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Abstract

The open structure of online social net-
works and their uncurated nature give rise
to problems of user credibility and influ-
ence. In this paper, we address the task of
predicting the impact of Twitter users based
only on features under their direct control,
such as usage statistics and the text posted
in their tweets. We approach the problem as
regression and apply linear as well as non-
linear learning methods to predict a user
impact score, estimated by combining the
numbers of the user’s followers, followees
and listings. The experimental results point
out that a strong prediction performance is
achieved, especially for models based on
the Gaussian Processes framework. Hence,
we can interpret various modelling com-
ponents, transforming them into indirect
‘suggestions’ for impact boosting.

1 Introduction

Online social networks have become a wide spread
medium for information dissemination and inter-
action between millions of users (Huberman et al.,
2009; Kwak et al., 2010), turning, at the same
time, into a popular subject for interdisciplinary
research, involving domains such as Computer Sci-
ence (Sakaki et al., 2010), Health (Lampos and
Cristianini, 2012) and Psychology (Boyd et al.,
2010). Open access along with the property of struc-
tured content retrieval for publicly posted data have
brought the microblogging platform of Twitter into
the spotlight.

Vast quantities of human-generated text from
a range of themes, including opinions, news and
everyday activities, spread over a social network.
Naturally, issues arise, like user credibility (Castillo
et al., 2011) and content attractiveness (Suh et al.,
2010), and quite often trustful or appealing informa-
tion transmitters are identified by an impact assess-

ment.1 Intuitively, it is expected that user impact
cannot be defined by a single attribute, but depends
on multiple user actions, such as posting frequency
and quality, interaction strategies, and the text or
topics of the written communications.

In this paper, we start by predicting user impact
as a statistical learning task (regression). For that
purpose, we firstly define an impact score function
for Twitter users driven by basic account proper-
ties. Afterwards, from a set of accounts, we mea-
sure several publicly available attributes, such as
the quantity of posts or interaction figures. Textual
attributes are also modelled either by word frequen-
cies or, more generally, by clusters of related words
which quantify a topic-oriented participation. The
main hypothesis being tested is whether textual
and non textual attributes encapsulate patterns that
affect the impact of an account.

To model this data, we present a method based
on nonlinear regression using Gaussian Processes,
a Bayesian non-parametric class of methods (Ras-
mussen and Williams, 2006), proven more effec-
tive in capturing the multimodal user features. The
modelling choice of excluding components that
are not under an account’s direct control (e.g. re-
ceived retweets) combined with a significant user
impact prediction performance (r = .78) enabled
us to investigate further how specific aspects of a
user’s behaviour relate to impact, by examining the
parameters of the inferred model.

Among our findings, we identify relevant fea-
tures for this task and confirm that consistent ac-
tivity and broad interaction are deciding impact
factors. Informativeness, estimated by computing
a joint user-topic entropy, contributes well to the
separation between low and high impact accounts.
Use case scenarios based on combinations of fea-
tures are also explored, leading to findings such as
that engaging about ‘serious’ or more ‘light’ topics
may not register a differentiation in impact.

1For example, the influence assessment metric of Klout —
http://www.klout.com.
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2 Data

For the experimental process of this paper, we
formed a Twitter data set (D1) of more than 48 mil-
lion tweets produced by |U | = 38, 020 users geolo-
cated in the UK in the period between 14/04/2011
and 12/04/2012 (both dates included, ∆t = 365
days). D1 is a temporal subset of the data set used
for modelling UK voting intentions in (Lampos et
al., 2013). Geolocation of users was carried out
by matching the location field in their profile with
UK city names on DBpedia as well as by check-
ing that the user’s timezone is set to G.M.T. (Rout
et al., 2013). The use of a common greater geo-
graphical area (UK) was essential in order to derive
a data set with language and topic homogeneity.
A distinct Twitter data set (D2) consisting of ap-
prox. 400 million tweets was formed for learning
term clusters (Section 4.2). D2 was retrieved from
Twitter’s Gardenhose stream (a 10% sample of the
entire stream) from 02/01 to 28/02/2011. D1 and
D2 were processed using TrendMiner’s pipeline
(Preoţiuc-Pietro et al., 2012).

