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Abstract

Using machine translation output as a
starting point for human translation has
become an increasingly common applica-
tion of MT. We propose and evaluate three
computationally efficient online methods
for updating statistical MT systems in a
scenario where post-edited MT output is
constantly being returned to the system:
(1) adding new rules to the translation
model from the post-edited content, (2)
updating a Bayesian language model of
the target language that is used by the
MT system, and (3) updating the MT
system’s discriminative parameters with
a MIRA step. Individually, these tech-
niques can substantially improve MT qual-
ity, even over strong baselines. Moreover,
we see super-additive improvements when
all three techniques are used in tandem.

1 Introduction

Using machine translation outputs as a starting
point for human translators is becoming increas-
ingly common and is now arguably one of the most
commercially important applications of MT. Con-
siderable evidence has accumulated showing that
human translators are more productive and accu-
rate when post-editing MT output than when trans-
lating from scratch (Guerberof, 2009; Carl et al.,
2011; Koehn, 2012; Zhechev, 2012, inter alia).
An important (if unsurprising) insight from prior
research in this area is that translators become
more productive as MT quality improves (Tat-
sumi, 2009). While general improvements to MT
continue to lead to further productivity gains, we
explore how MT quality can be improved specifi-
cally in an online post-editing scenario in which
sentence-level MT outputs are constantly being
presented to human experts, edited, and then re-
turned to the system for immediate learning. This

task is challenging in two regards. First, from a
technical perspective, post-edited outputs must be
processed rapidly: a productive post-editor cannot
wait for a standard batch MT training pipeline to
be rerun after each sentence is corrected! Sec-
ond, from a methodological perspective, it is ex-
pensive to run many human subject experiments,
in particular when the human subjects must have
translation expertise. We therefore use a sim-
ulated post-editing paradigm in which either
non-post-edited reference translations or manually
post-edited translations from a similar MT system
are used in lieu of human post-editors (§2). This
paradigm allows us to efficiently develop and eval-
uate systems that can go on to function in real-time
post-editing scenarios without modification.

We present and evaluate three online methods
for improving translation models using feedback
from editors: adding new translations rules to
the translation grammar (§3), updating a Bayesian
language model with observations of the post-
edited output (§4), and using an online discrimi-
native parameter update to minimize model error
(85). These techniques are computationally effi-
cient and make minimal use of approximation or
heuristics, handling initial and incremental data in
a uniform way. We evaluate these techniques in a
variety of language and data scenarios that mimic
the demands of real-world translation tasks. Com-
pared to a competitive baseline, we show substan-
tial improvement from updating the translation
grammar or language model independently and
super-additive gains from combining these tech-
niques with a MIRA update (§6). We then discuss
how our techniques relate to prior work (§7) and
conclude (§8).

2 Simulated Post-Editing Paradigm

In post-editing scenarios, humans continuously
edit machine translation outputs into production-
quality translations, providing an additional, con-
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stant stream of data absent in batch translation.
This data consists of highly domain-relevant ref-
erence translations that are minimally different
from MT outputs, making them ideal for learn-
ing. However, true post-editing data is infeasi-
ble to collect during system development and in-
ternal testing as standard MT pipelines require
tens of thousands of sentences to be translated
with low latency. To address this problem, Hardt
and Elming (2010) formulate the task of sim-
ulated post-editing, wherein pre-generated refer-
ence translations are used as a stand-in for actual
post-editing. This approximation is equivalent to
the case where humans edit each translation hy-
pothesis to be identical to the reference rather than
simply correcting the MT output to be grammat-
ical and meaning-equivalent to the source. Our
work uses this approximation for tuning and eval-
uation. We also introduce a more accurate approx-
imation wherein MT output from the target sys-
tem (or a similar system) is post-edited in advance,
creating “offline” post-edited data that is similar
to expected system outputs and should thus min-
imize unnecessary edits. An experiment in §6.4
compares the two approximations.

In our simulated post-editing tasks, decoding
(for both the test corpus and each pass over the
development corpus during optimization) begins
with baseline models trained on standard bilin-
gual and monolingual data. After each sentence
is translated, the following take place in order:
First, MIRA uses the new source-reference pair
to update weights for the current models. Second,
the source is aligned to the reference and used to
update the translation grammar. Third, the refer-
ence is added to the Bayesian language model. As
sentences are translated, the models gain valuable
context information, allowing them to zero in on
the target document and translator. Context is re-
set at the start of each development or test corpus. !
This setup, which allows a uniform approach to
tuning and decoding, is visualized in Figure 1.

