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Abstract has not been previously referred to; and (®-
diated (henceforthmed) if it is newly mentioned
While information status (IS) plays a cru- in the dialogue but she can infer its identity from

cial role in discourse processing, there have 3 previously-mentioned entity. To capture finer-
only been a handful of attempts to automat- g rained distinctions for IS, Nissim et al. allow an
ically determine the IS of discourse entities. . .
i ; old or med entity to have aubtypewhichsubcat-
We examine a related but more challenging . . .
taSk,ﬁne-grainEdls determination, which egquzeﬁn old or med ent|-ty. For Instance, med
involves classifying a discourse entity as  €ntity has the subtypset if the NP that refers to
one of 16 ISsubtypes We investigate the itis in a set-subset relation with its antecedent.
use of rich knowledge sources for this task IS plays a crucial role in discourse processing:
in combination with a rule-based approach it provides an indication of how a discourse model
and a learning-based approach. In experi- g4 he updated as a dialogue is processed in-
ments with a set of Switchboard dialogues, . .
the learning-based approach achieves an ac- crementally. Its importance can be reflected in
curacy of 78.7%, outperforming the rule- part in the amount of attention it has received in
based approach by 21.3%. theoretical linguistics over the years (e.g., Halli-
day (1976), Prince (1981), Hajicova (1984), Vall-
) duvi (1992), Steedman (2000)), and in part in the
1 Introduction benefits it can potentially bring to NLP applica-

A linguistic notion central to discourse processiné'ons' One task that could benefit from knowledge

is information statuqlS). It describes the extent of I_S IS identity coreference: sincew entities by
to which a discourse entity, which is typically I,e_defmltlon have not been previously referred to, an

NP marked asew does not need to be resolved,

ferred to by noun phrases (NPs) in a dialogue, i by i 0 th o ¢ ;
availableto the hearer. Different definitions of IS [N€"€0Y Improving the precision of a coreterence
solver. Knowledge ofine-grainedor subcat-

have been proposed over the years. In this papéﬁ edlS i luable f h k
we adopt Nissim et al.s (2004) proposal, since i-{egorlze IS is valuable for other NLP tasks. For

is primarily built upon Prince’s (1992) and Eck.nstance, an NP m_arked_ as_tS|gn|f|es thatitisin
ert and Strube’s (2001) well-known definitions a set-subset relation with its antecedent, thereby

and is empirically shown by Nissim et al. to yield providing important clues for bridging anaphora

an annotation scheme for IS in dialogue that harsesoluti(.)n e.g., Gasperin and Briscoe (20_08))'
good reproducibility: Despite the potential usefulness of IS in NLP

Specifically, Nissim et al. (2004) adopt a three!@Sks, there has been little work dearning

way classification scheme for IS, defining a disthe IS of discourse entities. To investigate the

course entity as (1id to the hearer if it is known Plausibility of learning IS, Nissim et al. (2004)

to the hearer and has previously been referred to fifinotate a set of Switchboard dialogues with
the dialogue; (2hew if it is unknown to her and such informatioR, and subsequently present a

LIt is worth noting that several IS annotation schemes 2These and other linguistic annotations on the Switch-
have been proposed more recently. See Gotze et al. (2003ard dialogues were later released by the LDC as part of the
and Riester et al. (2010) for details. NXT corpus, which is described in Calhoun et al. (2010).

798

Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 798-807,
Avignon, France, April 23 - 27 2012. (©2012 Association for Computational Linguistics



rule-based approach and a learning-based aihve hand-written rules and their predictions di-
proach to acquiring such knowledge (Nissimrectly as features for the learner. In an evalua-
2006). More recently, we have improved Nissim'dion on 147 Switchboard dialogues, our learning-
learning-based approach by augmenting her fekased approach to fine-grained IS determina-
ture set, which comprises seven string-matchingon achieves an accuracy of 78.7%, substan-
and grammatical features, with lexical and syntially outperforming the rule-based approach by
tactic features (Rahman and Ng, 2011; henc&l1.3%. Equally importantly, when employing
forth R&N). Despite the improvements, the perthese linguistically rich features to learn Nissim’s
formance onnew entities remains poor: an F- 3-class IS determination task, the resulting classi-
score of 46.5% was achieved. fier achieves an accuracy of 91.7%, surpassing the
Our goal in this paper is to investigafee- classifier trained on R&N’s state-of-the-art fea-
grained IS determinatignthe task of classifying ture set by 8.8% in absolute accuracy. Improve-
a discourse entity as one of the 16 IS subtypesents on thenew class are particularly substan-
defined by Nissim et al. (2004).0Owing in part tial: its F-score rises from 46.7% to 87.2%.
to the increase in the number of categories, fine-
grained IS determination is arguably a more chaR 1S Types and Subtypes: An Overview

lenging task than the 3-class IS determination taﬁlﬁ Nissim et al.'s (2004) IS classification scheme

that Nissim and R&N investigated. To our knowl-an NP can be assigned one of three main types

edge, this is the first empirical investigation of au-
tomated fine-grained IS determinatio%. (0ld, med, new) and one of 16 subtypes. Below