3 User Impact Definition

On the microblogging platform of Twitter, user –
or, in general, account – popularity is usually quan-
tified by the raw number of followers (φin ≥ 0),
i.e. other users interested in this account. Likewise,
a user can follow others, which we denote as his set
of followees (φout ≥ 0). It is expected that users
with high numbers of followers are also popular
in the real world, being well-known artists, politi-
cians, brands and so on. However, non popular
entities, the majority in the social network, can also
gain a great number of followers, by exploiting,
for example, a follow-back strategy.2 Therefore,
using solely the number of followers to quantify
impact may lead to inaccurate outcomes (Cha et al.,
2010). A natural alternative, the ratio of φin/φout
is not a reliable metric, as it is invariant to scal-
ing, i.e. it cannot differentiate accounts of the type
{φin, φout} = {m,n} and {γ × m, γ × n}. We
resolve this problem by squaring the number of
followers

(
φ2

in/φout
)
; note that the previous expres-

sion is equal to (φin − φout)× (φin/φout) +φin and
thus, it incorporates the ratio as well as the differ-
ence between followers and followees.

An additional impact indicator is the number of
times an account has been listed by others (φλ ≥ 0).
Lists provide a way to curate content on Twitter;
thus, users included in many lists are attractors of

2An account follows other accounts randomly expecting
that they will follow back.
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Figure 1: Histogram of the user impact scores in
our data set. The solid black line represents a gen-
eralised extreme value probability distribution fit-
ted in our data, and the dashed line denotes the
mean impact score (= 6.776). User @spam? is a
sample account with φin = 10, φout = 1000 and
φλ = 0; @lampos is a very active account, whereas
@nikaletras is a regular user.

interest. Indeed, Pearson’s correlation between φin
and φλ for all the accounts in our data set is equal
to .765 (p < .001); the two metrics are correlated,
but not entirely and on those grounds, it would be
reasonable to use both for quantifying impact.

Consequently, we have chosen to represent user
impact (S) as a log function of the number of fol-
lowers, followees and listings, given by

S(φin, φout, φλ) = ln

(
(φλ + θ) (φin + θ)2

φout + θ

)
,

(1)
where θ is a smoothing constant set equal to 1 so
that the natural logarithm is always applied on a
real positive number. Figure 1 shows the impact
score distribution for all the users in our sample,
including some pointers to less or more popular
Twitter accounts. The depicted user impact scores
form the response variable in the regression models
presented in the following sections.

4 User Account Features

This section presents the features used in the user
impact prediction task. They are divided into two
categories: non-textual and text-based. All features
have the joint characteristic of being under the
user’s direct control, something essential for char-
acterising impact based on the actions of a user.
Attributes such as the number of received retweets
or @-mentions (of a user in the tweets of others)
were not considered as they are not controlled by
the account itself.
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a1 # of tweets
a2 proportion of retweets
a3 proportion of non-duplicate tweets
a4 proportion of tweets with hashtags
a5 hashtag-tokens ratio in tweets
a6 proportion of tweets with @-mentions
a7 # of unique @-mentions in tweets
a8 proportion of tweets with @-replies
a9 links ratio in tweets
a10 # of favourites the account made
a11 total # of tweets (entire history)
a12 using default profile background (binary)
a13 using default profile image (binary)
a14 enabled geolocation (binary)
a15 population of account’s location
a16 account’s location latitude
a17 account’s location longitude
a18 proportion of days with nonzero tweets

Table 1: Non textual attributes for a Twitter account
used in the modelling process. All attributes refer
to a set of 365 days (∆t) with the exception of a11,
the total number of tweets in the entire history of an
account. Attributes ai, i ∈ {2− 6, 8, 9} are ratios
of a1, whereas attribute a18 is a proportion of ∆t.

