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Abstract

We propose an unsupervised, iterative
method for detecting downward-entailing
operators (DEOs), which are important for
deducing entailment relations between sen-
tences. Like the distillation algorithm of
Danescu-Niculescu-Mizil et al. (2009), the
initialization of our method depends on the
correlation between DEOs and negative po-
larity items (NPIs). However, our method
trusts the initialization more and aggres-
sively separates likely DEOs from spuri-
ous distractors and other words, unlike dis-
tillation, which we show to be equivalent
to one iteration of EM prior re-estimation.

a downward-entailing operato(DEO), however,
this entailment relation is reversed, such as in
the scope of the classical DEbt (2). There
are also operators which are neither upward- nor
downward entailing, such as the expressen
actly three(3).

(1) She sang in French= She sang.
(upward-entailing)

(2) She did not sing in French= She did not
sing. (downward-entailing)

(3) Exactly three students sang: Exactly
three students sang in Frencfmeither

Our method is also amenable to a bootstrap- upward- nor downward-entailing)
ping method that co-learns DEOs and NPIs,
and achieves the best results in identifying

DEOs in two corpora.

Danescu-Niculescu-Mizil et al. (2009) (hence-
forth DLDO09) proposed the first computational
methods for detecting DEOs from a corpus. They
proposed two unsupervised algorithms which rely
on the correlation between DEOs andgative
Reasoning about text has been a long-standimplarity items(NPIs), which by the definition of
challenge in NLP, and there has been considetadusaw (1980) must appear in the context of
able debate both on what constitutes inference am@EOs. An example of an NPI iget as in the
what techniques should be used to support infesentenceThis project is not complete yetThe
ence. One task involving inference that has refirst baseline method proposed by DLD09 sim-
cently received much attention is that of recogply calculates a ratio of the relative frequencies
nizing textual entailment (RTE), in which the goalof a word in NPI contexts versus in a general
is to determine whether a hypothesis sentence canrpus, and the second isdistillation method
be entailed from a piece of source text (Bentivoglivhich appears to refine the baseline ratios using a
et al., 2010, for example). task-specific heuristic. Danescu-Niculescu-Mizil

An important consideration in RTE is whetherand Lee (2010) (henceforth DL10) extend this ap-
a sentence or context produces an entailment rproach to Romanian, where a comprehensive list
lation for events that are a superset or subset of NPIs is not available, by proposing a bootstrap-
the original sentence (MacCartney and Manningying approach to co-learn DEOs and NPIs.

2008). By default, contexts are upward-entailing, DLDOQ9 are to be commended for having iden-
allowing reasoning from a set of events to a sutified a crucial component of inference that nev-
perset of events as seen in (1). In the scope eftheless lends itself to a classification-based ap-

1 Introduction
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proach, as we will show. However, as noteditional operator for propositiop, then an oper-

by DL10, the performance of the distillation ator is non-veridical iff'p A p. Positive opera-
method is mixed across languages and in thirs such as past tense adverbials are veridical (4),
semi-supervised bootstrapping setting, and theshereas questions, negation and other DEOs are
is no mathematical grounding of the heuristic tanon-veridical (5, 6).

explain why it works and whether the approach

can be refined or extended. This paper supplidd) She sang yesterday. She sang.

the missing mthe_mgtical pasis for distillation an 5) She denied singing4 She sang.

shows that, while its intentions are fundamentall

sound, the formulation of distillation neglects an(6) Did she sing?4 She sang.

important requirement that the method not be

easily distracted by other word co-occurrences While Ladusaw’s hypothesis is thus accepted
in NPI contexts. We call our alternativeer- t0 be insufficient from a linguistic perspective, it
tainty, which uses an unusual posterior classificals nevertheless a useful starting point for compu-
tion confidence score (based on the max functioftional methods for detecting NPIs and DEOs,
to favour single, definite assignments of DEoand has inspired successful techniques to detect
hood within every NPI context. DLDO09 actually DEOs, like the work by DLD09, DL10, and also
speculated on the use of max as an alternativll}is work. In addition to this hypothesis, we fur-
but within the context of an EM-like optimization ther assume that there should only be one plausi-
procedure that throws away its initial parametePle DEO candidate per NPI context. While there
settings too willingly. Certainty iteratively and @re counterexamples, this assumption is in prac-
directly boosts the scores of the currently bestice very robust, and is a useful constraint for our
ranked DEO candidates relative to the alternativd§arning algorithm. An analogy can be drawn to
in a Naive Bayes model, which thus pays more rehe one sense per discourse assumption in word
spect to the initial weights, constructively build-sense disambiguation (Gale et al., 1992).