3 Translation Grammar Adaptation

Translation models (either phrase tables or syn-
chronous grammars) are typically generated of-
fline from large bilingual text. This is reasonable
in scenarios where available training data is fixed
over long periods of time. However, this approach

Tnitial experiments show this to outperform resetting
models on more fine-grained document boundaries, although
further investigation is warranted.

396

Incremental training data

N (

Hola contestadora ... Hello voicemail, ...

He llamado a servicio ... I’ve called for tech ...

Ignoré la advertencia ... Iignored my boss’ ...

Now it’s evening, and ...

I'm still on hold ...
I don’t think you ...

Abhora anochece, ...

Todavia sigo en espera ...
No creo que me hayas ...

Ya he presionado cada ...
J

I punched every touch ...

Source Target (Reference)

Figure 1: Context when translating an input sen-
tence (bold) with simulated post-editing. Previ-
ous sentences and references (shaded) are added
to the training data. After the current sentence is
translated, it is aligned to the reference (italic) and
added to the context for the next sentence.

does not allow adding new data without repeating
model estimation in its entirety, which may take
hours or days. In this section, we describe a simple
technique for incorporating new bilingual training
data as soon as it is available. Our approach is
an extension of the on-demand grammar extractor
described by Lopez (2008a). We extend the work
initially designed for on-the-fly grammar extrac-
tion from static data (to mitigate the expense of
storing large translation grammars), to specifically
handle incremental data from post-editing.

3.1 Suffix Array Grammar Extraction

Lopez (2008a) introduces an alternative to tradi-
tional model estimation for hierarchical phrase-
based statistical machine translation (Chiang,
2007). Rather than estimating a single grammar
from all training data, the aligned bitext is indexed
using a source-side suffix array (Manber and My-
ers, 1993). When an input sentence is to be trans-
lated, a grammar extraction program samples in-
stances of aligned phrase pairs from the suffix ar-
ray that match the source side of the sentence.
Using statistics from these samples rather than
the entire bitext, a sentence-specific grammar is
rapidly generated. In addition to speed gains from
sampling, indexing the source side of the bitext fa-
cilitates a more powerful feature set. Rules in on-
demand grammars are generated using a sample S
for each source phrase f in the input sentence. The
sample, containing pairs ( f, e), is used to calculate
the following statistics:



Feature Baseline Adaptive
coherent CS(f7 6) C3<f7 6) —+ Cﬁ(f7 6)
plelf) S| S|+ £
sample size |S]| S|+ | L]
co-occur-

rence <f;€> CS(fve) Cs(f,€)+C£(f,€)
singleton f Ci(f) CS(f) +1C£(f> =
Singleton CS(f7 6) CS(f7 6) + Cﬁ(fv 6)
(f.e) = =1
post-edit sup-

port (f, €) 0 Ce(f,e) >0

Table 1: Phrase feature definitions for baseline and
adaptive translation models.

e Cs(f,e): count of instances in S where f
aligns to e (phrase co-occurrence count).

e Cs(f): count of instances in S where f aligns
to any target phrase.

e |S|: total number of instances in S, equal to
number of occurrences of f in training data,
capped by the sample size limit.

These statistics are used to instantiate translation
rules X —(f, e) and calculate scores for the phrase
feature set shown in the “Baseline” column of Ta-
ble 1. Notably, the coherent phrase translation
probability that conditions on f occurring in the
data (|S|) rather than f being extracted as part of a
phrase pair (Cs(f)) is shown by Lopez (2008b) to
yield significant improvement over the traditional
translation probability.