4.1 Non textual attributes
The non-textual attributes (a) are derived either
from general user behaviour statistics or directly
from the account’s profile. Table 1 presents the 18
attributes we extracted and used in our models.

4.2 Text features
We process the text in the tweets of D1 and com-
pute daily unigram frequencies. By discarding
terms that appear less than 100 times, we form
a vocabulary of size |V | = 71, 555. We then form
a user term-frequency matrix of size |U |×|V | with
the mean term frequencies per user during the time
interval ∆t. All term frequencies are normalised
with the total number of tweets posted by the user.

Apart from single word frequencies, we are also
interested in deriving a more abstract representa-
tion for each user. To achieve this, we learn word
clusters from a distinct reference corpus (D2) that
could potentially represent specific domains of
discussion (or topics). From a multitude of pro-
posed techniques, we have chosen to apply spec-
tral clustering (Shi and Malik, 2000; Ng et al.,
2002), a hard-clustering method appropriate for
high-dimensional data and non-convex clusters
(von Luxburg, 2007). Spectral clustering performs

graph partitioning on the word-by-word similar-
ity matrix. In our case, tweet-term similarity is
reflected by the Normalised Pointwise Mutual In-
formation (NPMI), an information theoretic mea-
sure indicating which words co-occur in the same
context (Bouma, 2009). We use the random walk
graph Laplacian and only keep the largest compo-
nent of the resulting graph, eliminating most stop
words in the process. The number of clusters needs
to be specified in advance and each cluster’s most
representative words are identified by the following
metric of centrality:

Cw(c) =
∑

v∈c NPMI(w, v)
|c| − 1

, (2)

where w is the target word and c the cluster it be-
longs (|c| denotes the cluster’s size). Examples of
extracted word clusters are illustrated in Table 4.
Other techniques were also applied, such as online
LDA (Hoffman et al., 2010), but we found that
the results were not satisfactory, perhaps due to
the short message length and the foreign terms co-
occuring within a tweet. After forming the clusters
using D2, we compute a topic score (τ ) for each
user-topic pair in D1, representing a normalised
user-word frequency sum per topic.

5 Methods

This section presents the various modelling ap-
proaches for the underlying inference task, the im-
pact score (S) prediction of Twitter users based on
a set of their actions.

5.1 Learning functions for regression
We formulate this problem as a regression task,
i.e. we infer a real numbered value based on a set
of observed features. As a simple baseline, we ap-
ply Ridge Regression (RR) (Hoerl and Kennard,
1970), a reguralised version of the ordinary least
squares. Most importantly, we focus on nonlinear
methods for the impact score prediction task given
the multimodality of the feature space. Recently, it
was shown by Cohn and Specia (2013) that Sup-
port Vector Machines for Regression (SVR) (Vap-
nik, 1998; Smola and Schölkopf, 2004), commonly
considered the state-of-the-art for NLP regression
tasks, can be outperformed by Gaussian Processes
(GPs), a kernelised, probabilistic approach to learn-
ing (Rasmussen and Williams, 2006). Their setting
is close to ours, in that they had few (17) features
and were also aiming to predict a complex con-
tinuous phenomenon (human post-editing time).
The initial stages of our experimental process con-
firmed that GPs performed better than SVR; thus,
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we based our modelling around them, including
RR for comparison.