ing on top of what the model already knows. This The related—and as we will argue, more
method proves to perform better on two corpordlifficult—problem of detecting NPIs has also
than distillation, and is more amenable to the cobeen studied, and in fact predates the work on
learning of NPIs and DEOs. In fact, the besPEO detection. Hoeksema (1997) performed the
results are obtained by co-learning the NPIs antfst corpus-based study of NPIs, predominantly

DEOs in conjunction with our method. for Dutch, and there has also been work on de-
tecting NPIs in German which assumes linguistic
2 Related work knowledge of licensing contexts for NPIs (Lichte

and Soehn, 2007). Richter et al. (2010) make

There is a large body of literature in linguis- ;. . :

. ) this assumption as well as use syntactic structure
tic theory on downward entailment and polar- . .
L : . . to extract NPIs that are multi-word expressions.
ity items!, of which we will only mention the

. Parse information is an especially important con-
most relevant work here. The connection between C .
. . sideration in freer-word-order languages like Ger-
downward-entailing contexts and negative polar- :
o . man where a MWE may not appear as a contigu-
ity items was noticed by Ladusaw (1980), who . . .
) ous string. In this paper, we explicitly do not as-

stated the hypothesis that NPIs must be gram- . Lo )
sume detailed linguistic knowledge about licens-

matically Ilcensed_ by a DEO. However, DEOSing contexts for NPIs and do not assume that a
are not the sole licensors of NPIs, as NPIs can

: ) .Rarser is available, since neither of these are guar-
also be found in the scope of questions, certai . ) :
anteed when extending this technique to resource-

numeric expressions (i.e., non-monotone quanti-

. . o hDoor languages.

fiers), comparatives, and conditionals, among oth-

ers. Giannakidou (2002) proposes that the prol  Distillation as EM Prior Re-estimation

erty shared by these constructions and downward
entailment isnon-veridicality If F is a propo- Let us first review the baseline and distillation

methods proposed by DLDO09, then show that dis-

—— .
encesee van der Wouden (1997) for a comprehensive refefy iinn js equivalent to one iteration of EM prior
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re-estimation in a Naive Bayes generative proba-

bilistic model up to constant rescaling. The base- DEO

line method assigns a score to each word-type

based on the ratio of its relative frequency within y

NPI contexts to its relative frequency within a

general corpus. Suppose we are given a cofpus Context words

with extracted NPI contextd/ and they contain
tokens(C) and tokens(N') tokens respectively.
Let y be a candidate DEQpuntC(y) be the uni-
gram frequency ofy in a corpus, andountN(y) Figure 1: Naive Bayes formulation of DEO detection.
be the unigram frequency af in N'. Then, we
define S(y) to be the ratio between the relative
frequencies ofy within NPI contexts and in the
entire corpu$:

—

NPI contexts which contaig.
count™N (y) /tokens(N') DLDO9 find that distillation seems to improve
the performance of DEO detection in BLLIP.

countC(y) /tokens(C)
The scores are then used as a ranking to dL_ater work by DL10, however, shows that distil-

termine word-types that are likely to be DEOs.atIon dogs not seem_to improve performance over

: ) the baseline method in Romanian, and the authors
This method approximately captures Ladusaw’s o .

. : . also note that distillation does not improve perfor-
hypothesis by highly ranking words that appear . . . )
. mance in their experiments on co-learning NPIs
in NPI contexts more often than would be ex- . .
ected by chance. However, the problem witﬁde DEOs via bootstrapping.

