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Abstract

In this paper the word prediction system
Soothsayer' is described. This system pre-
dicts what a user is going to write as he
is keying it in. The main innovation of
Soothsayer is that it not only uses idi-
olects, the language of one individual per-
son, as its source of knowledge, but also
sociolects, the language of the social cir-
cle around that person. We use Twitter
for data collection and experimentation.
The idiolect models are based on individ-
ual Twitter feeds, the sociolect models are
based on the tweets of a particular person
and the tweets of the people he often com-
municates with. The idea behind this is
that people who often communicate start
to talk alike; therefore the language of the
friends of person = can be helpful in try-
ing to predict what person x is going to
say. This approach achieved the best re-
sults. For a number of users, more than
50% of the keystrokes could have been
saved if they had used Soothsayer.

1 Introduction

The main aim of the study presented here is to
show that the concepts of idiolect and sociolect,
the language of one person and his or her so-
cial circle, can be used to improve word predic-
tion, the task of predicting what a user is going
to type, as he is typing. Word prediction technol-
ogy reduces the number of keystrokes we have to
make, thus saving time and preventing mistakes.
With the rise of smartphones word prediction has
become widely known and used. Preceding this
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Antal van den Bosch
Centre for Language Studies
Radboud University Nijmegen
a.vandenbosch@let.ru.nl

popularization, word prediction systems were al-
ready developed up to three decades ago to as-
sist people with speech and motor disabilities, like
cerebral palsy or hemiplexia. By using a device
equipped with word prediction technology, they
can increase their communication rate consider-
ably (Garay-Vitoria and Abascal, 2006). Indeed,
most studies before the year 2000, when mobile
phones were not widely used yet, targeted the dis-
abled user group - Copestake (1997) even reports
building a system for one individual user. More
recent work targets a wider audience, but in this
paper we return to the idea of using an individual’s
own language to train individualized models.

The concept of an idiolect, the language of
a single person, is well-known, but rarely ever
modelled or in some other way operationalized
(Mollin, 2009; Barlow, 2010; Louwerse, 2004).
Almost every claim in the field of linguistics con-
cerns language as a whole; whether the subject
of investigation is a particular syntactic construc-
tion, phonological variable, or some other linguis-
tic phenomenon, the results are always supposed
to hold for an entire language variety. According
to Mollin (2009) idiolects are a "neglected area in
corpus linguistics’, and Barlow (2010) states that
the term ’is distinguished by the fact that there is
probably no other linguistic term in which there
is such a large gap between the familiarity of the
concept and lack of empirical data on the phe-
nomenon.’ This is remarkable, since ’idiolects are
the only kind of language we can collect data on’,
as Haugen (1972) points out; a language variety
essentially is a collection of idiolects.

Word prediction systems typically operate with
an algorithm and a language model, as the
overview of related work in Section 2 will show.
Language models are created from training mate-
rial, typically a large collection of text. Section 3
introduces our algorithm step by step. The result-
ing best-performing algorithm is used in Section
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4, in which we investigate which language model
should be used together with this algorithm. We
start with the notion of an individual’s idiolect in
Section 4.1, and expand this by using the language
of the people this individual communicates with,
in Section 4.2. In Section 5 we offer our conclu-
sions and formulate points for further research.

2 Related work

An early solution for word prediction was to use
word frequency lists (Swiffin et al., 1985). Al-
though it is possible to wait until a word unicity
point has been reached (the point in a word where
there there is no other word with the same pre-
fix), more keystrokes may be saved if the predic-
tion can be done before the unicity point. After
this first data-driven improvement, numerous au-
thors have shown that taking the contextof previ-
ously entered words into account improves predic-
tion accuracy further. A simple approach to im-
plementing context-sensitivity is applying the fre-
quency list technique to word n-grams (Hunnicutt,
1987); in a string of work other statistical language
modeling approaches have been proposed (Lesher
et al., 1999; Langlais et al., 2000; Garay-Vitoria
and Abascal, 2006; Tanaka-Ishii, 2007; Van den
Bosch and Bogers, 2008).