In GP regression, for the inputs xxx ∈ Rd we want
to learn a function f : Rd → R that is drawn from
a GP prior

f(xxx) ∼ GP (m(xxx), k(xxx,xxx′)
)
, (3)

where m(xxx) and k(xxx,xxx′) denote the mean (set to
0 in our experiments) and covariance (or kernel)
functions respectively. The GP kernel function rep-
resents the covariance between pairs of input. We
wish to limit f to smooth functions over the inputs,
with different smoothness in each input dimension,
assuming that some features are more useful than
others. This can be accommodated by a squared ex-
ponential covariance function with Automatic Rele-
vance Determination (ARD) (Neal, 1996; Williams
and Rasmussen, 1996):

kard(xxx,xxx′) = σ2 exp

[
d∑
i

−(xi − x′i)2
2`2i

]
, (4)

where σ2 denotes the overall variance and `i is
the length-scale parameter for feature xi; all hy-
perparameters are learned from data during model
inference. Parameter `i is inversely proportional to
the feature’s relevancy in the model, i.e. high val-
ues of `i indicate a low degree of relevance for the
corresponding xi. By setting `i = ` in Eq. 4, we
learn a common length-scale for all the dimensions
– this is known as the isotropic squared exponen-
tial function (kiso) since it is based purely on the
difference |xxx− xxx′|. kiso is a preferred choice when
the dimensionality of the input space is high. Hav-
ing set our covariance functions, predictions are
conducted using Bayesian integration

P(y∗|xxx∗,O) =
∫
f

P(y∗|xxx∗, f)P(f |O), (5)

where y∗ is the response variable,O a labelled train-
ing set and xxx∗ the current observation. We learn the
hyperparameters of the model by maximising the
log marginal likelihood P(y|O) using gradient as-
cent. However, inference becomes intractable when
many training instances (n) are present as the num-
ber of computations needed is O(n3) (Quiñonero-
Candela and Rasmussen, 2005). Since our training
samples are tens of thousands, we apply a sparse
approximation method (FITC), which bases param-
eter learning on a few inducing points in the train-
ing set (Quiñonero-Candela and Rasmussen, 2005;
Snelson and Ghahramani, 2006).

5.2 Models
For predicting user impact on Twitter, we develop
three regression models that build on each other.

The first and simplest one (A) uses only the non-
textual attributes as features; the performance of A
is tested using RR,3 SVR as well as a GP model.
For SVR we used an RBF kernel (equivalent to
kiso), whereas for the GP we applied the following
covariance function

k(aaa,aaa′) = kard(aaa,aaa′) + knoise(aaa,aaa′) + β, (6)

where knoise(aaa,aaa′) = σ2 × δ(aaa,aaa′), δ is a Kro-
necker delta function and β is the regression bias;
this function consists of (|a| + 3) hyperparame-
ters. Note that the sum of covariance functions is
also a valid covariance function (Rasmussen and
Williams, 2006).

The second model (AW) extends model A by
adding word-frequencies as features. The 500 most
frequent terms in D1 are discarded as stop words
and we use the following 2, 000 ones (denoted by
www). Setting xxx = {aaa,www}, the covariance function
becomes

k(xxx,xxx′) = kard(aaa,aaa′) + kiso(www,www′)
+ knoise(xxx,xxx′) + β,

(7)

where we apply kiso on the term-frequencies due to
their high dimensionality; the number of hyperpa-
rameters is (|a|+ 5). This is an intermediate model
aiming to evaluate whether the incorporation of
text improves prediction performance.

Finally, in the third model (AC) instead of rely-
ing on the high dimensional space of single words,
we use topic-oriented collections of terms extracted
by applying spectral clustering (see Section 4.2).
By denoting the set of different clusters or topics
as τττ and the entire feature space as xxx = {aaa,τττ}, the
covariance function now becomes

k(xxx,xxx′) = kard(xxx,xxx′) + knoise(xxx,xxx′) + β. (8)

The number of hyperparameters is equal to (|a|+
|τ |+ 3) and this model is applied for |τ | = 50 and
100.

6 Experiments

Here we present the experimental results for the
user impact prediction task and then investigate the
factors that can affect it.

