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Abstract

We introduce recurrent neural network-
based Minimum Translation Unit (MTU)
models which make predictions based on
an unbounded history of previous bilin-
gual contexts. Traditional back-off n-gram
models suffer under the sparse nature of
MTUs which makes estimation of high-
order sequence models challenging. We
tackle the sparsity problem by modeling
MTUs both as bags-of-words and as a
sequence of individual source and target
words. Our best results improve the out-
put of a phrase-based statistical machine
translation system trained on WMT 2012
French-English data by up to 1.5 BLEU,
and we outperform the traditional n-gram
based MTU approach by up to 0.8 BLEU.

1 Introduction

Classical phrase-based translation models rely
heavily on the language model and the re-
ordering model to capture dependencies between
phrases. Sequence models over Minimum Trans-
lation Units (MTUs) have been shown to com-
plement both syntax-based (Quirk and Menezes,
2006) as well as phrase-based (Zhang et al., 2013)
models by explicitly modeling relationships be-
tween phrases. MTU models have been tradi-
tionally estimated using standard back-off n-gram
techniques (Quirk and Menezes, 2006; Crego and
Yvon, 2010; Zhang et al., 2013), similar to word-
based language models (§2).

However, the estimation of higher-order n-gram
models becomes increasingly difficult due to data
sparsity issues associated with large n-grams, even
when training on over one hundred billion words
(Heafield et al., 2013); bilingual units are much
sparser than words and are therefore even harder
to estimate. Another drawback of n-gram mod-
els is that future predictions are based on a limited

Michael Auli, Qin Gao, Jianfeng Gao
Microsoft Research
Redmond, WA, USA

{michael .auli, gigao, jfgao}@microsoft .com

amount of previous context that is often not suf-
ficient to capture important aspects of human lan-
guage (Rastrow et al., 2012).

Recently, several feed-forward neural network-
based models have achieved impressive improve-
ments over traditional back-off n-gram models in
language modeling (Bengio et al., 2003; Schwenk
et al., 2007; Schwenk et al., 2012; Vaswani et al.,
2013), as well as translation modeling (Allauzen et
al., 2011; Le et al., 2012; Gao et al., 2013). These
models tackle the data sparsity problem by rep-
resenting words in continuous space rather than
as discrete units. Similar words are grouped in
the same sub-space rather than being treated as
separate entities. Neural network models can be
seen as functions over continuous representations
exploiting the similarity between words, thereby
making the estimation of probabilities over higher-
order n-grams easier.

However, feed-forward networks do not directly
address the limited context issue either, since pre-
dictions are based on a fixed-size context, similar
to back-off n-gram models. We therefore focus
in this paper on recurrent neural network architec-
tures, which address the limited context issue by
basing predictions on an unbounded history of pre-
vious events which allows to capture long-span de-
pendencies. Recurrent architectures have recently
advanced the state of the art in language model-
ing (Mikolov et al., 2010; Mikolov et al., 2011a;
Mikolov, 2012) outperforming multi-layer feed-
forward based networks in perplexity and word er-
ror rate for speech recognition (Arisoy et al., 2012;
Sundermeyer et al., 2013). Recent work has also
shown successful applications to machine transla-
tion (Mikolov, 2012; Auli et al., 2013; Kalchbren-
ner and Blunsom, 2013). We extend this work by
modeling Minimum Translation Units with recur-
rent neural networks.

Specifically, we introduce two recurrent neu-
ral network-based MTU models to address the is-
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M1 M2 M3 M4 M5
T HER 24T it 2R
Yu ZuoTian  JuXing Le null HuiTan
held the mee{mg null yes'Eerday
M1: Yu => null

M2: ZuoTian => Yesterday

M3: JuXing_Le => held

M4: null => the

M5: HuiTan => meeting

Figure 1: Example Minimum Translation Unit
partitioning based on Zhang et al. (2013).

sues regarding data sparsity and limited context
sizes by leveraging continuous representations and
the unbounded history of the recurrent architec-
ture. Our first approach frames the problem as a
sequence modeling task over minimal units (§3).
The second model improves over the first by mod-
eling an MTU as a bag-of-words, thereby allow-
ing us to learn representations over sub-structures
of minimal units that are shared across MTUs
(84). Our models significantly outperform the tra-
ditional back-off n-gram based approach and we
show that they act complementary to a very strong
recurrent neural network-based language model
based solely on target words (§5).