The accuracy of a context-sensitive system
largely depends on how often a similar context is
available in the training material; the amount of
training data will be an important factor for the
system’s success. A key publication by Lesher
et al. (1999) indeed shows that the accuracy of
a context-sensitive word prediction system is re-
lated to how much training material is provided.
On the other hand, once most of the frequent com-
binations are covered, it takes more and more
training material to improve the results a little
bit. Van den Bosch (2011) demonstrates that
the relation between the amount of training data
and word completion performance is roughly log-
linear. For instance, when going from 100 to
1,000 words in the training material, roughly 6%
more keystrokes could be saved (from 15% to 21%
keystrokes saved), while the same is true for the
step from 1,000,000 to 10,000,000 words (from
40% to 46%).

A large portion of the work on word prediction
includes linguistic knowledge in some way, for
example by also training the system which PoS-
tags are likely to follow each other, and using
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that to limit the pool of suggestions (Carlberger
et al.,, 1997; Fazly and Hirst, 2003; Copestake,
1997; Matiasek et al., 2002; Garay-Vitoria and
Gonzalez-Abascal, 1997). Interestingly, most au-
thors conclude that including linguistic knowledge
improves the results, but only slightly (Garay-
Vitoria and Gonzalez-Abascal, 1997; Fazly and
Hirst, 2003). Fazly and Hirst (2003) note that
adding explicit linguistic knowledge *might not be
considered worth the considerable extra cost that
it requires’. In the current study we have not used
any explicit linguistic knowledge, thus making our
system language-independent.

There have also been more successful optimiza-
tions of word completion systems. One is to use
training material from the same domain. Ver-
berne et al. (2012) show that trying to predict
Wikipedia text, tweets, transcriptions of conver-
sational speech and Frequently Asked Questions
all worked best when using texts from the same
type. As a second optimization, building on the
idea of cache language models (Goodman, 2001),
Van den Bosch (2011) proposes to make a word
completion system learn about register and topic
on the fly with a recency buffer. This buffer stores
the n latest words; if a word the user is keying in
matches one of the words in the recency buffer,
this word is suggested instead of what the system
would actually have suggested. The idea behind
this is that if the user is writing about, for exam-
ple, traveling, words like *go’, ’hotel’, and ’see’
are likely to be in the buffer and thus could be sug-
gested quickly. In other words, the systems learns
about the user and the topic on the fly.

Although both approaches help to increase the
number of keystrokes saved, they also have down-
sides: for the system by Verberne et al. (2012)
training texts in the same genre are needed, which
might not be available, whereas the system by
Van den Bosch (2011) ignores context informa-
tion that it should weigh more intelligently. For
example, while a context-sensitive text-prediction
system will probably be able to predict fo for the
sentence they were going t..., the one with the re-
cency buffer will predict they.

3 System description

Soothsayer predicts the next word the user is go-
ing to type, or the rest of the word in case the
user already starting typing something. To do
this, it works with a set of independent word pre-



diction modules. Modules can be either context-
insensitive or context-sensitive, and use one lan-
guage model. We will work with two language
models, one based on a large collection of texts
sampling from many different authors, the ’gen-
eral language model’, and one based on a set of
texts written by an individual, the ’idiolect’. We
thus have four possible modules:

Module Type Model
1 Context-sensitive idiolect
2 Context-sensitive general language model
3 Context-insensitive  idiolect
4 Context-insensitive  general language model

Table 1: Four possible modules: combinations of
type and language model

Modules can be concatenated in such a way that
a second module takes over once the first modules
no longer has predictions, a third module takes
over once the second one no longer has predic-
tions, etc. In future work, interpolation of the pre-
dictions of these modules should be investigated.

3.1 Context-insensitive modules

Context-insensitive modules only use information
of the word the user is currently keying in. In sen-
tence 1, for example, only the ¢ will be used for
prediction.