) ' we will illustrate their definitions with examples,

We propose &nowledge-richapproach to fine- . -
\ o : .most of which are taken from Nissim (2003) or
grained IS determination. Our proposal is moti-

vated in part by Nissim's and R&N's poor per_Nissim et al.'s (2004) dataset (see Section 3).
formance omew entities, which we hypothesize Old. An NP is marked ild if (i) it is corefer-
can be attributed to their sole reliance on shallowential with an entity introduced earlier, (ii) it is a
knowledge sources. In light of this hypothesisgeneric pronoun, or (iii) it is a personal pronoun
our approach employsemantiandworld knowl-  referring to the dialogue participants. Six sub-
edge extracted from manually and automaticallyypes are defined fasld entities: identity, event,
constructed knowledge bases, as weltasefer- general, generic, ident_generic, andrelative. In
enceinformation. The relevance of coreference td=xample 1,my is marked asold with subtype
IS determination can be seen from the definitiofdentity, Since it is coreferent with

of IS: anew en“ty is not coreferential with any (1) | was angry that he destroyed] tent.

previously-mentioned entity, whereas alil en- However, if the markable has a verb phrase (VP)

tity may. While our use of coreference Informa'rather than an NP as its antecedent, it will be

Tgn for IfthtermlTjt;)on an? (I):;" earllefr claim thatmarked ald/event, as can be seen in Example
annotation would be Usetut for coreterence re 2, where the antecedent hatis the VPput my

olution may seem to have created a chi - -
y icken-an hone number on the form

egg problem, they do not: since coreference reso-
lution and IS determination can benefit from each (2) They ask me to put_ my, phone number
on the form.That | think is not needed.

other, it may be possible to formulate an approach
where the two tasks can mutually bootstrap. ~ Other NPs marked asld include (i) relative
We investigate rule-based and learning-base@fonouns, which have the subtypelative; (ii)

approaches to fine-grained IS determination. IRersonal pronouns referring to the dialogue par-
the rule-based approach, we manually compodi€ipants, which have the subtypgeneral, and
rules to combine the aforementioned knowledgélii) generic pronouns, which have the subtype
sources. While we could employ the same knowlgeneric. The pronouryouin Example 3 is an in-
edge sources in the learning-based approach, \Ence of a generic pronoun.

chose to encode, among other knowledge sources, (3) | think to correct the judicial system,

= _ _ you have to get the lawyer out of it.
One of these 16 classes is thew type, for which no

subtype is defined. For ease of exposition, we will refer tdNOt€, however, that in a coreference chain of
thenew type as one of the 16 subtypes to be predicted. ~ generic pronouns, every element of the chain is
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assigned the subtypeent_generic instead. If an NP is part of a situation set up by a
previously-mentioned entity, it is assigned the

Mediated. An NP is marked asned if the en- 7 I
tity it refers to has not been previously introducedPUPtypesituation, as exemplified by the N& few
horsesn the sentence below, which is involved in

in the dialogue, but can be inferred from already- - i )
mentioned entities or is generally known to thdN€ situation set up byohn’s ranch

hearer. Nine subtypes are available fioed en- (7) Mary wentto John’s ranch and saw that
tities: general, bound, part, situation, event, set, there were onlya few horses
poss, func_value, andaggregation. Similar toold entities, an NP marked asedmay

General is assigned tamed entities that are be related to a previously mentioned VP. In this
generally known, such ake Earth Ching and case, the NP will receive the subtypeent, as ex-
most proper namesound is reserved for bound emplified by the NRhe busn the sentence below,
pronouns, an instance of which is shown in Exwhich is triggered by the VRaveling in Miami
ample 4, wherdts is bound to the variable of the (8) We were traveling in Miami, anthe
universally quantified NFvery cat buswas very full.

(4) Every cat atéts dinner. If an NP refers to a value of a previously men-

Poss is assigned to NPs involved in intra-phrasationed function, such as the Ng® degreesn Ex-
possessive relations, including prenominal gen@mple 9, which is related tine temperaturethen
tives (i.e., X’s Y) and postnominal genitives (i.e.,it is assigned the subtygenc_value.