P y ’ P A better mathematical grounding of the distilla-

:E:t i’g?ggiﬁ? \:\?ittr? Eli\fFI’DIEOIE agt?c(ﬁlg:etﬁzlévgzirgﬁon method’s apparent heuristic in terms of exist-
Manvoi backerswhicﬁ aspdefinedé) DLDO9. N9 probabilistic models sheds light on the mixed
yPIggyE ' Y ' Sperformance of distillation across languages and

collocate with DEOs due to semantic relatedness : ) . .

or chance. and would thus incorrectly receive experimental settings. In particular, it turns out

high S(y) écore y ?hat the distillation method of DLDOQ9 is equiva-
gn oty i . lent to one iteration of EM prior re-estimation in
Examples of piggybackers found by DLD09 m-a Naive Bayes model. Given a lexicahof

clude the proper noullilken, and the adverkig- '

orously, which collocate with DEOs like&lenyin \ggt(:;’ lljet tehaecr:nl;lgellcogtsgtst;%o:l: csc?r?;ipsl'?s goefné
the corpus they used. DLDO09’s solution to th y ' P

piggybacker problem is a method that they terria_tent categorical (i.e., a multinomial with one

distillation. Let\V, be the NPI contexts that con- trial var!abIeY whose values. range ovel, cor
) - : responding to the DEO that licenses the context,
tain wordy; i.e., N, = {¢ € N|c > y}. In dis-

N L . and observed Bernoulli variable€ = Xi—1.1
tillation, each word-type is given a distilled score”, = "~ " i
according to the following equation: which indicate whether a word appears in the NPI

' context (Figure 1). This method does not attempt
to model the order of the observed words, nor the
Sa(y) = 1 S(y) . 8) number of times each word appears. Formally, a
Nl S5 2yen SW) Naive Bayes model is given by the following ex-

) _ pression:
where p indexes the set of NPI contexts which

containy3, and the denominator is the number of R L
7T P(X,Y) = [[ P(X:|Y)P(Y). 9)

=1

S(y) = ()

2DLDO09 actually use the number of NPI contexts con-
taining y rather tharcount™ (y), but we find that using the . ) )
raw count works better in our experiments. The probability of a DEO given a particular
3In DLDO09, the corresponding equation does not indicatdNP| context is
that p should be the contexts that incluge but it is clear

. S . L
from the surrounding text that our version is the intended =
meaning. If all the NPI contexts were included in the sum- P(Y|X) X H P(Xi|Y)P(Y)- (10)
mation,Sq(y) would reduce to inverse relative frequency. i=1
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The probability of a set of observed NPI con- P(Y') gives a prior probability that a certain
texts\V is the product of the probabilities for eachword-typey is a DEO in an NPI context, without

sample: normalizing for the frequency of in NPI con-
~ texts. Since we are interested in estimating the
rV) =[] PX) (11)  context-independent probability thatis a DEO,
XeN we must calculate the probability that a word is
P(X) = Zp()f,y)' (12) a DEO given that it appears in an NPI context.
yer Let X, be the observed variable corresponding to

o . _ %/ Then, the expression we are interested in is
We first instantiate the baseline method Olp(y|X, = 1). We now show thatP(y|X, =

DLDO9 by initializing the parameters to the ) — P(y)/P(X, = 1), and that this expression
model, P(X; = 1ly) and P(Y" = y), such that s equivalent to (8).

P(Y = y)is proportional toS(y). Recall that this
initialization utilizes domain knowledge about the
correlation between NPIs and DEOSs, inspired by
Ladusaw’s hypothesis:

P(yqu = 1)

PllX, = 1) = “prg

17)
Recall thatP(y, X,, = 0) = 0 because of the

PY =y)=S(y)/ Z S(y") (13) assu_mption that a DEO appears in the NPI context
Y that it generates. Thus,

1 if X; corresponds tg

P(X; =1ly) = { 0.5 otherwise. Ply, Xy =1) = Ply, Xy = 1) + Py, Xy = 0)

(14) = P(y) (18)

This initialization of P(X; = 1|y) ensures that _ON€ iteration of EM to calculate this proba-
the the value ofy corresponds to one of the wordsPility is equivalent to the distillation method of

in the NPI context, and the initialization ¢f(y) DPLDO9. In particular, the numerator of (17),
is simply a normalization of (y). which we just showed to be equal to the estimate

of P(Y) given by (16), is exactly the sum of the
ting, there are no labels far available. A com- responsibilities for a particulay, and is propor-
mon and reasonable assumption about learnirffpnal to the summation in (8) modulo normaliza-
the parameter settings in this case is to find the pon: because’(Xy) is constant for ally in the
rameters that maximize the likelihood of the obCONtext. The denominataP(X, = 1) is simply