3.2 Online Grammar Extraction

When a human translator post-edits MT output, a
new bilingual sentence pair is created. However,
in typical settings, it can be weeks or months be-
fore these training instances are incorporated into
bilingual data and models retrained. Our exten-
sion to on-demand grammar extraction incorpo-
rates these new training instances into the model
immediately. In addition to a static suffix array
that indexes initial data, our system maintains a
dynamic lookup table. Each new sentence pair is
word-aligned with the model estimated from the
initial data (a process often called forced align-
ment). This makes a generally insignificant ap-
proximation with respect to the original alignment
model. Extractable phrase pairs are stored in the
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lookup table and phrase occurrences are counted
on the source side. When subsequent grammars
are extracted, the suffix array sample S for each
f is accompanied by an exhaustive lookup £ from
the lookup table. Matching statistics are calculated
from L:
e Cr(f,e): count of instances in £ where f
aligns to e.
e Cr(f): count of instances in £ where f aligns
to any target phrase.
e |L|: total number of instances of f in post-
editing data (no size limit).
We use combined statistics from S and £ to calcu-
late scores for the “Adaptive” feature set defined in
Table 1. In addition to updating existing features,
we introduce a new indicator feature that identi-
fies rules supported by post-editor feedback. Fur-
ther, our approach allows us to extract rules that
encode translations (phrase mappings and reorder-
ings) only observed in the incremental post-editing
data. This process, which can be seen as influ-
encing the distribution from which grammars are
sampled over time, produces comparable results
to the infeasible process of rebuilding the transla-
tion model after every sentence is translated with
the added benefit of allowing an optimizer to learn
a weight for the post-edited data via the post-edit
support feature. The simple aggregation of statis-
tics allows our model to handle initial and incre-
mental data in a formally consistent way. Further,
any additional features that can be calculated on a
suffix array sample can be matched by an incre-
mental data lookup, making our translation model
a viable platform for further exploration in online
learning for MT.

4 Language Model Adaptation

Adapting language models in an online manner
based on the content they are generating has long
been seen as a promising technique for improving
automatic speech recognition and machine transla-
tion (Kuhn and de Mori, 1990; Zhao et al., 2004;
Sanchis-Trilles, 2012, inter alia). The post-editing
scenario we are considering simplifies this process
somewhat since rather than only having a poste-
rior distribution over machine-generated outputs
(any of which may be ungrammatical), the out-
puts, once edited by human translators, may be
presumed to be grammatical.

We thus take a novel approach to language
model adaptation, building on recent work show-
ing that state-of-the-art language models can be



inferred as the posterior predictive distribution
of a Bayesian language model with hierarchi-
cal Pitman-Yor process priors, conditioned on the
training corpus (Teh, 2006). The Bayesian formu-
lation provides a natural way to incorporate pro-
gressively more data: by updating the posterior
distribution given subsequent observations. Fur-
thermore, the nonparametric nature of the model
means that the model is well suited to poten-
tially unbounded growth of vocabulary. Unfortu-
nately, in general, Bayesian techniques are com-
putationally difficult to work with. However, hi-
erarchical Pitman-Yor process language models
(HPYPLMs) are convenient in this regard since
(1) inference can be carried out efficiently in a
convenient collapsed representation (the “Chinese
restaurant franchise’) and (2) the posterior predic-
tive distribution from a single sample provides a
high quality language model.

We thus use the following procedure. Using
the target side of the bitext as observations, we
run the Gibbs sampling procedure described by
Teh (2006) for 100 iterations in a 3-gram HPY-
PLM. The inferred “seating configuration” defines
a posterior predictive distribution over words in 2-
gram contexts (as with any 3-gram LM) as well
as a posterior distribution over how the model will
generate subsequent observations. We use the for-
mer as a language model component of a transla-
tion model. And, as post-edited sentences become
available, we add their n-grams to the model us-
ing the later. We do not run any Gibbs sampling.
Just updating the language model in this way, we
obtain the results shown in Table 2 for the experi-
mental conditions described in §6.

5 Learning Feature Weights

MT system parameter optimization (learning fea-
ture weights for the decoder) is also typically con-
ducted as a batch process. Discriminative learn-
ing techniques such as minimum error rate train-
ing (Och, 2003) are used to find feature weights
that maximize automatic metric score on a small
development corpus. The resulting weight vector
is then used to decode given input sentences. Us-
ing this approach with post-editing tasks presents
two major issues. First, reference translation are
only considered after all sentences are translated,
a mismatch with post-editing where references are
available incrementally. Second, despite the fact
that adaptive feature sets become more powerful
as post-editing data increases, an optimizer must
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Spanish-English | wWMT10 WMT11 TED1 TED2
HPYPLM 25.5 248 294 266
+data 25.8 252 295 27.0
English-Spanish | wMT10 WMT11 TEDI TED2
HPYPLM 25.1 268 260 243
+data 254 272 262 25.0
Arabic-English | M708 MT09 TED1 TED2
HPYPLM 193 247 95 10.0
+data 196 249 98 105