Y of X). Specifically, Y will be marked aposs if (9) The temperature rose 80 degrees

X is old or med; otherwise, Y will benew. For ex- Finally, the subtypeggregation is assigned to co-
ample, in cases lika friend's boatwhereafriend o rginated NPs if at least one of the NPs involved
is new, boatis marked asew. is notnew. However, if all NPs in the coordinated
Four subtypes, namelpart, situation, event,  nhrase aramew, the phrase should be marked as
andset, are used to identify instances of bridg-ne\. For instance, the N®ly son and in Exam-

ing (i.e., entities that are inferrable from a relatecb|e 10 should be marked ased/aggregation.
entity mentioned earlier in the dialogue). As an (10) I have a son ..My son and I like to

example, consider the following sentences: play chess after dinner.

(5a) He passed by the door of Jan’s housl(izI A - it it b .
and saw thathe door was painted red. ew. An entity isnew if it has not been intro-

(5b) He passed by Jan's house and saw thgyced in the dialogue and the hearer cannot infer
the door was painted red It from previously mentioned entities. No subtype

. is defined fomew entities.
In Example 5a, by the time the hearer processes W

the second occurrencetie door she has already 1 here are cases where more than one IS value
had a mental entity correspondingthe door(af- IS @PPropriate for a given NP. For instance, given
ter processing the first occurrence). As a resulfWO occurrences oChinain a d'a'ogue’ .the sec-
the second occurrence tfie doorrefers to an ©Nd occurrence can be labeledodidentity (be-
old entity. In Example 5b, on the other hand, th&ause it is coreferential with an earlier NP) or
hearer is not assumed to have any mental repr&ied/general (because it is a generally known
sentation of the door in question, but she can irfNtity). To break ties, Nissim (2003) define a
fer that the door she saw was part of Jan's housBrecedence refation on the IS subtypes, which
Hence, this occurrence dhe door should be yields a total ordering on the subtypes. _Slnce
marked asned with subtypepart, as itis involved 2l the old subtypes are ordered before theied
in a part-whole relation with its antecedent. counterparts in this relation, the second occur-
If an NP is involved in a set-subset relation with"€Nce ofChinain our example will be labeled as
its antecedent, it inherits thaed subtypeset. old/identity. Ow!ng_ to space Ilmltatlohs, we refer
This applies to the Nfhe house paymeiit Ex- the reader to Nissim (2003) for details.
ample 6, whose antecedenbisr monthly budget
(6) What we try to do to stick to our

monthly budget is we pretty much have We employ Nissim et al.’s (2004) dataset, which
the house payment comprises 147 Switchboard dialogues. We parti-

3 Dataset
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tion them into a training set (117 dialogues) and & the dialogue participants. Note that this and
test set (30 dialogues). A total of 58,835 NPs areeveral other rules rely on coreference informa-
annotated with IS types and subtygdeShe distri- tion, which we obtain from two sources: (1)
butions of NPs over the IS subtypes in the traininghains generated automatically using the Stan-
set and the test set are shown in Table 1. ford Deterministic Coreference Resolution Sys-
tem (Lee et al., 201%) and (2) manually iden-

_ Tran (%) | Test (%) | iified coreference chains taken directly from the
old/identity 10236 (20.1)) 1258 (158)  ;hhotated Switchboard dialogues. Reporting re-
old/event 1943 (3.8)] 290 (3.6) ) - .
oldigeneral 8216 (16.2) 1129 (14.2) s_u_lts using these twq ways of obtaining chz';uns. fa-
old/generic 2432 (4.8)| 427 (5.4)| Ccilitates the comparison of the IS determination
old/identgeneric | 1730  (3.4)| 404 (5.1)| results that we can realistically obtain using ex-
old/relative 1241 (2.4)| 193 (2.4)| Iisting coreference technologies against those that
med/general 2640 (5.2)| 325 (4.1)| we could obtain if we further improved exist-
med/bound 529 (L.0)| 74  (0.9)| ing coreference resolvers. Note that both sources
med/part 885 (L.7)} 120 (L.5)) nrovideidentity coreference chains. Specifically,
med/situation 1109 (2.2)) 244 (3.1) the gold chains were annotated for NPs belong-
med/event 351 (0.7) 67 (0.8)] . . . ) .
med/set 10282 (20.2)| 1771 (22.3) Ing to oldllfjentlty and oldlldent_ggngrlc. .Hence,
med/poss 1318 (2.6)| 220 (2.8)| these chains can be used to distinguish between
med/func_value 224 (0.4)] 31 (0.4)| old/general NPs andold/ident_generic NPs, be-
med/aggregation 580 (1.1)| 117 (1.5)| cause the former amot part of a chain whereas
new 7158 (14.1)| 1293 (16.2)| the latter are. However, they cannot be used
total 50874 (100)| 7961 (100)| to distinguish betweemld/general entities and

old/generic entities, since neither of them belongs
Table 1: Di'_stributions of NPs over IS subepes. Theq any chains. As a result, when gold chains are
corresponding percentages are parenthesized. used, Rule 1 will classify all occurrences of “you”
that are not part of a chain afl/general, regard-
less of whether the pronoun is generic. While the
gold chains alone can distinguishi/general and