(1) TIate too much c

This means that a prediction like communica-
tion is fully possible, despite the context. This also
means that at the beginning of each new word no
prediction will be available, because the module
has no material to work with. Despite these lim-
itations, context-insensitive modules can already
save a lot of keystrokes, because the first few let-
ters of a word impose strong limitations on what
letters can possibly follow, and some words have
early unicity points. Predictions are done by go-
ing through a frequency list, so the most frequent
(and thus more likely to occur again) words are
considered first. Once a word is encountered that
matches what has been keyed in so far, it is sug-
gested.

3.2 Context-sensitive modules

Context-sensitive modules make use of the words
that came before the current word to limit what
words are predicted. Soothsayer approaches word
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prediction as a classification task, where the three
words in the left context of the word to be pre-
dicted are the features, and the word following this
context is the class label to be predicted. This
means that we have a separate class for every
word that could possibly be predicted. Sooth-
sayer uses the k-nearest neighbour classification
method, which is insensitive to the number of
classes to be predicted. k-nearest neighbour clas-
sification (henceforth KNN) means that the class is
determined on the basis of similar cases in a train-
ing corpus. How many cases are taken into con-
sideration, k, can be determined beforehand. The
similarity between a new instance and memorized
instances is determined using a simularity func-
tion. A classic implementation of KNN suited for
the type of symbolic features we have, the IB1-
algorithm (Aha et al., 1991), simply counts how
many features overlap. However, the IB1 algo-
rithm generally is too slow to be used in practi-
cal applications, ours included. We adopt IGTree?
(Daelemans et al., 1997), an approximation of IB1
that does not require a comparison of the complete
context.

IGTree calculates which features contain most
information about the class labels using the In-
formation Gain or Gain Ratio metrics, orders the
features from most informative to least informa-
tive, and compresses the training set in a decision
tree. Classification of a new context reduces to
making a small number of decisions (a maximum
of three, because we have three features), instead
of comparing a new context to thousands to mil-
lions of contexts. If we ask IGTree to classify
unseen input, the algorithm may not come to a
unique decision. Soothsayer asks the algorithm to
return everything it considers a possibility at the
deepest node it reached while traversing the deci-
sion tree. Analogous to the manner in which the
context-insensitive module generates frequency-
ranked lists of possible completions, IGTree will
produce a frequency-ranked list of possible com-
pletions it found at this deepest node in the tree.
Soothsayer then accepts the single (or three) top-
ranking suggestion(s).

3.3 Evaluating the system

There is an ongoing discussion in the literature
on what is the best way to evaluate word pre-

IGTree is implemented in the TIMBL software package,
http://ilk.uvt.nl/timbl



diction systems. A straightforward evaluation
might be to calculate the percentage of correctly
predicted words (the so-called hit-ratio), but as
Garay-Vitoria and Abascal (2006) note, this is not
enough: a system that has 100% of the words cor-
rect, but only gives this prediction at the last letter
of every word saves very few keystrokes. A more
natural way might be to test with real humans,
and measure how much time they save when using
the system (Carlberger et al., 1997; Koester and
Levine, 1998; Garay-Vitoria and Abascal, 2006).
However, this is a costly and time-consuming task,
as the participants will need a considerable amount
of time to get used to the system. Therefore,
we will evaluate Soothsayer by simulating some-
body keying in a text, and counting how many
keystrokes this virtual user does not have to do
when using the system.

However, even when using simulations, there
are multiple ways to evaluate the system. One pos-
sibility is to provide the user with a list of the n
most likely predictions (Lesher et al., 1999; Fazly
and Hirst, 2003). This approach has the advantage
that it results in high percentages of keystrokes
saved - in particular when n is set to a high value,
because this means the system can do multiple
guesses at once, while only one has to be correct.
As Van den Bosch (2011) notes, however, this also
has important downsides:

[[ln many devices and circum-
stances it is inefficient or impossible to
present [...] suggestion lists. Inspecting
a list of suggestions also poses a larger
cognitive load than checking a single
suggestion, and furthermore it is unclear
how scrolling, browsing and selecting
items from this list should be counted in
terms of keystrokes.