2  Minimum Translation Units

Banchs et al. (2005) introduced the idea of framing
translation as a sequence modeling problem where
a sentence pair is generated in left-to-right order as
a sequence of bilingual n-grams. Minimum Trans-
lation Units (Quirk and Menezes, 2006; Zhang
et al., 2013) are an extension which additionally
permit tuples with empty source or target sides,
thereby allowing insertion or deletion phrase pairs.
The two basic requirements for MTUs are that
there are no overlapping word alignment links be-
tween phrase pairs and it should not be possible to
extract smaller phrase pairs without violating the
word alignment constraints. Informally, we can
think of MTUs as small phrase pairs that cannot
be broken down any further without violating the
two requirements.

Minimum Translation Units partition a sentence
pair into a set of minimal bilingual units or tu-
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Words MTUs
Tokens 34,769,416 14,853,062
Types 143,524 1,315,512
Singleton types 34.9% 80.1%

Table 1: Token and type counts for both source
and target words as well as MTUs based on the
WMT 2006 German to English data set (cf. §5).

ples obtained by an algorithm similar to phrase-
extraction (Koehn et al., 2003). Figure 1 illus-
trates such a partitioning. Modeling minimal units
has two advantages over considering larger phrase
pairs that are effectively composed of MTUs:
First, minimal units result in a unique partition-
ing of a sentence pair. This has the advantage that
we avoid modeling spurious derivations, that is,
multiple derivations generating the same sentence
pair. Second, minimal units result in smaller mod-
els with a smoother distribution than models based
on composed units (Zhang et al., 2013).

Sentence pairs can be generated in multiple or-
ders, such as left-to-right or right-to-left, either in
source or target order. For example, the source
left-to-right order of the sentence pair in Figure 1
is simply M1, M2, M3, M4, M5, while the tar-
get left-to-right order is M3, M4, M5, M1, M2.
We deal with inserted or deleted words similar to
Zhang et al. (2013): The source side null token of
an inserted target phrase is placed next to the last
source word aligned to the closest preceding non-
null aligned target phrase; a similar rule is applied
to null tokens on the target side. For example, in
Figure 1 we place M4 straight after M3 because
“the”, the aligned target phrase, is after “held”, the
previous non-null aligned target phrase.

We can straightforwardly estimate an n-gram
model over MTUs to estimate the probability
of a sentence pair using standard back-off tech-
niques commonly employed in language mod-
eling. For example, a trigram model in tar-
get left-to-right order factors the sentence pair in
Figure 1 as p(M3) p(M4|M3) p(M5|M3, M4)
p(M1|M4, M5)p(M2|M5, M1).

If we would like to model larger contexts, then
we quickly run into data sparsity issues. To illus-
trate this point, consider the parameter growth of
an n-gram model which is driven by the vocabu-
lary size |V/| and the n-gram order n: O(|V|").
Clearly, the exact estimation of higher-order n-



gram probabilities becomes more difficult with
large n, leading to the estimation of events with
increasingly sparse statistics, or having to rely
on statistics from lower-order events with back-
off models, which is less desirable. Even word-
based language models rarely ventured so far
much beyond 5-gram statistics as demonstrated
by Heafield et al. (2013) who trained a, by to-
day’s standards, very large 5-gram model on 130B
words. Data sparsity is therefore an even more sig-
nificant issue for MTU models relying on much
larger vocabularies. In our setting, the MTU vo-
cabulary is an order of magnitude larger than a
word vocabulary obtained from the same data (Ta-
ble 1). Furthermore, most MTUs are observed
only once making the reliable estimation of prob-
abilities very challenging.