Since we are working in an unsupervised se

served training data; i.e., the NPI contexts: the proportion of contexts containing which is
proportional to|,|. Since both the numerator
6 = argmaxP(\;0). (15) and denominator are equivalent up to a constant
0

factor, an identical ranking is produced by distil-

The EM algorithm is a well-known iterative al- lation and EM prior re-estimation.
gorithm for performing this optimization. Assum- Unfortunately, the EM algorithm does not pro-
ing that the priotP(Y = y) is a categorical distri- vide good results on this task. In fact, as more
bution, the M-step estimate of these parameteftgrations of EM are run, the performance drops
after one iteration through the corpus is as foldrastically, even though the corpus likelihood

lows: is increasing. The reason is that unsupervised
e EM learning is not constrained or biased towards

PHLUY =) = Z P (y\X)ﬁ (16) Igaming a good set of I_DEOs. Rather, ahigh.er Qata
fon Zy, Pt(y'|X) likelihood can be achieved simply by assigning

high prior probabilities to frequent word-types.
We do not re-estimaté(X; = 1|y) because  This can be seen qualitatively by consider-
their role is simply to ensure that the DEO re-ing the top-ranking DEOs after several itera-
sponsible for an NPI context exists in the contexttions of EM/distillation (Figure 2). The top-
Estimating these parameters would exacerbate th@nking words are simply function words or other
problems with EM for this task which we will dis- words common in the corpus, which have noth-
cuss shortly. ing to do with downward entailment. In effect,
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1 iteration | 2 iterations | 3 iterations fication problem, and then maximizing an objec-
denies the the tive ratio that favours one DEO per context. Our
denied to to method is not guaranteed to increase classification
unaware denied that certainty between iterations, but we will show that
longest than than it does increase certainty very quickly in practice.
hardly that and The key observation that allows us to resolve
lacking if has the tension between trusting the initialization and

deny has if enforcing one DEO per NPI context is that the
nobody denies of distributions of words that co-occur with DEOs
opposes and denied and piggybackers are different, and that this dif-
highest but denies ference follows from Ladusaw’s hypothesis. In

particular, while DEOs may appear with or with-
out piggybackers in NPI contexts, piggybackers
do not appear without DEOs in NPI contexts, be-
cause Ladusaw’s hypothesis stipulates that a DEO
is required to license the NPI in the first place.
Thus, the presence of a high-scoring DEO candi-
EM/distillation overrides the initialization based date among otherwise low-scoring words is strong
on Ladusaw’s hypothesis and finds another solwevidence that the high-scoring word is not a pig-
tion with a higher data likelihood. We will also gybacker and its high score from the initialization
provide a quantitative analysis of the effects ofs deserved. Conversely, a DEO candidate which
EM/distillation in Section 5. always appears in the presence of other strong
_ oo DEO candidates is likely a piggybacker whose
4 Alternative to EM: Maximizing the initial high score should be discounted.
Posterior Classification Certainty We now describe our heuristic method that is

We have seen that in trying to solve the piggy-based on this intuition. For clarity, we use scores
backer problem, EM/distillation too readily aban-rather than probabilities in the following explana-
dons the initialization based on Ladusaw’s hy!on, though itis equally applicable to either. As
pothesis, leading to an incorrect solution. Insteal? EM/distillation, the method is initialized with
of optimizing the data likelihood, what we need isthe baselineS(y) scores. One iteration of the
a measure of the number of plausible DEO candimethod proceeds as follows. Let the score of the
dates there are in an NPI context, and a methgdirongest DEO candidate in an NPI contgxte:
that reﬁnes_ the scores towards having on_Iy one M (p) = max SL(y), (20)
such plausible candidate per context. To this end, P

we define theclassification certaintyto be the whereS! (y) is the score of candidatgat thetth
product of the maximum posterior classificationteration according to this heuristic method.
probabilities over the DEO candidates. For a set Then, for each word-typeg in each contexp,
of hidden variableg/\ for NPI contexts\/, this  we compare the current scorexpfo the scores of
is the expression: the other words im. If y is currently the strongest
. DEO candidate imp, then we givey credit equal
Certainty(yV|N) = [] max P(y|X). (19)  to the proportional change t (p) if y were re-
XeN moved (Contexp without y is denotedp \ y). A
large change means thatis the only plausible
BEO candidate i, while a small change means
that there are other plausible DEO candidates. If
y is not currently the strongest DEO candidate, it

Figure 2: Top 10 DEOs after iterations of EM on
BLLIP.