For this reason, we calculate the number of
keystrokes that could have been saved when the
user was presented only one prediction at a time.
Predictions can be accepted with the space key.
Because this is sometimes problematic (for in-
stance, if the user wanted to type sun, but Sooth-
sayer predicts sunday, hitting space would lead to
the wrong word), a rejection is also calculated as
a keystroke. The number of keystrokes that can
be saved if the word prediction system works this
way will be called Classical Keystrokes Saved
(CKS) in the remainder of this paper. Please note
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that CKS assumes that the user always accepts a
prediction immediately when it is available, which
might not always be the case in reality.

On the other hand, current popular smart-
phone applications suggest this approach might
be too strict. The popular smartphone applica-
tion SwiftKey® always shows the user three pre-
dictions, which seem to be (1) what the user has
keyed in so far, (2) the most likely prediction and
(3) the second most likely prediction. In case the
user has not yet started typing the next word, op-
tion (1) is replaced by the third most likely pre-
diction. The percentage of keystrokes that can
be saved when two (and sometimes three) predic-
tions were shown will be referred to as SwiftKey
Keystrokes Saved (SKKS). This percentage will
mostly be higher than CKS.

3.4 Other considerations

Context-sensitive before context-insensitive
The context-sensitive module learns about which
words in the training texts typically follow each
other, and thus is potentially powerful when it
comes to the more frequent, fixed combinations of
words and words that often occur in each other’s
context, but is not useful with words that are
also frequent, but were not used earlier in this
context. The context-insensitive module, on the
other hand, can predict any word, as long as it
has been used before, but knows nothing about
fixed combinations. In other words, the modules
complement each other. Based on the fact that
context-sensitive modules have been reported as
scoring better than context-insensitive modules
in direct comparisons in controlled experiments
(Lesher et al., 1999), we rank context-sensitive
modules before context-insensitive ones in all
studies reported here. The context-insensitive
module trained on idiolects precedes the final
context-insensitive module trained on a general
language corpus; this order reflects the order also
found in the context-sensitive modules described
in more detail in the next section.

Attenuation IGTree is fast in classification, but
with tens of millions of training instances it be-
comes too slow for real-time use, where fast typ-
ists may reach as many as twenty keystrokes per
second. To alleviate this issue we use a (simpli-
fied version of a) solution from the field of syntac-
tic parsing called attenuation (Eisner, 1996). All

*http://www.swiftkey.net/



words in the training material that occur less of-
ten than a particular threshold are replaced by a
dummy value. Replacing all low-frequent words
by one dummy value makes the IGTree consid-
erably smaller and thus faster to traverse during
classification. In a pilot experiment an attenua-
tion threshold of 3 turned out to be the most desir-
able: it leads to the largest increase in speed (from
28 classifications per second to 89) without any
measurable decrease in prediction accuracy. For
this reason, an attenuation threshold of 3 was used
throughout the study.

Handling morphology Some aspects of mor-
phology are inherently problematic for word com-
pletion, in particular compounding, inflections,
and suffixes. For example, imagine a user has al-
ready written sentence 2, and wants to write the
word cookies:

(2) Iwould really like the c

If in the training material the word cookie was
more frequent, Soothsayer will suggest that in-
stead of cookies. Normally, when a prediction is
wrong, the algorithm will find out because the user
keys in another letter (so the predicted word no
longer matches what the user is typing), but that
technique will not work here. For words that only
differ in their suffix, the point of difference is at the
end of the word, when there is nothing left to pre-
dict. Even if the correct word is the second most
likely prediction, this will not be suggested, be-
cause Soothsayer has no reason to switch predic-
tion.

However, there is a clue Soothsayer could use:
normally, when a prediction is right, the user will
accept it, instead of going on writing. He might
not accept it immediately (typing often goes faster
than mentally processing predictions), but once
the user has not accepted a prediction for more
than two or three keystrokes in a row, it gets more
and more likely the user keeps on typing because
the prediction is wrong. In that case, the second
most likely prediction could be displayed, which
in many cases will be the word with the second
most likely suffix. We use this early prediction
switching method throughout our experiments.