Neural network-based sequence models tackle
the data sparsity problem by learning continuous
word representations, that group similar words to-
gether in continuous space. For example, the
distributional representations induced by recurrent
neural networks have been found to have interest-
ing syntactic and semantic regularities (Mikolov
et al., 2013). Furthermore, these representations
can be exploited to estimate more reliable statis-
tics over higher-order n-grams than with discrete
word units. Recurrent neural networks go beyond
fixed-size contexts and allow the model to keep
track of long-span dependencies that are important
for future predictions. In the next sections we will
present Minimum Translation Unit models based
on recurrent architectures.

3 Atomic MTU RNN Model

The first model we introduce is based on the recur-
rent neural network language model of Mikolov
et al. (2010). We frame the problem as a tradi-
tional sequence modeling task which treats MTUs
as atomic units, similar to the approach taken by
the traditional back-off n-gram models.

The model is factored into an input layer, a hid-
den layer with recurrent connections, and an out-
put layer (Figure 2). The input layer encodes the
MTU at time ¢ as a 1-of-N vector m; with all val-
ues being zero except for the entry representing
the MTU. The output layer y; represents a proba-
bility distribution over possible next MTUs; both
the input and output layers are of size |V|, the size
of the MTU vocabulary. The hidden layer state h,
encodes the history of all MTUs observed in the
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Figure 2: Structure of the atomic recurrent neu-
ral network MTU model following the word-based
RNN model of Mikolov (2012).

sequence up to time step ¢.

The state of the hidden layer is determined by
the input layer and the hidden layer configuration
of the previous time step h;_;. The weights of the
connections between the layers are summarized in
a number of matrices: U represents weights from
the input layer to the hidden layer, and W repre-
sents connections from the previous hidden layer
to the current hidden layer. Matrix V contains
weights between the current hidden layer and the
output layer.

The hidden and output layers are computed
via a series of matrix-vector products and non-
linearities:

ht = s(Umt + Whtfl)
yt =g(Vhy)

where

s(z) !

1 +exp{—z}’

exp {zm}

221 oxp {2k}

are sigmoid and softmax functions, respectively.
Additionally, the network is interpolated with a
maximum entropy model of sparse n-gram fea-
tures over input MTUs (Mikolov et al., 2011a).
The maximum entropy weights D are added to
the output activations before applying the softmax
function and are estimated jointly with all other
parameters (Figure 3).!

9(zm) =

'While these features depend on multiple input MTUs, we
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Figure 3: Structure of atomic recurrent neural net-
work MTU model with classing layer c; and direct
connections D between the input and output lay-
ers (cf. Figure 2).

The model is optimized via a maximum likeli-
hood objective function using stochastic gradient
descent. Training is based on the truncated back
propagation through time algorithm, which unrolls
the network and then computes error gradients
over multiple time steps (Rumelhart et al., 1986);
We use a Cross entropy criterion to obtain the error
vector with respect to the output activations and
the desired prediction. After training, the output
layer represents posteriors p(myq1|mi_, 1, hy),
the probability of the next MTU given the previ-
ous n input MTUS mi_ .\ = my,...,Mi_pt1
and the current hidden layer configuration hy.

Naive computation of the probability distribu-
tion over the next MTU is very expensive for large
vocabularies, such as commonly encountered for
MTU models (Table 1). A well established ef-
ficiency trick assigns each possible output to a
unique class and then uses a two-step process to
find the probability of an MTU, instead of comput-
ing the probability of all possible outputs (Good-
man, 2001; Emami and Jelinek, 2005; Mikolov et
al., 2011b). Under this scheme we compute the
probability of an MTU by multiplying the prob-
ability of its class ci with the probability of the

depicted them for simplicity as a connection between the
current input vector m; and the output layer.
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minimal unit conditioned on the class:

p(mega|mi_, 1, he) =

p(Cﬂmi—nHa hy) p(mis1 |Ci, mi—n—i—lv hy)

This factorization reduces the complexity of com-
puting the output probabilities from O(|V|) to
O(|C| + max; |¢!|) where |C| is the number of
classes and |c!| is the number of minimal units
in class ¢’. The best case complexity O(\/W)
requires the number of classes and MTUs to be
evenly balanced, i.e., each class contains exactly
as many minimal units as there are classes.