In this section, we describe our rule-based ap)ld/ident_generic NPs, the Stanford chains can-
proach to fine-grained 1S determination, where w80t distinguish any of theld subtypes in the ab-
manually design rules for assigning IS subtypes téence of other knowledge sources, since it gener
NPs based on the subtype definitions in Section 2tes chains foall old NPs regardless of their sub-
Nissim’s (2003) IS annotation guidelines, and outyPes. This implies that Rule 1 and several other
inspection of the IS annotations in the trainingules are only a very crude approximation of the
set. The motivations behind having a rule-basegéefinition of the corresponding IS subtypes.
approach are two-fold. First, it can serve as a The rules for the remainingd subtypes can be
baseline for fine-grained IS determination. Sednterpreted similarly. A few points deserve men-
ond, it can provide insight into how the availabletion. First, many rules depend on the string of
knowledge sources can be combined into predi¢he NP under consideration (e.g., “they” in Rule 2
tion rules, which can potentially serve as “sophisand “whatever” in Rule 4). The decision of which
ticated” features for a learning-based approach. Strings are chosen is based primarily on our in-
As shown in Table 2, our ruleset is composed o$pection of the training data. Hence, these rules
18 rules, which should be applied to an NP in thére partly data-driven. Second, these rules should
order in which they are listed. Rules 1-7 handi®€ applied in the order in which they are shown.
the assignment ofld subtypes to NPs. For in- For instance, though not explicitly stated, Rule 3
stance, Rule 1 identifies instancesotif/general, IS only applicable to the non-anaphoric “you” and

which comprises the personal pronouns referringney” pronouns, since Rule 2 has already covered

- their anaphoric counterparts. Finally, Rule 7 uses
“Not all NPs have an IS type/subtype. For instance, fion-anaphoricity as a test ofd/event NPs. The

pleonastic “it" does not refer to any real-world entity and

therefore does not have any IS, and so are nouns such as °The Stanford resolver is available frdmt p: / / nl p.

“course” in “of course”, “accident” in “by accident”, etc. st anf ord. edu/ sof t war e/ corenl p. shtni .

4 Rule-Based Approach
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1. if the NP is “I" or “you” and it is not part of a coreference chainen
subtype :=old/general
2. if the NP is “you” or “they” and it is anaphorithen
subtype :=old/ident_generic
3. if the NP is “you” or “they”,then
subtype :=old/generic
4. if the NP is “whatever” or an indefinite pronoun prefixed by “séme‘any” (e.g., “somebody”)then
subtype :=old/generic
5. if the NP is an anaphoric pronoun other than “that”, or its gtidndentical to that of a preceding NRen
subtype :=old/ident
6. if the NP is “that” and it is coreferential with the immediateheceding wordthen
subtype :=old/relative
7. if the NP is “it”, “this” or “that”, and it is not anaphori¢hen
subtype :=old/event
8. if the NP is pronominal and is not anaphothen
subtype :@med/bound
9. if the NP contains “and” or “or'then
subtype :=med/aggregation
10. if the NP is a multi-word phrase that (1) begins with “so muclsgrhething”, “somebody”, “someone”,
“anything”, “one”, or “different”, or (2) has “another”, ‘fayone”, “other”, “such”, “that”, “of” or “type”
as neither its first nor last word, or (3) its head noun is aieohtead noun of a preceding NRen
subtype :=med/set
11. if the NP contains a word that is a hyponym of the word “value” ioréWet,then
subtype :=med/func_value
12. if the NP is involved in a part-whole relation with a preceding based on information extracted from
ReVerb’s outputthen
subtype :=med/part
13. if the NP is of the form “X’s Y” or “poss-pro Y”, where X and Y are NRnd poss-pro is a possessive
pronounthen
subtype :=med/poss
14. if the NP fills an argument of a FrameNet frame set up by a pregétihor verbthen
subtype :=med/situation
15. if the head of the NP and one of the preceding verbs in the sartensershare the same WordNet
hypernym which is not in synsets that appear one of the topdixads of the noun/verb hierarchtjpen
subtype :=med/event
16. if the NP is a named entity (NE) or starts with “théien
subtype :=med/general
17. if the NP appears in the training stiten
subtype := its most frequent IS subtype in the training set
18. subtype :mew