Recency As Church (2000) showed, the proba-
bility that a word recurs twice in a short stretch of
text is far higher than its frequency in language
would suggests, which is mainly related to the
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word’s topicality. Whereas knowledge about top-
ics could be covered by training and testing within
the same coherent set of texts (e.g. all written
by a single person), the aforementioned recency
buffer by definition uses more recent text (that is,
material from the same text), and might this way
be able to do more accurate predictions. We im-
plemented a buffer that remembers the n most
recent words, and suggests the most recent one
that matches with the word that is currently be-
ing keyed in. Following Van den Bosch (2011) we
set n to 300. If no word matches, the next module
will take over. In our experiments we have tested
the insertion of the recency buffer module after the
context-sensitive modules and before the context-
insensitive modules.

4 The model: idiolects and sociolects

4.1 Idiolects

In this experiment the power of idiolects will be
investigated by training and testing an array of
systems on one hundred different idiolects of in-
dividuals. For this, the micro-blogging service
Twitter* is used. Twitter is a micro-blogging ser-
vice where each user can submit status updates
known as tweets, which consist of 140 charac-
ters or less. Using the Twitter API, all tweets of
a manually created seed set of 40 Dutch Twitter
users were retrieved from January until June 2013.
Retweets, messages these authors did not produce
themselves, were excluded. These seed users were
the starting point of an iterative expansion of the
set of crawled Twitter uses by following mentions
of other users (indicated with the syntax ’@user-
name’). The goal of this expansion was to find as
much active Twitter users as possible for the sys-
tem to follow, and to capture the network of these
users. The set was extended with two users every
30 minutes with the following procedure:

e From the set of users mentioned in tweets al-
ready harvested and not yet tracked, the most
frequently mentioned user is selected. This
ensures that the new person communicates
with at least one of the persons the system
is already following.

From the set of users mentioned by more
than a single person already being tracked,
the most frequently mentioned user is se-
lected. This ensures the new person is well

*nttp://www.twitter.com



connected to the people the system is already
following.

The system limits itself to Dutch tweets using a
conservative Dutch word frequency list containing
highly frequent Dutch words that have no counter-
part in other languages.

Concerning the relation between number of
tweets and Twitter users, many scholars have no-
ticed that it follows a Pareto-distribution (Heil and
Piskorski, 2009; Asur and Huberman, 2010; Rui
and Whinston, 2012). That is, a small part of the
Twitter users produce a large part of the tweets.
This distribution means that using all or a ran-
dom selection of Twitter users is not likely to lead
to good results, because for most users not much
material is available. Therefore, only data from
the 100 Twitter users for which the most mate-
rial was harvested are used to build the idiolect
models. Twitter accounts run by something other
than an individual person (such as a company)
were excluded manually. The number of words
ranged from 61,098 words for the least active user
of the 100 users to 167,685 words for the most ac-
tive user. As a general language model, a random
selection of blogs, emails and Wikipedia articles
from the SoNaR corpus for written Dutch (Oost-
dijk et al., 2013) was made. These texts were cho-
sen because they were believed to be neither very
formal nor very informal, and fall in the same new-
media category as Twitter messages. The general
language corpus consisted of 55,212,868 words.

First, we compared the general language model
against each user’s idiolect, and tested on all 100
Twitter feeds of individual users. We then com-
bined the two models (the general model acting as
back-off for the idiolect model). These three se-
tups were tested with and without a recency buffer
module, resulting in six runs. For each of these
runs, we tried to predict the 10% most recent ma-
terial, and trained on the remaining 90% (for idi-
olects). Tables 2 and 3 list the results on these six
runs measured in CKS and SKKS, respectively.
We observe that using the idiolect model leads
to more keystrokes saved than using the general
model. We also see that using the general lan-
guage model as a background model leads to more
keystrokes saved than using the idiolect model
alone. Using the recency buffer leads to more
keystrokes saved, especially when it is used in ad-
dition to the general mode,
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An ANOVA for repeated measures showed that
there is a significant effect of the training ma-
terial F'(2,198) 109.495,p < .001 and
whether the recency buffer was used F'(1,99) =
469.648,p < .001. Contrast analyses revealed
that both the differences between the results of the
general model and the idiolect model F'(1,99) =
41.902,p < .001 and the idiolect model and
the idiolect model with the background model
F(1,99) = 232.140, p < .001 were significant.