To increase this certainty score, we propos
a novel iterative heuristic method for refining
the baseline initializations ofP(Y). Unlike
EM/distillation, our method biases learning to- . .
wards trusting the initialization, but refines therecelves ho credit
scores towards having only one plausible DEO W if S} (y) = M(p)
per context in the training corpus. This is accom-cred(p’ y) = 0 otherwise.
plished by treating the problem as a DEO classi- (1)
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NPI contexts unlikely to be a DEO according to the initializa-
ABC,BC,BC,DC tion.

Original scores 5 Experiments
S(A) =5,5(B) =4,5(C)=1,5(D) =2
We evaluate the performance of these methods on

Updated scores the BLLIP corpus £30M words) and the AFP
Sh(A)=5x(5—-4)/5 =1 portion of the Gigaword corpus-838M words).
Sp(B)=4x (0+2x (4—1)/4)/3 = Following DLDO9, we define an NPI context to
SH(C) =1 x (0+0+0) _0 be all the words to the_left of an NPI, up to the

closest comma or semi-colon, and removed NPI
Sn(D) =2x(2-1)/2 =1 contexts which contain the most common DEQOs

Figure 3: Example of one iteration of the certainty—IIke not We furthgr removed aIIIempty NPI con-

based heuristic on four NPI contexts with four word€Xts or those which only contain other punctua-

in the lexicon. tion. After this filtering, there were 26696 NPI
contexts in BLLIP and 211041 NPI contexts in
AFP, using the same list of 26 NPIs defined by
DLDO09.

) ] ] We first define an automatic measure of per-
Then, the average credit received by egds formance that is common in information retrieval.

a measure of how much we should trust the CUR\e use average precision to quantify how well a

rent score fory. The updated score for each DEOsystem separates DEOs from non-DEOs. Given a

candidate is the original score multiplied by thisIist of known DEOs.(2. and non-DEOs. the aver-
average: age precision of a ranked list of items,, is de-
St fined by the following equation:
571 0) = T < S eredpy). @
Y pEN, AP(X) _ 22:1 P(Xl'__k) X l(ﬂfk € G)

G bl
The probability P11 (Y = y) is then simply |G (24)

S}t (y) normalized:

where P(X;_ i) is the precision of the firsk

t+1
PHYY =¢) = 5’17@) 23) items andl(z; € G) is an indicator function
(Y =y) o (29
> S which is1 if z is in the gold standard list of DEOs
y'eL and0 otherwise.

We iteratively reduce the scores in this fashion PLD09 simply evaluated the top 150 output

to get better estimates of the relative suitability JPEC Ccandidates by their systems, and qualita-

word-types as DEOs. tively judged the precision of the tapeandidates
An example of this method and how it solves?t Various values of up to 150. Average preci-

the piggybacker problem is given in Figure 3. |pSion can be seen as a generalization of this evalu-

this example, we would like to learn th@ and ation procedure that is sensitive to the ranking of
D are DEOsA is a piggybacker, and’ is a fre- DEOs and non-DEOs. For development purposes,

quent word-type, such as a stop word. Using thwe use the list of 150 annotations by DLD09. Of
original scores, piggybacked would appear to these, 90 were DEOs, 30 were not, and 30 were

be the most likely word to be a DEO HoweverCIaSSiﬁed as “other” (they were either difficult to
by noticing that it never occurs on its own with classify, or were other types of non-veridical oper-

words that are unlikely to be DEOSs (in the examators like comparatives or conditionals). We dis-

ple, word(), our heuristic penalized more than carded the 30 “other” items and ignored all items
B and ranksB higher after one iteration. EM MOt in the remaining 120 items when evaluating a
prior re-estimation would not correctly solve this'@nked list of DEO candidates. We call this mea-

example, as it would converge on a solution whergUréA’12o. ,
C receives all of the probability mass because it ' @ddition, we annotated DEO candidates from

appears in all of the contexts, even though it id"€ 10P-150 rankings produced by our certainty-
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absolve, abstain, banish, bereft, boycott, cau- Method | BLLIP APy | AFP APy

tion, clear, coy, delay, denial, desist, devoid, Baseline 879 734
disavow, discount, dispel, disqualify, down- Distillation .946 .785
play, exempt, exonerate, foil, forbid, foregp, This work .955 .809