Figure 3 illustrates how classing changes the
structure of the network by adding an additional
output layer for the class probabilities.

4 Bag-of-words MTU RNN Model

The previous model treats MTUs as atomic sym-
bols which leads to large vocabularies requir-
ing large parameter sets and expensive inference.
However, similar MTUs may share the same
words, or words which are related in continuous
space. The atomic MTU model does not exploit
this since it cannot access the internal structure of
a minimal unit.

The approach we pursue next is to break MTUs
into individual source and target words (Le et al.,
2012) in order to exploit structural similarities be-
tween infrequently observed minimal units. Sin-
gletons represent the vast majority of our MTU
vocabulary (Table 1). This resembles the word-
hashing trick of Huang et al. (2013) who repre-
sented individual words as a bag-of-character n-
grams to reduce the vocabulary size of a neural
network-based model in an information retrieval
setting.”

We first describe a theoretically appealing but
computationally expensive model and then discuss
a more practical variation. The input layer of this
model accepts the current minimal unit as a K-of-
N vector representing K source and target words
as opposed to the 1-of-N encoding of entire MTUs
in the previous model (Figure 4). Larger MTUs
may contain the same word more than once and we
simply adjust their count to one.? Different to the

2 Applying the same technique would likely result in too many
collisions since we are dealing with multi-word units instead
of single words.

3We found no effect on accuracy when using the unmodified
count in initial experiments.
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Figure 4: Structure of MTU bag-of-words recur-
rent neural network model. The input layer rep-
resents a minimal unit as a bag-of-words and the
output layer y; is a probability distribution over
possible next MTUs depending on the activations
of the word layer w; representing source and tar-
get words of minimal units.

previous model, the input vector has now multiple
active entries whose signals are absorbed into the
new hidden layer configuration.

This bag-of-words encoding of minimal units
dramatically reduces the vocabulary size but it in-
evitably maps different MTUs to the same encod-
ing. On our data set, we observe less than 0.2% of
minimal units that are involved in collisions, a rate
that is similar to Huang et al. (2013). In practice
collisions are unlikely to affect accuracy in our set-
ting because MTUs that are mapped to the same
encoding usually do not differ much in semantic
meaning as illustrated by the following examples:
erfolg haben — succeed collides with haben er-
folg — succeed, or damit, — to and , damit — to;
in both examples either the auxiliary verb haben or
the comma changes position, neither of which sig-
nificantly changes the meaning for this particular
pair of MTUs.

The structure of the bag-of-words MTU RNN
models is shown in Figure 4. Similar to the atomic
MTU RNN model (§3), the hidden layer combines
the signal from the input layer and the previous
hidden layer configuration. The hidden layer acti-
vations feed into a word layer w; representing the
source and target words that part of all possible
MTUs; it is of the same size as the input layer. The
word layer is connected to a convolutional out-
put layer y; by weights summarized in the sparse
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matrix C. The output layer represents all possi-
ble next minimal units, where each MTU entry is
only connected to neurons in the word layer repre-
senting its source and target words. The word and
MTU layers are then computed as follows:

s(Vhy)
9(Cwy)

Wi =

Y

However, there are a number of computational
issues with this model: First, we cannot efficiently
factor the word layer w; into classes such as for
the atomic MTU RNN model because we require
all its activations to compute the MTU output
layer y;. This reduces the best case complex-
ity of computing the word layer from (’)(m )
back to linear in the number of source and tar-
get words |V|. In practice this results in between
200-1000 more activations that need to be com-
puted, depending on the word vocabulary size.
Second, turning the MTU output layer into a con-
volutional layer is not enough to sufficiently re-
duce the computational effort to compute the out-
put activations since the number of connections
between the word and MTU layers is very imbal-
anced. This is because frequent words, such as
function words, are part of many MTUs and there-
fore have a very high out-degree, e.g., the neuron
representing “the” has over 82K outgoing edges.
On the other hand, infrequent words, have a very
low out-degree. This imbalance makes it hard
to efficiently compute activations and error gradi-
ents, even on a GPU, since some neurons require
substantially more work than others.*