Table 2: BLEU scores for systems with trigram
HPYPLM (no large language model), with and
without incremental updates from simulated post-
editing data. Scores are averages over 3 optimizer
runs. Bold scores indicate statistically significant
improvement. Tuning set scores are italicized.

learn a single corpus-level weight for each fea-
ture. This forces an averaging effect that can lead
to decoding individual sentences with suboptimal
weights. We address the first issue by using ref-
erence translations to simulate post-editing (Hardt
and Elming, 2010) at tuning time and the second
by using a version of the margin-infused relaxed
algorithm (Crammer et al., 2006; Eidelman, 2012)
to make online parameter updates during decod-
ing. The result is a consistent approach to tuning
and decoding that brings out the potential of adap-
tive models.

5.1 Parameter Optimization

In order to make our decoding process fully con-
sistent with tuning, we introduce an online dis-
criminative parameter update that allows our adap-
tive translation and language models be weighted
appropriately as more data is available. This re-
quires an optimization algorithm that can func-
tion as an online learner during decoding as well
as a batch optimizer during tuning. Popular opti-
mizers such as MERT (Och, 2003) and pairwise
rank optimization (Hopkins and May, 2011) can-
not be used due to their reliance on corpus-level
optimization. We select the cutting-plane variant
of the margin-infused relaxed algorithm (Chiang,
2012; Crammer et al., 2006) with additional exten-
sions described by Eidelman (2012). MIRA is an
online large-margin learner that makes a param-
eter update after each model prediction with the
objective of choosing the correct output over the
incorrect output by a margin at least as large as the
cost of predicting the incorrect output. Applied



to MT system optimization on a development cor-
pus, MIRA proceeds as follows. The MT system
generates a list of the % best translations for a sin-
gle input sentence. From the list, a “hope” hy-
pothesis is selected as a translation with both high
model score and high automatic metric score. A
“fear” hypothesis is selected as a translation with
high model score but low metric score. Parameters
are updated away from the fear hypothesis, toward
the hope hypothesis, and the system processes the
next input sentence. This process continues for a
set number of passes over the development corpus.
All adaptive systems used in our work are opti-
mized with this variant of MIRA using the param-
eter settings described by Eidelman (2012). For
each pass over the data, translation and language
models have incremental access to reference trans-
lations (simulated post-editing data) as input sen-
tences are translated. Translation and language
models reset to using background data only at the
beginning of each MIRA iteration.”

5.2 Online Parameter Updates

Our optimization strategy allows us to treat de-
coding as if it were simply the next iteration of
MIRA (or alternatively that MIRA makes a single
pass over an input corpus that consists of the de-
velopment data concatenated n times followed by
unseen input data). After each sentence is trans-
lated, a reference translation (resulting from ac-
tual human post-editing in production or simulated
post-editing for our experiments) is provided to
the models and MIRA makes a parameter update.
In the only departure from our optimization setup,
we decrease the maximum step size for MIRA (de-
scribed in §6.2), effectively increasing regulariza-
tion strength. This allows us to prefer small ad-
justments to already optimized decoding parame-
ters over the large changes needed during tuning.
It is also important to note that by using MIRA
for updating weights during both tuning and de-
coding, we avoid scaling issues between multiple
optimizers (such as when tuning with MERT and
updating with a passive-aggressive algorithm).

6 Experiments

We evaluate our online extensions to standard
machine translation systems in a series of sim-

Resetting translation and language models prevents con-
tamination. If models retained state from previous passes
over the development set, they would include data for input
sentences before they were translated, rather than after as in
post-editing.
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Spanish-English | wWMT10 WMT11 TED1 TED2
Base MERT 29.1 279 328 29.6
Base MIRA 29.2 28.0 327 297
G 29.8 283 342 30.7
L 29.2 28.1 33.0 298
M 29.2 28.1 33.1 298
G+L+M 30.0 288 352 313
English—Spanish | WMT10 WMT11 TED1 TED2
Base MERT 27.8 294 265 257
Base MIRA 27.7 29.6 268 26.7
G 28.1 298 279 275
L 27.9 297 26.8 265
M 279 297 272 26.6
G+L+M 284 304 28.6 279
Arabic-English | M708 MT09 TED1 TED2
Base MERT 21.5 25.0 104 105
Base MIRA 21.2 259 10.6 109
G 21.8 262 11.0 117
L 20.6 257 10.6 109
M 21.3 257 10.8 11.0
G+L+M 21.8 265 114 118