Table 2: Hand-crafted rules for assigning IS subtypes to. NPs

reason is that these NPs have VP antecedents, buRule 10 concernsned/set. The words and

both the gold chains and the Stanford chains agghrases listed in the rule, which are derived manu-

computed over NPs only. ally from the training data, provide suggestive ev-
idence that the NP under consideration is a subset

Rules 8-16 concermed subtypes. Apart from or a specific portion of an entity or concept men-
Rule 8 (ned/bound), Rule 9 (ned/aggregation), tioned earlier in the dialogue. Examples include

and Rule 1lr(1_ed/fu_nc_value), Whlch_are_ arguably “another bedroom?”, “different color”, “somebody
crude approximations of the definitions of the ;" "~ b«

corresponding subtypes, tieed rules are more else”, “any place”, "one of them”, and "most other

. . . cities”. Condition 3 of the rule, which checks
complicated than theiold counterparts, in part
S . whether the head noun of the NP has been men-
because of their reliance on the extraction of so- . . . .
- . tioned previously, is a good test for identity coref-
phisticated knowledge. Below we describe the ex- : o
) o ) erence, but since all thedd entities have suppos-
traction process and the motivation behind them.
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edly been identified by the preceding rules, it beentities, whose identification is difficult as it re-
comes a reasonable test for set-subset relationsquires world knowledge. Consequently, we apply
For convenience, we identify part-whole rela-this rule only after all othemed rules are applied.
tions in Rule 12 based on the output produced bfs we can see, the rule assigm&d/general to
ReVerb (Fader et al., 2011), an open informatiofNPs that are named entities (NEs) and definite de-
extraction systerfi. The output contains, among scriptions (specifically those NPs that start with
other things, relation instances, each of which ishe”). The reason is simple. Most NEs are gener-
represented as a triple;A,rel,B>, whererel is  ally known. Definite descriptions are typically not
arelation, and A and B are its arguments. To prerew, So it seems reasonable to assigr/general
process the output, we first identify all the triplesto them given that the remaining (i.e., unlabeled)
that are instances of the part-whole relation udNPs are presumably eitheew andmed/general.
ing regular expressions. Next, we create clusters Before Rule 18, which assigns an NP to tieg
of relation arguments, such that each pair of arlass by default, we have a “memorization” rule
guments in a cluster has a part-whole relatiorthat checks whether the NP under consideration
This is easy: since part-whole is a transitive relaappears in the training set (Rule 17). If so, we
tion (i.e., <A,part,B> and<B,part,C> implies assign to it its most frequent subtype based on its
<A, part,C>), we cluster the arguments by takingoccurrences in the training set. In essence, this
the transitive closure of these relation instanceseuristic rule can help classify some of the NPs
Then, given an NRR in the test set, we assign that are somehow “missed” by the first 16 rules.
med/part to it if there is a preceding NRP; such The ordering of these rules has a direct impact
that the two NPs are in the same argument clustesn performance of the ruleset, so a natural ques-
In Rule 14, we use FrameNet (Baker et al.tion is: what criteria did we use to order the rules?
1998) to determine whethemed/situation should We order them in such a way that they respect the
be assigned to an NRp. Specifically, we check total ordering on the subtypes imposed by Nis-
whether it fills an argument of a frame set up bysim’s (2003) preference relation (see Section 3),
a preceding NPNp;, or verb. To exemplify, let except that we givened/general a lower priority
us assume thatp; is “capital punishment”. We than Nissim due to the difficulty involved in iden-
search for “punishment” in FrameNet to accestifying generally known entities, as noted above.
the appropriate frame, which in this case is “re-
wards and punishments”. This frame contains & Learning-Based Approach

list of arguments together with examplesnH is In this section, we describe our learning-based ap-

one of these arguments, we assiged/situation . . L .
. S : = . proach to fine-grained IS determination. Since
to NR, since itis involved in a situation (described . : o
. . we aim to automatically label an NP with its IS
by a frame) that is set up by a preceding NP/verb, L .
Subtype, we create one training/test instance from

In Rule .15' we use WordNet (Fellbaum, 1998)each hand-annotated NP in the training/test set.
to determine whethemed/event should be as-

i . ) Each instance is represented using five types of
signed to an NR\R, by checking whetheKp is P g yp

o ) . cIeatures, as described below.
related to an event, which is typically described _
by a verb. Specifically, we use WordNet to check/nigrams (119704). We create one binary fea-
whether there exists a verb, precedingup such tUre for each unigram appearing in the training
thatv andNR have the same hypernym. If so, weSet: Its value indicates the presence or absence
(2 : 1 . . . .
assignNe the subtypemed/event. Note that we of the unigram in the NP under consideration.
ensure that the hypernym they share does not altarkables (209751). We create one binary fea-
pear in the top five levels of the WordNet nourture for each markable (i.e., an NP having an IS
and verb hierarchies, since we want them to bsubtype) appearing in the training set. Its value is
related via a concept that is not overly general. 1 if and only if the markable has the same string
Rule 16 identifies instances ofied/general. —as the NP under consideration.