6.1 Predictive Accuracy
We evaluated the performance of the proposed
models via 10-fold cross-validation. Results are
presented in Table 2; Root Mean Squared Error

3Given that the representation of attributes a16 and a17

(latitude, longitude) is ambiguous in a linear model, they were
not included in the RR-based models.
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Linear (RR) Nonlinear (GP)
Model r RMSE r RMSE

A .667 2.642 .759 2.298
AW .712 2.529 .768 2.263
AC, |τ | = 50 .703 2.518 .774 2.234
AC, |τ | = 100 .714 2.480 .780.780.780 2.2102.2102.210

Table 2: Average performance (RMSE and Pear-
son’s r) derived from 10-fold cross-validation for
the task of user impact score prediction.

Model Top relevant features
A a�13, a11, a7, a1, a9, a8, a18, a4, a6, a3

AW a7, a1, a11, a
�
13, a9, a8, a18, a4, a6, a15

AC, τ = 50 a�13, a11, a7, τ
′
1, a1, a9, a8, τ

′
2, a6, τ

′
3

AC, τ = 100 a�13, a11, a7, a1, a9, τ1, τ2, τ3, a18, a8

Table 3: The 10 most relevant features in descend-
ing relevance order for all GP models. τ ′i and τi
denote word clusters (may vary in each model).6

(RMSE) and Pearson’s correlation (r) between pre-
dictions and responses were used as the perfor-
mance metrics. Overall, the best performance in
terms of both RMSE (2.21 impact points) and lin-
ear correlation (r = .78, p < .001) is achieved
by the GP model (AC) that combines non-textual
attributes with a 100 topic clusters; the difference
in performance with all other models is statistically
significant.4 The linear baseline (RR) follows the
same pattern of improvement through the differ-
ent models, but never manages to reach the perfor-
mance of the nonlinear alternative. As mentioned
previously, we have also tried SVR with an RBF
kernel for model A (parameters were optimised on
a held-out development set) and the performance
(RMSE: 2.33, r = .75, p < .001) was significantly
worse than the one achieved by the GP model.4

Notice that when word-based features are intro-
duced in model AW, performance improves. This
was one of the motivations for including text in the
modelling, apart from the notion that the posted
content should also affect general impact. Lastly,
turning this problem from regression to classifi-
cation by creating 3 impact score pseudo-classes
based on the .25 and the .9 quantiles of the re-
sponse variable (4.3 and 11.4 impact score points
respectively) and by using the outputs of model
AC (τ = 100) in each phase of the 10-fold cross-
validation, we achieve a 75.86% classification ac-
curacy.5

4 Indicated by performing a t-test (5% significance level).
5Similar performance scores can be estimated for different

class threshold settings.
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Figure 2: User impact distribution (x-axis: impact
points, y-axis: # of user accounts) for users with a
low (L) or a high (H) participation in a selection
of relevant non-textual attributes. Dot-dashed lines
denote the respective mean impact score; the red
line is the mean of the entire sample (= 6.776).

6.2 Qualitative Analysis
Given the model’s strong performance, we now
conduct a more thorough analysis to identify and
characterise the properties that affect aspects of
the user impact. GP’s length-scale parameters (`i)
– which are inversely proportional to feature rele-
vancy – are used for ranking feature importance.
Note that since our data set consists of UK users,
some results may be biased towards specific cul-
tural properties.

Non-textual attributes. Table 3 lists the 10 most
relevant attributes (or topics, where applicable) as
extracted in each GP model. Ranking is determined
by the mean value of the length-scale parameter for
each feature in the 10-fold cross-validation process.
We do not show feature ranking derived from the
RR models as we focus on the models with the best
performance. Despite this, it is worth mentioning

6Length-scales are comparable for features of the same
variance (z-scored). Binary features (denoted by �) are not
z-scored, but for comparison purposes we have rescaled their
length-scale using the feature’s variance.
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Label µ(`)± σ(`) Cluster’s words ranked by centrality |c|
τ1: Weather 3.73± 1.80 mph, humidity, barometer, gust, winds, hpa, temperature, kt, #weather [...] 309

τ2: Healthcare
Finance
Housing

5.44± 1.55 nursing, nurse, rn, registered, bedroom, clinical, #news, estate, #hospital,
rent, healthcare, therapist, condo, investment, furnished, medical, #nyc,
occupational, investors, #ny, litigation, tutors, spacious, foreclosure [...]