Table 3: BLEU scores for baseline and adap-
tive systems. Scores are averages over three opti-
mizer runs. Highest scores are bold and tuning set
scores are italicized. All fully adaptive systems
(G+L+M) show statistically significant improve-
ment over both MERT and MIRA baselines.

ulated post-editing experiments that cover high-
traffic languages and challenging domains. We
show incremental improvement from our adaptive
models and significantly larger gains when pair-
ing our models with an online parameter update.
We finally validate our adaptive system on actual
post-edited data.

6.1 Data

We conduct a series of simulated post-editing
experiments in three full scale language sce-
narios: Spanish-English, English—Spanish, and
Arabic-English. Spanish—English and English—
Spanish systems are trained on the 2012 NAACL
WMT (Callison-Burch et al., 2012) constrained
resources (2 million bilingual sentences, 300 mil-
lion words of monolingual Spanish, and 1.1 billion
words of monolingual English). Arabic—English
systems are trained on the 2012 NIST OpenMT
(Przybocki, 2012) constrained bilingual resources
plus a selection from the English Gigaword cor-
pus (Parker et al., 2011) (5 million bilingual sen-
tences and 650 million words of monolingual En-



glish). We tune and evaluate on standard news
sets: WMTI10 and WMT11 for Spanish—English
and English—Spanish, and MT08 and MT09 for
Arabic-English. To simulate real-world post edit-
ing where one translator works on a document at a
time, we use only one of the four available refer-
ence translation sets for MT08 and MT09.

We also evaluate on a blind domain adapta-
tion scenario that mimics the demands placed
on MT systems in real-world translation tasks.
The Web Inventory of Transcribed and Translated
Talks (WIT?3) corpus (Cettolo et al., 2012) makes
transcriptions of TED talks® available in several
languages, including English, Spanish, and Ara-
bic. For each language pair, we select two sets of
10 talk transcripts each (2000-3000 sentences) as
blind evaluation sets. These sets consist of spoken
language covering a broad range of topics. Sys-
tems have no access to any training or develop-
ment data in this domain prior to translation.

6.2 Translation Systems

For each language scenario, we first construct a
competitive baseline system. Bilingual data is
word aligned using the model described by Dyer
et al. (2013) and suffix array-backed transla-
tion grammars are extracted using the method
described by Lopez (2008a). We add the stan-
dard lexical and derivation features* from Lopez
(2008b) and Dyer et al. (2010). An unpruned,
modified Kneser-Ney-smoothed 4-gram language
model is estimated using the KenLLM toolkit
(Heafield et al., 2013). Feature weights are op-
timized using the lattice-based variant of MERT
(Macherey et al., 2008; Och, 2003) on either
WMTI10 or MTO8. Evaluation sets are translated
using the cdec decoder (Dyer et al., 2010) and
evaluated with the BLEU metric (Papineni et al.,
2002). These results are listed as “Base MERT”
in Table 3. To establish a baseline for our adap-
tive systems, we tune the same baseline system
using cutting-plane MIRA with 500-best lists, the
pseudo-document approximation described by Ei-
delman (2012), and a maximum update size of
0.01. We begin with uniform weights and make
20 passes over the development corpus. Results
for this system are listed as “Base MIRA”.

To evaluate the impact of each online model
adaptation technique, we report the results for the

*http://www.ted.com/talks

“Derivation features consist of word count, discretized
rule-level non-terminal count (0, 1, or 2), glue rule count,
and out-of-vocabulary pass-through count.

News TED Talks
New | Supp | New | Supp

Spanish—English | 15% | 19% | 14% | 18%
English—Spanish | 12% | 16% | 9% | 13%
Arabic-English 9% | 12% | 23% | 28%

Table 5: Percentages of new rules (only seen
in incremental data) and post-edit supported rules
(Rules from all data for which the “post-edit sup-
port (f, e)” feature fires) in grammars by domain.

following systems in Table 3:

e G: Baseline MIRA system with online gram-
mar extraction, including incrementally up-
dating existing phrase features plus an addi-
tional indicator feature for post-edit support.

o L: Baseline MIRA with a trigram hierarchi-
cal Pitman-Yor process language model that
is incrementally updated, including a sepa-
rate out-of-vocabulary feature.

e M: Baseline MIRA with online feature
weight updates from cutting-plane MIRA.