For these reasons we decided to design a sim-
pler, more tractable version of this model (Fig-
ure 5). The simplified model still represents an
input MTU as a bag-of-words but minimal units
are generated word-by-word, first emitting source
words and then target words. This is in contrast
to the original model which predicted an MTU as
a single unit. Decomposing the next MTU into
individual words dramatically reduces the size of
the output layer, thereby resulting in faster com-
putation of the outputs and making normalization

*In initial experiments we found this model to be over twenty
times slower than the atomic MTU RNN model with esti-
mated training times of over 6 weeks. This was despite us-
ing a vastly smaller vocabulary and by computing the word
layer on a, by current standards, high-end GPU (NVIDIA
Tesla K20c) using sparse matrix optimizations (cuSPARSE)
for the convolutional layer.
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Figure 5: Simplified MTU bag-of-words recurrent
neural network model (cf. Figure 4). An MTU is
input as bag-of-words and the next MTU is pre-
dicted as a sequence of both source and target
words.

into probabilities easier. Furthermore, the output
layer can be factorized into classes requiring only
a fraction of the neurons to be computed, a much
more efficient solution compared to the original
model which required calculation of the entire out-
put layer.

The simplified model computes the probability
of the next MTU my41 as a product of individual
word probabilities:

(1)

p(mega|mi_, 1, he) =

p(ck|m€—n+1a ht)

where we predict a sequence of source and target
words a', ..., a% € myg4+1 With a class-structured
output layer, similar to the atomic model (§3).

Training still uses a cross entropy criterion and
back propagation through time, however, error
vectors are computed on a per-word basis, instead
of a per-MTU basis. Direct connections between
the input and output layers are based on source and
target words which is less sparse than basing direct
features on entire MTUs such as for the original
bag-of-words model.

Overall, the simplified model retains the bag-of-
words input representation of the original model,
while permitting the efficient factorization of the
word-output layer into classes.
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5 Experiments

We evaluate the effectiveness of both the atomic
MTU RNN model (§3) and the simplified bag-of-
words MTU RNN model (§4) in an n-best rescor-
ing setting, comparing against a trigram back-off
MTU model as well as the phrasal decoder 1-best
output which we denote as the baseline.

5.1 Experimental Setup

Baselines. We experiment with an in-house
phrase-based system similar to Moses (Koehn et
al., 2007), scoring translations by a set of common
features including maximum likelihood estimates
of source given target mappings pyrre(e|f) and
vice versa pyre(fle), as well as lexical weight-
ing estimates pry (e|f) and prw (f|e), word and
phrase-penalties, a linear distortion feature and
a lexicalized reordering feature. The baseline
includes a standard modified Kneser-Ney word-
based language model trained on the target-side of
the parallel corpora described below. Log-linear
weights are estimated with minimum error rate
training (MERT; Och, 2003).

The 1-best output by the phrase-based decoder
is the baseline accuracy. As a second baseline we
experiment with a trigram back-off MTU model
trained on all extracted MTUs, denoted as n-gram
MTU. The trigram MTU model is estimated with
the same modified Kneser-Ney framework as the
target side language model. All MTU models are
trained in target left-to-right MTU order which
performed well in initial experiments.
Evaluation. We test our approach on two differ-
ent data sets. First, we train a German to English
system based on the data of the WMT 2006 shared
task (Koehn and Monz, 2006). The parallel corpus
includes about 35M words of parliamentary pro-
ceedings for training, a development set and two
test sets with 2000 sentences each.