The majority of its members agenerally-known Markable predictions (17). We create 17 bi-
5We use ReVerb ClueWeb09 Extractions 1.1, whicr{!2rY features, 16 of which correspond to the 16
is available fromht t p: / / r ever b. cs. washi ngt on. 1S subtypes and the remaining one corresponds to

edu/ reverb_cl ueweb_t upl es- 1. 1. txt. gz. a “dummy subtype”. Specifically, if the NP un-
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der consideration appears in the training set, W@ Evaluation
use Rule 17 in our hand-crafted ruleset to deter-

mine the IS subtype it is most frequently associl\éXt: e evaluate the rule-based approach and

ated with in the training set, and then set the valul'€ léarning-based approach to determining the IS
of the feature corresponding to this IS subtype tSUPtPe of each hand-annotated NP in the test set.

1. If the NP does not appear in the training set, w€lassification results. Table 3 shows the results
set the value of the dummy subtype feature to 1.0f the two approaches. Specifically, row 1 shows
Rule conditions (17). As mentioned before, we 1€ a}ccuracy,l wh||ch _'? ijjefmed as therercentr-]
can create features based on the hand-crafted rufé%® © %orrecty classitie |Insta;1nces. or €ac |
in Section 4. To describe these features, let us iPProach, we present results that are generate

troduce some notation. Let Rulde denoted by bas_ed (;]n .gold corefersnk;: N Ehagns ?S \(/jvell asl auto-
A; — B;, whereA; is the condition that must matic chains computed by the Stanford resolver.

be satisfied before the rule can be applied 8ad S W€ can see, the rule-based approach

is the IS subtype predicted by the rule. We coul@chieves accuracies of 66.0% (gold coreference)
create one binary feature from eadh and set its and 57.4% (Stanford coreference), whereas the

value to 1 if A; is satisfied by the NP under con- learning-based approach achieves accuracies of

sideration. These features, however, fail to cat?-4% (gold) and 78.7% (Stanford). In other

ture a crucial aspect of the ruleset: the ordering g¥rds: the gold coreference results are better than
the rules. For instance, Ruleshould be applied the Stanford coreference results, and the learning-

only if the conditions of the first— 1 rules are not based results are better than the rule-based results.

satisfied by the NP, but such ordering is not enWhile perhaps neither of these results are surpris-
ing, we are pleasantly surprised by tbetentto

coded in these features. To address this probledi'9: St
which the learned classifier outperforms the hand-

we capture rule ordering information by defining >

binary featuref; as—A; A —Ag A ... ~Ai 1 A A crafted rules: accuracies increase by 20.4% and

where 1< i < 16. In addition. we define a fea- 21-3% when gold coreference and Stanford coref-

ture,flg,_for the default rule (Rule 18) in a simi- €rence are used, respectively. In other words, ma-
chine learning has “transformed” a ruleset that

lar fashion, but since it does not have any cond | J )
tion, we simply definefys as—A; A ... A —Ay. achieves mediocre performance into a system that

The value of a feature in this feature group is £Chieves relatively high performance.

if and only if the NP under consideration satis- 1nese results also suggest that coreference
fies the condition defined by the feature. Note thakl@ys @ crucial role in IS subtype determination:
we did not create any features from Rule 17 heréccuracies could increase by up to 7.7-8.6% if

since we have already generated “markables” arfe Solely improved coreference resolution perfor-
“markable prediction” features for it. mance. This is perhaps not surprising: IS and
coreference can mutually benefit from each other.

To gain additional insight into the task, we also
ow in rows 2-17 of Table 3 the performance
on each of the 16 subtypes, expressed in terms of
Tecall (R), precision (P), and F-score (F). A few
oints deserve mention. First, in comparison to
he rule-based approach, the learning-based ap-
proach achieves considerably better performance
on almost all classes. One that is of particular in-
Since IS subtype determination is a 16-clasgerest is thenew class. As we can see in row 17,
classification problem, we train a multi-classits F-score rises by about 30 points. These gains
SVM classifier on the training instances usintare accompanied by a simultaneous rise in recall
Svmmulticlass (Tsochantaridis et al., 2004), andand precision. In particular, recall increases by
use it to make predictions on the test instarfces. apout 40 points. Now, recall from the introduc-

Rule predictions (17). None of the featureg;’s
defined above makes use of the predictions of oW,
hand-crafted rules (i.e., thB;’s). To make use
of these predictions, we define 17 binary feature
one for eachB;, wherei = 1,. .., 16, 18. Specif-
ically, the value of the feature corresponding t
B; is 1 if and only if f; is 1, wheref; is a “rule
condition” feature as defined above.