1281

τ3: Politics 6.07± 2.86 senate, republican, gop, police, arrested, voters, robbery, democrats, presi-
dential, elections, charged, election, charges, #religion, arrest, repeal, dems,
#christian, reform, democratic, pleads, #jesus, #atheism [...]

950

τ4: Showbiz
Movies
TV

7.36± 2.25 damon, potter, #tvd, harry, elena, kate, portman, pattinson, hermione, jen-
nifer, kristen, stefan, robert, catholic, stewart, katherine, lois, jackson, vam-
pire, natalie, #vampirediaries, tempah, tinie, weasley, turner, rowland [...]

1943

τ5: Commerce 7.83± 2.77 chevrolet, inventory, coupon, toyota, mileage, sedan, nissan, adde, jeep, 4x4,
2002, #coupon, enhanced, #deal, dodge, gmc, 20%, suv, 15%, 2005, 2003,
2006, coupons, discount, hatchback, purchase, #ebay, 10% [...]

608

τ6: Twitter
Hashtags

8.22± 2.98 #teamfollowback, #500aday, #tfb, #instantfollowback, #ifollowback, #in-
stantfollow, #followback, #teamautofollow, #autofollow, #mustfollow [...]

194

τ7: Social
Unrest

8.37± 5.52 #egypt, #tunisia, #iran, #israel, #palestine, tunisia, arab, #jan25, iran, israel,
protests, egypt, #yemen, #iranelection, israeli, #jordan, regime, yemen,
#gaza, protesters, #lebanon, #syria, egyptian, #protest, #iraq [...]

321

τ8: Non English 8.45± 3.80 yg, nak, gw, gue, kalo, itu, aku, aja, ini, gak, klo, sih, tak, mau, buat [...] 469

τ9: Horoscope
Gambling

9.11± 3.07 horoscope, astrology, zodiac, aries, libra, aquarius, pisces, taurus, virgo,
capricorn, horoscopes, sagitarius, comprehensive, lottery, jackpot [...]

1354

τ10: Religion
Sports

10.29± 6.27 #jesustweeters, psalm, christ, #nhl, proverbs, unto, salvation, psalms, lord,
kjv, righteousness, niv, bible, pastor, #mlb, romans, awards, nhl [...]

1610

Table 4: The 10 most relevant topics (for model AC, |τ | = 100) in the prediction of a user’s impact score
together with their most central words. The topics are ranked by their mean length-scale, µ(`), in the
10-fold cross-validation process (σ(`) is the respective standard deviation).

that RR’s outputs also followed similar ranking pat-
terns, e.g. the top 5 features in model A were a18,
a7, a3, a11 and a9. Notice that across all models,
among the strongest features are the total number
of posts either in the entire account’s history (a11)
or within the 365-day interval of our experiment
(a1) and the number of unique @-mentions (a7),
good indicators of user activity and user interaction
respectively. Feature a13 is also a very good predic-
tor, but is of limited utility for modelling our data
set because very few accounts maintain the default
profile photo (0.4%). Less relevant attributes (not
shown) are the ones related to the location of a
user (a16, a17) signalling that the whereabouts of a
user may not necessarily relate to impact. Another
low relevance attribute is the number of favourites
that an account did (a10), something reasonable, as
those weak endorsements are not affecting the main
stream of content updates in the social network.

In Figure 2, we present the distribution of user
impact for accounts with low (left-side) and high
(right-side) participation in a selection of non-
textual attributes. Low (L) and high (H) participa-
tions are defined by selecting the 500 accounts with
lowest and highest scores for this specific attribute.
The means of (L) and (H) are compared with the
mean impact score in our sample. As anticipated,
accounts with low activity (a11) are likely to be
assigned impact scores far below the mean, while
very active accounts may follow a quite opposite

pattern. Avoiding mentioning (a7) or replying (a8)
to others may not affect (on average) an impact
score positively or negatively; however, accounts
that do many unique @-mentions are distributed
around a clearly higher impact score. On the other
hand, users that overdo @-replies are distributed be-
low the mean impact score. Furthermore, accounts
that post irregularly with gaps longer than a day
(a18) or avoid using links in their tweets (a9) will
probably appear in the low impact score range.