Second, we experiment with a French to En-
glish system based on 102M words of training data
from the WMT 2012 campaign. The majority of
the training data set is parliamentary proceedings
except for about Sm words which are newswire; all
MTU models are trained on the newswire subset
since we found similar accuracy to using all data in
initial experiments. We evaluate on four newswire
domain test sets from 2008, 2010 and 2011 as well
as the 2010 system combination test set contain-
ing between 2034 to 3003 sentences. Log-linear
weights are estimated on the 2009 data set com-



prising 2525 sentences. We evaluate all systems
in a single reference BLEU setting.

Rescoring Setup. We rescore the 1000-best out-
put of the baseline phrase-based decoder by ei-
ther the trigram back-off MTU model or the
RNN models. The baseline accuracy is obtained
by choosing the 1-best decoder output. We re-
estimate the log-linear weights for rescoring by
running a further iteration of MERT with the ad-
ditional feature values; we initialize the rescoring
feature weight to zero and try 20 random restarts.
At test time we use the new set of log-linear
weights to rescore the test set n-best list.

Neural Network Setup. We trained the recur-
rent neural network models on between 88% and
93% of each data set and used the remainder as
validation data. The vocabulary of the atomic
MTU RNN model is comprised of all MTU types
which were observed more than once in the train-
ing data.’ Similarly, we modeled all non-singleton
words for the bag-of-words MTU RNN model.
We obtain classes for words or MTUs using a
version of Brown-Clustering with an additional
regularization term to optimize the runtime of
the language model (Brown et al., 1992; Zweig
and Makarychev, 2013). Direct connections use
features over unigrams, bigrams and trigrams of
words or MTUs, depending on the model. Fea-
tures are hashed to a table with at most 500 million
values following Mikolov et al. (2011a). We use
the standard settings for the model with the default
learning rate o = 0.1 that decays exponentially if
the validation set entropy does not decrease. Back
propagation through time computes error gradi-
ents over the past twenty time steps. Training
is stopped after 20 epochs or when the valida-
tion entropy does not decrease over two epochs.
Throughout, we use a hidden layer size of 100
which provided a good trade-off between time and
accuracy in initial experiments.

5.2 Results

We first report the decoder 1-best output as the
first baseline and then rescore our two data sets
(Table 2 and Table 3) with the n-gram back-off
MTU model to establish a second baseline (n-
gram MTU). The n-gram model improves by 0.4
BLEU over the decoder 1-best on all test sets for
German to English. On French-English accuracy

SWe tried modeling all MTUs which did not contain a single-
ton word but observed no significant effect on accuracy.
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dev | testl | test2
Baseline 25.8 | 26.0 | 26.0
n-gram MTU 26.3 | 26.6 | 26.4
atomic MTU RNN | 26.5 | 26.8 | 26.5
BoW MTU RNN 26.5 | 27.0 | 26.9
word RNNLM 26.5 | 27.1 | 26.8
Combined 26.8 | 27.3 | 27.1

Table 2: German to English BLEU results for
the decoder 1-best output (Baseline) compared to
rescoring with a target left-to-right trigram MTU
model (n-gram MTU), our two recurrent neural
network-based MTU models, a word-based RNN-
based language model (word RNNLM), as well
as a combination of the three RNN-based models
(Combined).

improves on three out of five sets by up to 0.7
BLEU.

Next, we evaluate the accuracy of the MTU
RNN models. The atomic MTU RNN model im-
proves over the n-gram MTU model on all test sets
for German to English, however, for French to En-
glish the back-off model performs better on two
out of four test sets.

The next question we answer is if breaking
MTUs into individual units to leverage similarities
in the internal structure can help accuracy. The re-
sults (Table 2 and Table 3) for the bag-of-words
model (BoW MTU RNN) clearly show that this is
the case for both language pairs. We significantly
improve over the n-gram MTU model as well as
the atomic RNN model on all test sets. We observe
gains of up to 0.5 BLEU over the n-gram MTU
model for German to English as well as French to
English; improvements over the decoder baseline
are up to 1.2 BLEU for French to English.

