Results

We compare the best results obtained by using dif-
ferent types of monolingual word representations
across all language pairs. For brevity we do not
show the results individually for all language pairs
as they follow the same pattern when compared to
the baseline for every vector type. We train word
vectors of length 80 because it was computation-
ally intractable to train the neural embeddings for
higher dimensions. For multilingual vectors, we
obtain k = 60% (cf. §5.2).

Table 2 shows the correlation ratio and the accu-
racies for the respective evaluation tasks. For the
RNN vectors the performance improves upon in-
clusion of multilingual context for almost all tasks
except for SYN-REL where the loss is statistically
significant (p < 0.01). For MC-30 and SEM-
REL the small drop in performance is not statis-
tically significant. Interestingly, the performance
gain/loss for the SG vectors in most of the cases is
not statistically significant, which means that in-
clusion of multilingual context is not very helpful.
In fact, for SYN-REL the loss is statistically sig-
nificant (p < 0.05) which is similar to the perfor-
mance of RNN case. Overall, the best results are
obtained by the SG vectors in six out of eight eval-
uation tasks whereas SVD vectors give the best
performance in two tasks: RG-65, MC-30. This is
an encouraging result as SVD vectors are the eas-
iest and fastest to obtain as compared to the other
two vector types.

To further understand why multilingual context
is highly effective for SVD vectors and to a large
extent for RNN vectors as well, we plot (Figure 4)
the correlation ratio obtained by varying the length
of word representations by using equation 6 for the
three different vector types on two word similarity
tasks: WS-353 and RG-65.

SVD vectors improve performance upon the in-
crease of the number of dimensions and tend to

10https://code.google.com/p/word2vec/
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Vectors Dim Lang WS-353 WS-SIM WS-REL RG-65 MC-30 MTurk SEM-REL SYN-REL

SVD 80 Mono 34.8 45.5 23.4 30.8 21.0 46.6 13.5 24.4
48 Multi 58.1 65.3 52.7 62.7 67.7 62.1 23.4 33.2

RNN 80 Mono 23.6 35.6 17.5 26.2 47.7 32.9 4.7 18.2
48 Multi 35.4 47.3 29.8 36.6 46.5 43.8 4.1 12.2

SG 80 Mono 63.9 69.9 60.9 54.6 62.8 66.9 47.8 47.8
48 Multi 63.1 70.4 57.6 54.9 64.7 58.7 46.5 44.2

Table 2: Spearman’s correlation (left) and accuracy (right) on different tasks. Bold indicates best result
across all vector types. Mono: monolingual and Multi: multilingual.
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Figure 4: Performance as a function of vector length on word similarity tasks. The monolingual vectors
always have a fixed length of 80, they are just shown in the plots for comparison.
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saturate towards the end. For all the three lan-
guage pairs the SVD vectors show uniform pat-
tern of performance which gives us the liberty to
use any language pair at hand. This is not true
for the RNN vectors whose curves are signifi-
cantly different for every language pair. SG vec-
tors show a uniform pattern across different lan-
guage pairs and the performance with multilin-
gual context converges to the monolingual perfor-
mance when the vector length becomes equal to
the monolingual case (k = 80). The fact that both
SG and SVD vectors have similar behavior across
language pairs can be treated as evidence that se-
mantics or information at a conceptual level (since
both of them basically model word cooccurrence
counts) transfers well across languages (Dyvik,
2004) although syntax has been projected across
languages as well (Hwa et al., 2005; Yarowsky and
Ngai, 2001). The pattern of results in the case of
RNN vectors are indicative of the fact that these
vectors encode syntactic information as explained
in §6 which might not generalize well as compared
to semantic information.

7 Related Work

Our method of learning multilingual word vectors
is most closely associated to Zou et al. (2013) who
learn bilingual word embeddings and show their
utility in machine translation. They optimize the
monolingual and the bilingual objective together
whereas we do it in two separate steps and project
to a common vector space to maximize correla-
tion between the two. Vulić and Moens (2013)
learn bilingual vector spaces from non parallel
data induced using a seed lexicon. Our method
can also be seen as an application of multi-view
learning (Chang et al., 2013; Collobert and We-
ston, 2008), where one of the views can be used
to capture cross-lingual information. Klementiev
et al. (2012) use a multitask learning framework
to encourage the word representations learned by
neural language models to agree cross-lingually.

CCA can be used for dimension reduction and
to draw correspondences between two sets of
data.Haghighi et al. (2008) use CCA to draw trans-
lation lexicons between words of two different lan-
guages using only monolingual corpora. CCA
has also been used for constructing monolingual
word representations by correlating word vectors
that capture aspects of word meaning and dif-
ferent types of distributional profile of the word

(Dhillon et al., 2011). Although our primary ex-
perimental emphasis was on LSA based monolin-
gual word representations, which we later gener-
alized to two different neural network based word
embeddings, these monolingual word vectors can
also be obtained using other continuous models of
language (Collobert and Weston, 2008; Mnih and
Hinton, 2008; Morin and Bengio, 2005; Huang et
al., 2012).

Bilingual representations have previously been
explored with manually designed vector space
models (Peirsman and Padó, 2010; Sumita, 2000)
and with unsupervised algorithms like LDA and
LSA (Boyd-Graber and Blei, 2012; Zhao and
Xing, 2006). Bilingual evidence has also been ex-
ploited for word clustering which is yet another
form of representation learning, using both spec-
tral methods (Zhao et al., 2005) and structured
prediction approaches (Täckström et al., 2012;
Faruqui and Dyer, 2013).

8 Conclusion

We have presented a canonical correlation anal-
ysis based method for incorporating multilingual
context into word representations generated using
only monolingual information and shown its ap-
plicability across three different ways of generat-
ing monolingual vectors on a variety of evalua-
tion benchmarks. These word representations ob-
tained after using multilingual evidence perform
significantly better on the evaluation tasks com-
pared to the monolingual vectors. We have also
shown that our method is more suitable for vec-
tors that encode semantic information than those
that encode syntactic information. Our work sug-
gests that multilingual evidence is an important
resource even for purely monolingual, semanti-
cally aware applications. The tool for projecting
word vectors can be found at http://cs.cmu.
edu/˜mfaruqui/soft.html.
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