For all the experiments involving SVRE<less we  to overfitting (by setting C to a small value) tends to yield
set C, the regularization parameter, to 500,000, since preoorer classification performance. The remaining learning
liminary experiments indicate that preferring generdima parameters are set to their default values.
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Rule-Based Approach (ﬂ Learning-Based Approach

Gold Coreference | Stanford Coreferenc Gold Coreference | Stanford Coreference

1 | Accuracy 66.0 57.4 86.4 78.7
IS Subtype R P F R P F R P F R P F

2 | old/ident 775 782 778/ 661 527 587 828 852 840 758 642 695
3 | old/event 98.6 504 66.7| 71.3 432 53.8| 983 879 928| 24 318 4.5
4 | old/general 819 827 823/ 723 836 77.6| 977 937 956|878 927 90.2
5 | old/generic 55,9 552 555 39.2 39.8 395| 76.1 873 813|399 859 545
6 | old/identgeneric | 48.7 77.7 59.9| 27.2 51.8 35.7|| 57.1 87.5 69.1| 47.2 448 46.0
7 | old/relative 55,0 69.2 613/ 551 634 59.0( 980 63.0 76.7|99.0 375 544
8 | med/general 299 198 238/ 295 196 236|912 87.7 89.4|84.0 722 777
9 | med/bound 56.4 205 30.1| 56.4 20.5 30.1|| 25.7 655 36.9| 2.7 40.0 5.1
10 | med/part 19.5 100.0 32.7/ 19.5 100.0 32.7| 73.2 96.8 83.3| 73.2 96.8 833
11 | med/situation 28.7 100.0 44.6| 28.7 100.0 44.6|| 684 954 79.7) 68.0 97.7 80.2
12 | med/event 10.5 100.0 18.9] 10.5 100.0 18.9| 46.3 100.0 63.3| 46.3 100.0 63.3
13 | med/set 829 618 708/ 780 59.4 67.4| 904 878 89.1|884 86.0 87.2
14 | med/poss 529 86.0 656529 86.0 656| 93.2 924 928 90.5 97.6 93.9
15 | med/funcvalue | 81.3 743 77.6/ 813 743 77.6| 881 859 870|881 859 87.0
16 | med/aggregation | 57.4 44.0 49.9| 57.4 43.6 49.6| 852 729 786/ 83.8 939 88.6
17 | new 504 65.7 57.0 50.3 65.1 56.7|| 90.3 84.6 87.4| 904 836 86.9

Table 3: IS subtype accuracies and F-scores. In each rostrtregest result, as well as those that are statistically
indistinguishable from it according to the pairetest p < 0.05), are boldfaced.

tion that previous attempts on 3-class IS determiand 10.5 forevent. Nevertheless, the learning
nation by Nissim and R&N have achieved poorlgorithm has again discovered a profitable way
performance on theew class. We hypothesize to combine the available features, enabling the F-
that the use of shallow features in their approachescores of these classes to increase by 35.1-50.6%.
were responsible for the poor performance they While most classes are improved by machine
observed, and that using our knowledge-rich fedearning, the same is not true fotd/event and
ture set could improve its performance. We willmed/bound, whose F-scores are 4.5% (row 3) and
test this hypothesis at the end of this section.  5.1% (row 9), respectively, when Stanford coref-

Other subtypes that are worth discussingrence is employed. This is perhaps not surpris-
are med/aggregation, med/func_value, and ing. Recall that the multi-class SVM classifier
med/poss. Recall that the rules we designed foiwas trained to maximize classification accuracy.
these classes were only crude approximations, digence, if it encounters a class that is both difficult
perhaps more precisely, simplified versions of théo learnandis under-represented, it may as well
definitions of the corresponding subtypes. Fo@im to achieve good performance on the easier-
instance, to determine whether an NP belongs to-learn, well-represented classes at the expense
med/aggregation, we simply look for occurrences of these hard-to-learn, under-represented classes.
of “and” and “or” (Rule 9), whereas its definition Feature analysis. In an attempt to gain addi-
requires that not all of the NPs in the coordinatedional insight into the performance contribution
phrase arenew. Despite the over-simplicity of each of the five types of features used in the
of these rules, machine learning has enableé@arning-based approach, we conduct feature ab-
the available features to be combined in such @tion experiments. Results are shown in Table 4,
way that high performance is achieved for thesg/here each row shows the accuracy of the classi-
classes (see rows 14-16). fier trained on all types of features except for the