impossible, inconceivable, irrespective, limit, .
o . . . Table 1: Average precision results on the BLLIP and

mitigate, nip, noone, omit, outweigh, pre- AFP corpora

condition, pre-empt, prerequisite, refute, re- '

move, repel, repulse, scarcely, scotch, scutfle,

seldom, sensitive, shy, sidestep, snuff, thwart,

waive, zero-tolerance

be obtained by examining the data likelihood and
the classification certainty at each iteration of the
algorithms (Figure 5). Whereas EM/distillation
maximizes the former expression, the certainty-
based heuristic method actually decreases data
likelihood for the first couple of iterations before
based heuristic on BLLIP and also by the disincreasing it again. In terms of classification cer-
tillation and heuristic methods on AFP, in ordertainty, EM/distillation converges to a lower classi-
to better evaluate the final output of the methfication certainty score compared to our heuristic
ods. This produced an additional 68 DEOs (nafmethod. Thus, our method better captures the as-
rowly defined) (Figure 4), 58 non-DEOs, and 31sumption of one DEO per NPI context.

“other” items'. Adding the DEOs and non-DEOs .

we found to the 120 items from above, we haV(,§ Bootstrapping to Co-Learn NPIs and

an expanded list of 246 items to rank, and a corre- DEOs

sponding average precision which we cal’24s.  The above experiments show that the heuristic
We employ the frequency cut-offs used bymethod outperforms the EM/distillation method
DLDO9 for sparsity reasons. A word-type musigiven a list of NPIs. We would like to extend
appear at least 10 times in an NPI context anghjs result to novel domains, corpora, and lan-
150 times in the corpus overall to be consideredyyages. DLD09 and DL10 proposed the follow-
We treat BLLIP as a development corpus and us@g bootstrapping algorithm for co-learning NPIs

APy3 on AFP to determine the number of itera-and DEOs given a much smaller list of NPIs as a
tions to run our heuristic (5 iterations for BLLIP gee( set.

and 13 iterations for AFP). We run EM/distillation
for one iteration in development and testing, be- 1. Begin with a small set of seed NPIs
cause more iterations hurt performance, as ex-

Figure 4: Lemmata of DEOs identified in this work not
found by DLDO09.

plained in Section 3. 2. Iterate:

We first report theAP;5 results of our ex- (@) Use the current list of NPIs to learn a
periments on the BLLIP corpus (Table 1 sec- list of DEOs
ond column). Our method outperforms both (b) Use the current list of DEOs to learn a
EM/distillation and the baseline method. These list of NPIs
results are replicated on the final test set from
AFP using the full set of annotationdPy4¢ (Ta- Interestingly, DL10 report that while this

ble 1 third column). Note that the scores are lowemethod works in Romanian data, it does not work
when using all the annotations because there aiethe English BLLIP corpus. They speculate that
more non-DEOs relative to DEOs in this list, mak-the reason might be due to the nature of the En-
ing the ranking task more challenging. glish DEOany, which can occur in all classes of
A better understanding of the algorithms carDE contexts according to an analysis by Haspel-
Tcomplete list will be made publicly available. mat.h (:.ng?)' Further, they find that in Romanian,
5We disagree with DLDO9 thaemoveis not downward-  distillation does not perform better than the base-
entailing; e.g.The detergent removed stains from his clothlineé method during Step (2a). While this linguis-
ing. = The detergent removed stains from his shirts. tic explanation may certainly be a factor, we raise
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Figure 5: Log likelihood and classification certainty prbliies of NPI contexts in two corpora. Thinner lines
near the top are for BLLIP; thicker lines for AFP. Blue dottdzhseline; red dashed: distillation; green solid:
our certainty-based heuristic methoB(X|y) probabilities are not included since they would only regula
constant offset in the log domain.

a second possibility that the distillation algorithmother spurious correlations such as piggybackers
itself may be responsible for these results. As evas discussed earlier. In the other direction, it is
idence, we show that the heuristic algorithm isiot the case that DEOs always or nearly always
able to work in English with just the single seedappear in the context of an NPI. Rather, the most
NPl any, and in fact the bootstrapping approach ircommon collocations of DEOs are the selectional
conjunction with our heuristic even outperformspreferences of the DEO, such as common argu-
the above approaches when using a static list ofients to verbal DEOs, prepositions that are part
NPIs. of the subcategorization of the DEO, and words
In particular, we use the methods described ithat together with the surface form of the DEO
the previous sections for Step (2a), and the follomeomprise an idiomatic expression or multi-word
ing ratio to rank NPI candidates in Step (2b), corexpression. Further, NPIs are more likely to be
responding to the baseline method to detect DEG®mposed of multiple words, while many DEOs

in reverse: are single words, possibly with PP subcategoriza-
/D tok D tion requirements which can be filled in post hoc.