Finally, we report results for a fully adaptive
system that includes online grammar, language
model, and feature weight updates. This system
is reported as “G+L+M”. To account for optimizer
instability, all systems are tuned (consisting of
running either MERT or MIRA) and evaluated 3
times. We report average scores over optimizer
runs and conduct statistical significance tests us-
ing the methods described by Clark et al. (2011).

6.3 Results

Our simulated translation post-editing experi-
ments are summarized in Table 3. Simply mov-
ing from MERT to cutting-plane MIRA for pa-
rameter optimization yields improvement in most
cases, corroborating existing work (Eidelman,
2012). Using incremental post-editing data to up-
date translation grammars (G) yields further im-
provement in all cases evaluated. Gains are signif-
icantly larger for TED talks where translator feed-
back can bridge the gap between domains. Table 5
shows the aggregate percentages of rules in online
grammars that are entirely new (extracted from
post-editing instances only) or post-edit supported
(superset of new rules). While percentages vary
by data set, the overall trend is a combination of
learning new vocabulary and reordering and dis-
ambiguating existing translation choices.

The introduction of a trigram Bayesian lan-
guage model (L) yields mixed results: in some

400



Base MERT | and changing the definition of what the Zona Cero is .

G+L+M and the changing definition of what the Ground Zero is .

Reference and the changing definition of what Ground Zero is .

Base MERT | was that when we side by side comparisons with coal , timber
G+L+M was that when we did side-by-side comparisons with wood charcoal ,
Reference was when we did side-by-side comparisons with wood charcoal ,
Base MERT | There was a way — there was one —

G+L+M There was a way — there had to be a way —

Reference | There was a way — there had to be a way —

Table 4:

Translation examples from baseline and fully adaptive systems of Spanish TED talks into En-

glish. Examples illustrate (from top to bottom) learning translations for new vocabulary items, selecting
correct translation candidates for the domain, and learning domain-appropriate phrasing.

cases it leads to slight improvement and in oth-
ers, degradation. It appears that a static but large
4-gram language model often outperforms an in-
crementally updated but smaller trigram model.
Further, learning a single weight for the Bayesian
model can lead to a harmful mismatch. As a tun-
ing pass over the development corpus proceeds,
the model incorporates additional data and MIRA
learns a weight corresponding to its predictive
ability at the end of the corpus. During decod-
ing, all sentences are translated with this language
model weight, even before the model can ade-
quately adapt itself to the target domain. This
problem is alleviated in our fully adaptive system.

Using cutting-plane MIRA to incrementally up-
date weights during decoding (M) also leads to
mixed results, frequently resulting in both small
increases and decreases in score. This could be
due to the noise incurred when making small ad-
justments to static features after each sentence:
depending on the similarity between the previous
and current sentence and the limit of the step size
(regularization strength), a parameter update may
slightly improve or degrade translation.

Finally, we see significantly larger gains for
our fully adaptive system (G+L+M) that com-
bines adaptive translation grammars and language
models with online parameter updates. In many
cases, the difference between the baseline sys-
tems and our adaptive system is greater than the
sum of the differences from our individual tech-
niques, demonstrating the effectiveness of com-
bining online learning methods. Our final sys-
tem has two key advantages over any individual
extension. First, incremental updates from MIRA
can rescale weights for features that change over
time, keeping the model consistent. Second, the
Bayesian language model’s out-of-vocabulary fea-
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ture can discriminate between true OOV items
and vocabulary items in the post-editing data not
present in the monolingual data. By contrast, the
only OOVs in the baseline system are untranslated
items, as the target side of the bitext is included in
the language model training data. This interplay
between the adaptive components in our transla-
tion system leads to significant gains over MERT
and MIRA baselines. Table 4 contains examples
from our system’s output that exemplify key im-
provements in translation quality. With respect to
performance, our fully adaptive system translates
an average of 1.5 sentences per second per CPU
core. The additional cost incurred updating trans-
lation grammars and language models is less than
one second per sentence (though the baseline cost
of on-demand grammar extraction can be up to a
few seconds). In total, the system is well within
the acceptable speed range needed to function in
real-time human translation scenarios.