Topics. Regarding prediction accuracy (Table 2),
performance improves when topics are included.
In turn, some of the topics replace non-textual at-
tributes in the relevancy ranking (Table 3). Table 4
presents the 10 most relevant topic word-clusters
based on their mean length-scale µ(`) in the 10-
fold cross-validation process for the best perform-
ing GP model (AC, |τ | = 100). We see that clusters
with their most central words representing topics
such as ‘Weather’, ‘Healthcare/Finance’, ‘Politics’
and ‘Showbiz’ come up on top.

Contrary to the non-textual attributes, accounts
with low participation in a topic (for the vast major-
ity of topics) were distributed along impact score
values lower than the mean. Based on the fact that
word clusters are not small in size, this is a rational
outcome indicating that accounts with small word-
frequency sums (i.e. the ones that do not tweet
much) will more likely be users with small impact
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Figure 4: User impact distribution for accounts with
high (blue) and low (dark grey) topic entropy. Lines
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scores. Hence, in Figure 3 we only show the user
impact distribution for the 500 accounts with the
top participation in each topic. Informally, this is a
way to quantify the contribution of each domain or
topic of discussion in the impact score. Notice that
the topics which ‘push’ users towards the highest
impact scores fall into the domains of ‘Politics’ (τ3)
and ‘Showbiz’ (τ4). An equally interesting observa-
tion is that engaging a lot about a specific topic will
more likely result to a higher than average impact;
the only exception is τ8 which does not deviate
from the mean, but τ8 rather represents the use of a
non-English language (Indonesian) and therefore,
does not form an actual topic of discussion.

To further understand how participation in the
10 most relevant topics relates to impact, we also
computed the joint user-topic entropy defined by

H(ui, τ) = −
M∑
j=1

P(ui, τj)× log2 P(ui, τj), (9)

where ui is a user and M = 10 (Shannon, 2001).
This is a measure of user pseudo-informativeness,
meaning that users with high entropy are consid-
ered as more informative (without assessing the
quality of the information). Figure 4 shows the im-
pact score distributions for the 500 accounts with
the lowest and highest entropy. Low and high en-
tropies are separated, with the former being placed
clearly below the mean user impact score and the
latter above. This pictorial assessment suggests that
a connection between informativeness and impact
may exist, at least in their extremes (their correla-
tion in the entire sample is r = .35, p < .001).

Use case scenarios. Most of the previous analysis
focused on the properties of single features. How-
ever, the user impact prediction models we learn
depend on feature combinations. For that reason,
it is of interest to investigate use case scenarios
that bring various attributes together. To reduce
notation in this paragraph, we use x+

i (x is ei-
ther a non-textual attribute a or a topic τ ) to ex-
press xi > µ(xi), the set of users for which the
value of feature xi is above the mean; equivalently
x−i : xi < µ(xi). We also use τ∗A to express the
more complex set {τ+

A ∩ τ−j ∩ ... ∩ τ−z }, an inter-
section of users that are active in one topic (τA),
but not very active in the rest. Figure 5 depicts the
user impact distributions for five use case scenarios.
Scenario A compares interactive to non interac-
tive users, represented by P(a+

1 , a
+
6 , a

+
7 , a

+
8 ) and

P(a+
1 , a

−
6 , a

−
7 , a

−
8 ) respectively; interactivity, de-

fined by an intersection of accounts that tweet regu-
larly, do many @-mentions and @-replies, but also
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Figure 5: User impact distribution (x-axis: impact points, y-axis: # of user accounts) for five Twitter
use scenarios based on subsets of the most relevant attributes and topics – IA: Interactive, IAC: Clique
Interactive, L: Using many links, TO: Topic-Overall, TF: Topic-Focused, LT: ‘Light’ topics, ST: ‘Serious’
topics. (N) denotes negation and lines the respective mean impact scores.