T(z) = 24 (z)/tokens( ), (25) Because of these issues, we cannot trust the ini-
count® () /tokens(C) tialization to learn NPIs nearly as much as with

D DEOs, and cannot use the distillation or certainty
Here, count” (x) refers to the number of oc- : .
. : methods for this step. Rather, the hope is that
currences of NPI candidate in DEO contexts ) S . ., :
learning a noisy list of “pseudo-NPIs”, which of-

D, defined to be the words to the right of a DEO . !
ten occur in negative contexts but may not actu-

operator up to a comma or semi-colon. We do o
P P ally be NPIs, can still improve the performance of

n he EM/distillation or heuristic methods in .
ot use the [distillation or heuristic methods SEO detection.

Step (2b). Learning NPIs from DEOs is & much There are a number of parameters to the method

h I han | ing DEOs f NPIs. . .
arder problem than learning Os from Swhlch we tuned to the BLLIP corpus using

Because DEOs (and other non-veridical opera-
! ( vend P Pio. At the end of Step (2a), we use the cur-

tors) license NPIs, the majority of occurrences o . .
) . . Jorty rent top 25 DEOs plus 5 per iteration as the DEO
NPIs will be in the context of a DEO, modulo am-. L
list for the next step. To the initial seed NPI of

biguity of DEOs such as the free-choiaay and
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Method | BLLIP APi2 | AFP APy be an instance of EM prior re-estimation, our

Baseline| .889 (+.010) | .739 (-.005) method directly addresses the issue of piggyback-
Distillation | .930 (~.016) | .804 (+.019) ers which spuriously correlate with NPIs but are
This work | .962(+.007) | .821(+.012) not downward-entailing. This is achieved by

maximizing the posterior classification certainty

Table 2: Average precision results with bootstrappin . o
on the BLLIP and AFP corpora. Absolute gain in av-%_)f the corpus in a way that respects the initializa-

erage precision compared to using a fixed list of NPIEOM: rather.th.an .maximizing the data likelihood
given in brackets. as in EM/distillation. Our method outperforms

distillation and a baseline method on two corpora
anymore, anything, anytime, avail, bother, as well as in a bootstrapping setting where NPIs
bothered, budge, budged, countenance, fazeand DEOs are jointly learned. It achieves the best
fazed, inkling, iota, jibe, mince, nor, whatsp- performance in the bootstrapping setting, rather
ever, whit than when using a fixed list of NPIs. The perfor-
mance of our algorithm suggests that it is suitable
Figure 6:' Probable NPIs.foynd by bootstrapping usingor other corpora and languages.
the certainty-based heuristic method. Interesting future research directions include
detecting DEOs of more than one word as well as
distinguishing the particular word sense and sub-
categorization that is downward-entailing. An-

any, we add the top 5 ranking NPI candidates apther problem that should be addressed is the
the end of Step (2b) in each subsequent iteratio§COPe of the downward entailment, generalizing
We ran the bootstrapping algorithm for 11 iteraVOrk being done in detecting the scope of nega-
tions for all three algorithms. The final evaluationtion (Councill et al., 2010, for example).

was done on AFP using Psys.

The results show that bootstrapping can inde
improve performance, even in English (Table 2)We would like to thank Cristian Danescu-
Using bootstrapping to co-learn NPIs and DEOSliculescu-Mizil for his help with replicating his
actually results in better performance than specesults on the BLLIP corpus. This project was
ifying a static list of NPIs. The certainty-basedsupported by the Natural Sciences and Engineer
heuristic in particular achieves gains with booting Research Council of Canada.
strapping in both corpora, in contrast to the base-
line and distillation methods. Another factor tha
we found to be important is to add a suﬁicieniReferences
number of NPIs to the NPI list each iteration, ag.uisa Bentivogli, Peter Clark, Ido Dagan, Hoa T.
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