The high standard deviations indicate a lot of
variation. The substantial individual differences
are illustrated in Figure 1, where the users are or-
dered from least to most material. Contrary to
expectations, no correlation between amount of
training material and the results could be detected
(Pearson’s correlation, p = .763); apparently, the
individual factor is that much stronger, and Sooth-
sayer performs much better for one than for the
other. Using the overall best-performing module
set-up, the set-up with the idiolect model, backed
up by the general language model, and the recency
buffer, the worst result is 21.8% CKS and 24.1%
SKKS for user 90, and the best result is 51.3%
CKS and 52.4% SKKS for user 97.
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Figure 1: The proportion of keystrokes saved for
individual Twitter users, ordered from by amount
of tweets (from left to right: from least to most),
when using the best-performing module set-up

The large amount of variation between individ-
ual Twitter users cannot easily be explained, with
a few exceptions (for example, people with pow-
erful idiolect models sometimes often repeated
long words like goedemorgen ’good morning’,
dankjewel ’thank you’, and welterusten ’sleep
well’), but no clear patterns emerged. Trying to
predict for which persons word prediction will go
well and for which persons it will not might be an
interesting topic for future research. It is a ques-
tion that is related to the field of computational



Training material ~ Test material | Without recency buffer With recency buffer
Mean St. dev. Mean St. dev.

General Twitter 144 5.1 232 52

Idiolect Twitter 232 79 267 79

Idiolect + general Twitter 264 6.2 297 64

Table 2: Mean percentage of keystrokes saved (CKS) and standard deviations for all module set-ups.

Training material

Test material ‘ Without recency buffer With recency buffer

Mean
General Twitter 16.2
Idiolect Twitter 24.8
Idiolect + general ~Twitter 28.2

St. dev. Mean St. dev.
6.1 26 54
8.3 219 7.2
6.3 32.1 6.3

Table 3: Mean percentage of keystrokes saved (SKKS) and standard deviations for all module set-ups.

stylometry and in particular automatic authorship
attribution, although authorship attribution is the
exact opposite of the task described here (guessing
the author on the basis of text instead of guessing
the text on the basis of the author) (Bagavandas
and Manimannan, 2008).

4.2 Social networks and language input

The findings by Lesher et al. (1999) suggest that
more material leads to more keystrokes saved; this
may also hold for idiolects. This material, how-
ever, might not be available, simply because not all
people write or tweet that much. For a particular
user z, what other sources of language do we have
that might be similar to the idiolect of 7 One of
the more obvious answers might be the language
of the people x often communicates with. The fact
that people that are in some way related to each
other speak alike using a *group language’ or a so-
ciolect, is well established in sociolinguistics.

This approach of including the language of the
people from a particular person’s environment can
also be viewed from a different perspective: so
far, we have followed Mollin (2009) and Bar-
low(2010) in using only the output of speakers.
This makes sense (since what comes out must have
been inside), but can never be the full story. The
sociolect model that will be constructed here can
be seen as a feasible and rough approximation of
recording everything a person reads or hears: by
including the language of the socially related per-
sons of person x, the system can have a rough idea
of the kind of input person x gets.

On the basis of the data already collected for
the idiolect experiments, sociolects were created
by collecting all addressees mentioned with the
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@addressee syntax for each of the 100 Twitter
users used in the previous experiment. For all ad-
dressees that were mentioned three times or more,
it was checked if this addressee was in the dataset
(which was almost always the case). If so, it was
checked whether this addressee also mentioned
the original Twitter user at least three times. If this
was also the case, the system assumed the users
speak to each other often enough to have their lan-
guage adjusted to each other, and the tweets of
this addressee were added to the sociolect of the
original Twitter user. We thus end up with 100
sociolects built around the 100 most active Twit-
ter users, all based on the tweets of a Twitter user
and the tweets of the persons that this person com-
municated with at least six times (three times as
writer, three times as reader).