mention many different users, seems to be rewarded
on average with higher impact scores. Interactive
users gain more impact than clique-interactive ac-
counts represented by P(a+

1 , a
+
6 , a

−
7 , a

+
8 ), i.e. users

who interact, but do not mention many differ-
ent accounts, possibly because they are conduct-
ing discussions with a specific circle only (sce-
nario B). The use of links when writing about
the most prevalent topics (‘Politics’ and ‘Show-
biz’) appears to be an important impact-wise fac-
tor (scenario C); the compared probability distri-
butions in that case were P

(
a+

1 , (τ
+
3 ∪ τ+

4 ), a+
9

)
against P

(
a+

1 , (τ
+
3 ∪ τ+

4 ), a−9
)
. Surprisingly, when

links were replaced by hashtags in the previous
distributions, a clear class separation was not
achieved. In scenario D, topic-focused accounts,
i.e. users that write about one topic consistently,
represented by P

(
a+

1 , (τ
∗
2 ∪ τ∗3 ∪ τ∗4 ∪ τ∗7 ∪ τ∗10)

)
,

have on average slightly worse impact scores when
compared to accounts tweeting about many top-
ics, P(a+

1 , τ
+
2 , τ

+
3 , τ

+
4 , τ

+
7 , τ

+
10). Finally, scenario

E shows thats users engaging about more ‘seri-
ous’ topics, P

(
a+

1 , τ
−
4 , τ

−
5 , τ

−
9 , (τ

+
3 ∪ τ+

7 )
)
, were

not differentiated from the ones posting about more
‘light’ topics, P

(
a+

1 , (τ
+
4 ∪ τ+

5 ∪ τ+
9 ), τ−3 , τ

−
7

)
.

7 Related Work

The task of user-impact prediction based on a ma-
chine learning approach that incorporates text fea-
tures is novel, to the best of our knowledge. De-
spite this fact, our work is partly related to research
approaches for quantifying and analysing user in-
fluence in online social networks. For example,
Cha et al. (2010) compared followers, retweets
and @-mentions received as measures of influ-
ence. Bakshy et al. (2011) aggregated all posts by
each user, computed an individual-level influence
and then tried to predict it by modelling user at-
tributes (# of followers, followees, tweets and date
of joining) together with past user influence. Their

method, based on classification and regression trees
(Breiman, 1984), achieved a modest performance
(r = .34). Furthermore, Romero et al. (2011) pro-
posed an algorithm for determining user influence
and passivity based on information-forwarding ac-
tivity, and Luo et al. (2013) exploited user attributes
to predict retweet occurrences. The primary differ-
ence with all the works described above is that we
aim to predict user impact by exploiting features
under the user’s direct control. Hence, our findings
can be used as indirect insights for strategies that in-
dividual users may follow to increase their impact
score. In addition, we incorporate the actual text
posted by the users in the entire modelling process.

8 Conclusions and Future Work

We have introduced the task of user impact pre-
diction on the microblogging platform of Twitter
based on user-controlled textual and non-textual
attributes. Nonlinear methods, in particular Gaus-
sian Processes, were more suitable than linear ap-
proaches for this problem, providing a strong per-
formance (r = .78). That result motivated the anal-
ysis of specific characteristics in the inferred model
to further define and understand the elements that
affect impact. In a nutshell, activity, non clique-
oriented interactivity and engagement on a diverse
set of topics are among the most decisive impact
factors. In future work, we plan to improve various
modelling components and gain a deeper under-
standing of the derived outcomes in collaboration
with domain experts. For more general conclusions,
the consideration of different cultures and media
sources is essential.
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