6.4 Evaluation Using Post-Edited References

The 2012 ACL Workshop on Machine Translation
(Callison-Burch et al., 2012) makes available a set
of 1832 English—Spanish parallel news source sen-
tences, independent references, initial MT outputs,
and post-edited MT outputs. The employed MT
system is trained on largely the same resources as
our own English—Spanish system, granting the op-
portunity for a much closer approximation to an
actual post-editing task; our system configurations
score between 54 and 56 BLEU against the sam-
ple MT, indicating that humans post-edited trans-
lations similar but not identical to our own. We
split the data into development and test sets, each
916 sentences, and run 3 iterations of optimizing
on the development set and evaluating on the test
set with both the MERT baseline and our G+L+M



system on both types of references. Using inde-
pendent references for tuning and evaluation (as
before), our system yields an improvement of 0.6
BLEU (23.3 to 23.9). With post-edited references,
our system yields an improvement of 1.3 BLEU
(43.0 to 44.3). This provides strong evidence that
our adaptive systems would provide better trans-
lations (both in terms of absolute quality and im-
provement over a standard baseline) for real-world
post-editing scenarios.

7 Related Work

Prior work has led to the extension of standard
phrase-based translation systems to make use of
incrementally available data.> Approaches gen-
erally fall into categories of adding new data to
translation models and of using incremental data
to adjust model parameters (feature weights). In
the first case, Nepveu et al. (2004) use cache-based
translation and language models to incorporate
data from the current document into a computer-
aided translation scenario. Ortiz-Martinez et al.
(2010) augment a standard translation model by
storing sufficient statistics in addition to feature
scores for phrase pairs, allowing feature values to
be incrementally updated as new sentence pairs
are available for phrase extraction. Hardt and Elm-
ing (2010) demonstrate the benefit of maintain-
ing a distinction between background and post-
editing data in an adaptive model with simulated
post-editing. Though not targeted at post-editing
applications, the most similar work to our online
grammar adaptation is the stream-based transla-
tion model described by Levenberg et al. (2010).
The authors introduce a dynamic suffix array that
can incorporate new training text as it becomes
available. Sanchis-Trilles (2012) proposes a strat-
egy for online language model adaptation wherein
several smaller domain-specific models are built
and their scores interpolated for each sentence
translated based on the target domain.

Focusing on incrementally updating model pa-
rameters with post-editing data, Martinez-G6mez
et al. (2012) and Lopez-Salcedo et al. (2012)
show improvement under some conditions when
using techniques including passive-aggressive al-
gorithms, perceptron, and discriminative ridge re-
gression to adapt feature weights for systems ini-
tially tuned using MERT. This work also uses ref-
erence translations to simulate post-editing. Saluja

SPrior to phrase-based systems, NISHIDA et al. (1988)
use post-editing data to correct errors in transfer-based MT.
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et al. (2012) introduce a support vector machine-
based algorithm capable of learning from binary-
labeled examples. This learning algorithm is used
to incrementally adjust feature weights given user
feedback on whether a translation is “good” or
“bad”. As with our work, this strategy can be used
during both optimization and decoding.

Finally, Simard and Foster (2013) apply a
pipeline solution to the post-editing task wherein
a second stage automatic post-editor (APE) sys-
tem learns to replicate the corrections made to ini-
tial MT output by human translators. As incre-
mental data accumulates, the APE (itself a statisti-
cal phrase-based system) attempts to “correct” the
MT output before it is shown to humans.

8 Conclusion

Casting machine translation for post-editing as
an online learning task, we have presented three
methods for incremental model adaptation: adding
data to the indexed bitext from which gram-
mars are extracted, updating a Bayesian language
model with incremental data, and using an on-
line discriminative parameter update during de-
coding. These methods, which allow the sys-
tem to handle all data in a uniform way, are ap-
plied to a strong baseline system optimized using
MIRA in conjunction with simulated post-editing.
In addition to showing gains for individual meth-
ods under various circumstances, we report super-
additive improvement from combining our tech-
niques to produce a fully adaptive system. Im-
provements generalize over language and data sce-
narios, with the greatest gains realized in blind
out-of-domain tasks where the system must rely
heavily on post-editor feedback to improve qual-
ity. Gains are also more significant when using of-
fline post-edited references, showing promise for
applying our techniques to real-world post-editing
tasks. All software used for our online model
adaptation experiments is freely available under an
open source license as part of the cdec toolkit.°
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