The results of Verberne et al. (2012) would pre-
dict that adding tweets in general would lead to in-
creases in the number of keystrokes saved, as this
is using more texts from the same genre. To be
sure that any improvements can be attributed to
the fact that this is the language from friends, a
control model will be built. While the sociolect
model consists of the tweets of Twitter user « and
the tweets of the friends of twitter user z, the con-
trol model consists of the tweets of Twitter user
and the tweets of random other Twitter users, and
has approximately the same number of words.

For each of the 100 Twitter users, comparative
runs are performed with the model created on the
basis of the idiolect and the random Twitter users
versus the sociolect model. The best performing
module set-up from the previous experiments is
used. The results are compared to the simulations
with the idiolect model from the previous experi-



Training material Test material | CKS SKKS

Mean St.dev. Mean St. dev.
Idiolect Twitter feed | 29.6 6.4 32.1 6.3
Control model Twitter feed | 31.2 6.3 339 6
Sociolect Twitter feed | 33.9 7.1 36.2 7.1

Table 4: Mean percentage of keystrokes saved when using an idiolect, a control model (consisting of an
idiolect and random other Twitter feeds) and a sociolect.

Twitter user | Idiolect Idiolect+random feeds Sociolect
CKS SKKS CKS SKKS CKS SKKS
24 312 363 34 36.4 316 343
49 272 29.1 262 29.7 246 272
71 27.5 302 342 358 30.8 329

Table 5: Percentage of keystrokes saved for 3 atypical Twitter users, using the the idiolect, control and

sociolect models

ment. The results of the simulations are summa-
rized in Table 4. We observe that adding more
tweets to the idiolects leads to more keystrokes
saved, and that the most keystrokes can be saved
when using the tweets of the people the owner of
the idiolect communicates with often.

An ANOVA for repeated measures showed that
there is a significant effect for the training material
F(2,198) = 69.466,p < .001. Contrast analyses
revealed that both the differences between the re-
sults of the idiolect model and the idiolect model
and random feeds F'(1,99) = 93.471,p < .001
and the idiolect model and random feeds and the
sociolect model F'(1,99) = 61.871,p < .001 are
significant.

Again, the high standard deviations indicate no-
table variation among the individual results. Ta-
ble 5 lists the deviating individual scores for three
individual Twitter users. In these results we see
an increase when random tweets are added, but a
decrease when the tweets from their conversation
partners are used. For user 24 and 49, the percent-
age of keystrokes saved when using the sociolect
model is even lower than the idiolect model alone.

Using the best-performing module set-up in
general, the set-up with the sociolect model,
backed up by the general language model, and
the recency buffer, the worst result is 21.3% CKS
and 22% SKKS for user 90, and the best result is
56.2% CKS and 58.1% SKKS for user 38.

5 Conclusion

In this paper we presented the word prediction sys-
tem Soothsayer. Testing the system we found that
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word prediction and idiolects are an effective com-
bination; our results show that word prediction
is best done with a combination of an idiolect-
based context-sensitive system, backed up by a
context-sensitive module equipped with a general
language model. A recency buffer is a useful third
module in the sequence. Our average best scores
with these three modules are 29.7% keystrokes
saved according to the strict (one-best) CKS met-
ric, and 32.1% keystrokes saved according to the
Swiftkey-inspired SKKS metric.

The fact that people speak like the people
around them can also be useful to word prediction.
When we approximate a sociolect by expanding a
user’s Twitter corpus by tweets from people this
person communicates with, and retrain our first
context-sensitive module with this data, average
scores improve to 33.9% CKS and 36.2% SKKS.

What works well for one speaker, might not
necessarily work for another, however. While
we find significant advantages of idiolect-based
and sociolect-based training, the variance among
our 100 test users is substantial, and in individual
cases idiolect-based training is not the best option.
For other users the positive gains are substantially
higher than the mean; the best result for a single
user is 56.2% CKS and 58.1% SKKS.

In future research we aim to investigate methods
that could predetermine which model and module
order will work best for a user. Another set of open
research questions concern the fact that we have
not tested many of the system’s settings. What
would be the effects of predicting more words at
the same time?
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