Also worth examining are those classes foone shown in that row. For easy reference, the
which the hand-crafted rules rely on sophisti-accuracy of the classifier trained on all types of
cated knowledge sources. They included/part, features is shown in row 1 of the table. According
which relies on ReVerhmed/situation, which re-  to the paired-test p < 0.05), performance drops
lies on FrameNet; anghed/event, which relies on significantly whichever feature type is removed.
WordNet. As we can see from the rule-based reFhis suggests that all five feature types are con-
sults (rows 10-12), these knowledge sources hatgbuting positively to overall accuracy. Also, the
yielded rules that achieved perfect precision bunarkablesfeatures are the least important in the
low recall: 19.5% forpart, 28.7% forsituation, presence of other feature groups, wheneesk-
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Feature Type Gold Coref| Stanford Coref Feature Type Gold Coref | Stanford Coref
All features 86.4 78.7 Allrules 66.0 57.4
—rule predictions 77.5 70.0 —memorization 62.6 52.0
—markable predictions 72.4 64.7 —ReVerb 64.2 56.6
—rule conditions 81.1 71.0 —cue words 63.8 54.0
—unigrams 74.4 58.6
—markables 83.2 55 Table 6: Accuracies of the simplified ruleset.
Table 4: Accuracies of feature ablation experiments. R&N's Eeatures Our Features
IS Type R P F| R P F
Feature Type Gold Coref Stanford Coref ?r:gd ggg gig %‘g ggg ggg ggé
rule predictions 49.1 45.2 : : : : : :
markable predictions 39.7 397 new 346 717 46.7 82.4 727 87.2
rule conditions 58.1 28.9 [_Accuracy | 82.9 [ 917 |
unigrams 56.8 56.8
markables 10.4 10.4

Table 7: Accuracies on IS types.

Table 5: Accuracies of classifiers for each feature type.

IS type results. We hypothesized earlier that

the poor performance reported by Nissim and
able predictionsand unigramsare the two most RN on identifying new entities in their 3-class
important feature groups. IS classification experiments (i.e., classifying an

To get a better idea of the utility of each featureNP asold, med, or new) could be attributed to

type, we conduct another experiment in which weheir sole reliance on lexico-syntactic features. To
train five classifiers, each of which employs extest this hypothesis, we (1) train a 3-class classi-
actly one type of features. The accuracies of thesger using the five types of features we employed
classifiers are shown in Table 5. As we can seén our learning-based approach, computing the
themarkabledeatures have the smallest contribufeatures based on the Stanford coreference chains;
tion, whereasinigramshave the largest contribu- and (2) compare its results against those obtained
tion. Somewhat interesting are the results of thegia the lexico-syntactic approach in R&N on our
classifiers trained on the rule conditions: the ruleest set. Results of these experiments, which are
are far more effective when gold coreference ishown in Table 7, substantiate our hypothesis:
used. This can be attributed to the fact that th@&shen we replace R&N’s features with ours, accu-
design of the rules was based in part on the defintacy rises from 82.9% to 91.7%. These gains can
tions of the subtypes, which assume the availabibe attributed to large improvements in identifying
ity of perfect coreference information. new andmed entities, for which F-scores increase

. . . by about 40 points and 10 points, respectively.
Knowledge source analysis. To gain some in- y P P P y

sight into the e_:xtent to which a knowledge source, Conclusions

or a rule contributes to the overall performance of

the rule-based approach, we conduct ablation eX¥e have examined the fine-grained IS determi-
periments: in each experiment, we measure thaation task. Experiments on a set of Switch-
performance of the ruleset after removing a patoard dialogues show that our learning-based ap-
ticular rule or knowledge source from it. Specifi-proach, which uses features that include hand-
cally, rows 2—4 of Table 6 show the accuracies ofrafted rules and their predictions, outperforms its
the ruleset after removing the memorization ruleule-based counterpart by more than 20%, achiev-
(Rule 17), the rule that uses ReVerb'’s output (Ruleng an overall accuracy of 78.7% when relying on
12), and the cue words used in Rules 4 and 1@utomatically computed coreference information.
respectively. For easy reference, the accuracy dfi addition, we have achieved state-of-the-art re-
the original ruleset is shown in row 1 of the ta-sults on the 3-class IS determination task, in part
ble. According to the paired-test p < 0.05), due to our reliance on richer knowledge sources
performance drops significantly in all three ablain comparison to prior work. To our knowledge,
tion experiments. This suggests that the memdhere has been little work on automatic IS subtype
rization rule, ReVerb, and the cue words all condetermination. We hope that our work can stimu-
tribute positively to the accuracy of the ruleset. late further research on this task.
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