How do our models compare to other neural net-
work approaches that rely only on target side in-
formation? To answer this question we compare
to the strong language model of Mikolov (2012;
RNNLM) which has recently improved the state-
of-the-art in language modeling perplexity. The
results (Table 2 and Table 3) show that RNNLM
performs competitively. However, our approaches
model translation since we use both source and tar-
get information as opposed to scoring only the flu-
ency of the target side, such as done by RNNLM.

Can our models act complementary to a strong
RNN language model? Our final experiment com-
bines the atomic MTU RNN model, the BoW



dev | news2008 | news2010 | news2011 | newssyscomb2010
Baseline 24.3 20.5 24.4 25.1 24.3
n-gram MTU 24.6 20.8 24.4 25.8 24.3
atomic MTU RNN | 24.6 20.7 24.4 25.5 24.3
BoW MTU RNN | 25.2 21.2 24.8 26.3 24.6
word RNNLM 25.1 21.4 25.1 26.4 24.9
Combined 25.4 21.4 25.1 26.6 24.9

Table 3: French to English BLEU results for the decoder 1-best output (Baseline) compared to various

MTU models (cf. Table 2).

MTU RNN model, and the RNNLM (Combined).
The results (Table 2 and Table 3) confirm that this
is the case. For German to English translation
accuracy improves by 0.2 to 0.3 BLEU over the
RNNLM alone, with gains of up to 1.3 BLEU over
the baseline and up to 0.7 BLEU over the n-gram
MTU model. Improvements for French to English
are lower but we can see some gains on news2011
and on the dev set. Overall, we improve accuracy
on the French to English task by up to 1.5 BLEU
over the decoder 1-best, and by up to 0.8 BLEU
over the n-gram MTU model.

6 Related Work

Our approach of modeling Minimum Translation
Units is very much in line with recent work on n-
gram-based translation models (Crego and Yvon,
2010), and more recently, continuous space-based
translation models (Le et al., 2012). The mod-
els presented in this paper differ in a number of
key aspects: We use a recurrent architecture repre-
senting an unbounded history of MTUs rather than
a feed-forward style network. Feed-forward net-
works as well as back-off n-gram models rely on a
finite history which results in predictions indepen-
dent of anything but a short context of words. A
recent side-by-side comparison between recurrent
and feed-forward style neural networks (Sunder-
meyer et al., 2013) has shown that recurrent ar-
chitectures outperform feed-forward networks in
a language modeling task, a similar problem to
modeling sequences over Minimum Translation
Units.

Furthermore, the input of our best model is a
bag-of-words representation of an MTU, unlike
the ordered source and target word n-grams used
by Crego and Yvon (2010) as well as Le et al.
(2012). Finally, we model both source and target
words in a single recurrent neural network. The
approach of Le et al. (2012) factorizes the joint
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probability over an MTU sequence in a way that
suggests the use of separate neural network mod-
els for the source and the target sides, where each
model generates words on the respective side only.

Other work on applying recurrent neural net-
works to machine translation (Mikolov, 2012; Auli
et al.,, 2013; Kalchbrenner and Blunsom, 2013)
concentrated on word-based language and transla-
tion models, whereas we model Minimum Trans-
lation Units.

7 Conclusion and Future Work

Minimum Translation Unit models based on recur-
rent neural networks lead to substantial gains over
their classical n-gram back-off models. We intro-
duced two models of which the best improves ac-
curacy by up to 1.5 BLEU over the 1-best decoder
output, and by 0.8 BLEU over a trigram MTU
model in an n-best rescoring setting.

Our experiments have shown that representing
MTUs as bags-of-words leads to better accuracy
since this exploits similarities in the internal struc-
ture of Minimum Translation Units, which is not
possible when modeling them as atomic symbols.
We have also shown that our models are comple-
mentary to a very strong RNN language model
(Mikolov, 2012).

In future work, we would like to make the initial
version of the bag-of-words model computation-
ally more tractable using a better GPU implemen-
tation. This model combines the efficient bag-of-
words input representation with the ability to pre-
dict MTUs as single units while explicitly model-
ing the constituent words in an intermediate layer.
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