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Abstract

We investigate the problem of domain
adaptation for parallel data in Statistical
Machine Translation (SMT). While tech-
niques for domain adaptation of monolin-
gual data can be borrowed for parallel data,
we explore conceptual differences between
translation model and language model do-
main adaptation and their effect on per-
formance, such as the fact that translation
models typically consist of several features
that have different characteristics and can
be optimized separately. We also explore
adapting multiple (4–10) data sets with no
a priori distinction between in-domain and
out-of-domain data except for an in-domain
development set.

1 Introduction

The increasing availability of parallel corpora
from various sources, welcome as it may be,
leads to new challenges when building a statis-
tical machine translation system for a specific
domain. The task of determining which par-
allel texts should be included for training, and
which ones hurt translation performance, is te-
dious when performed through trial-and-error.
Alternatively, methods for a weighted combina-
tion exist, but there is conflicting evidence as to
which approach works best, and the issue of de-
termining weights is not adequately resolved.

The picture looks better in language mod-
elling, where model interpolation through per-
plexity minimization has become a widespread
method of domain adaptation. We investigate the
applicability of this method for translation mod-
els, and discuss possible applications.

We move the focus away from a binary com-
bination of in-domain and out-of-domain data. If
we can scale up the number of models whose con-
tributions we weight, this reduces the need for a
priori knowledge about the fitness1 of each poten-
tial training text, and opens new research oppor-
tunities, for instance experiments with clustered
training data.

2 Domain Adaptation for Translation
Models

To motivate efforts in domain adaptation, let us
review why additional training data can improve,
but also decrease translation quality.

Adding more training data to a translation sys-
tem is easy to motivate through the data sparse-
ness problem. Koehn and Knight (2001) show
that translation quality correlates strongly with
how often a word occurs in the training corpus.
Rare words or phrases pose a problem in sev-
eral stages of MT modelling, from word align-
ment to the computation of translation probabil-
ities through Maximum Likelihood Estimation.
Unknown words are typically copied verbatim to
the target text, which may be a good strategy for
named entities, but is often wrong otherwise. In
general, more data allows for a better word align-
ment, a better estimation of translation probabili-
ties, and for the consideration of more context (in
phrase-based or syntactic SMT).

A second effect of additional data is not nec-
essarily positive. Translations are inherently am-
biguous, and a strong source of ambiguity is the

1We borrow this term from early evolutionary biology to
emphasize that the question in domain adaptation is not how
“good” or “bad” the data is, but how well-adapted it is to the
task at hand.
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domain of a text. The German word “Wort” (engl.
word) is typically translated as floor in Europarl,
a corpus of Parliamentary Proceedings (Koehn,
2005), owing to the high frequency of phrases
such as you have the floor, which is translated into
German as Sie haben das Wort. This translation
is highly idiomatic and unlikely to occur in other
contexts. Still, adding Europarl as out-of-domain
training data shifts the probability distribution of
p(t|“Wort”) in favour of p(“floor”|“Wort”), and
may thus lead to improper translations.

We will refer to the two problems as the data
sparseness problem and the ambiguity problem.
Adding out-of-domain data typically mitigates the
data sparseness problem, but exacerbates the am-
biguity problem. The net gain (or loss) of adding
more data changes from case to case. Because
there are (to our knowledge) no tools that predict
this net effect, it is a matter of empirical investi-
gation (or, in less suave terms, trial-and-error), to
determine which corpora to use.2

From this understanding of the reasons for and
against out-of-domain data, we formulate the fol-
lowing hypotheses:

1. A weighted combination can control the con-
tribution of the out-of-domain corpus on the
probability distribution, and thus limit the
ambiguity problem.

2. A weighted combination eliminates the need
for data selection, offering a robust baseline
for domain-specific machine translation.

We will discuss three mixture modelling tech-
niques for translation models. Our aim is to adapt
all four features of the standard Moses SMT trans-
lation model: the phrase translation probabilities
p(t|s) and p(s|t), and the lexical weights lex(t|s)
and lex(s|t).3

2.1 Linear Interpolation

A well-established approach in language mod-
elling is the linear interpolation of several mod-
els, i.e. computing the weighted average of the in-

2A frustrating side-effect is that these findings rarely gen-
eralize. For instance, we were unable to reproduce the find-
ing by Ceauşu et al. (2011) that patent translation systems
are highly domain-sensitive and suffer from the inclusion of
parallel training data from other patent subdomains.

3We can ignore the fifth feature, the phrase penalty,
which is a constant.

dividual model probabilities. It is defined as fol-
lows:

p(x|y;λ) =

n∑
i=1

λipi(x|y) (1)

with λi being the interpolation weight of each
model i, and with (

∑
i λi) = 1.

For SMT, linear interpolation of translation
models has been used in numerous systems. The
approaches diverge in how they set the inter-
polation weights. Some authors use uniform
weights (Cohn and Lapata, 2007), others em-
pirically test different interpolation coefficients
(Finch and Sumita, 2008; Yasuda et al., 2008;
Nakov and Ng, 2009; Axelrod et al., 2011), others
apply monolingual metrics to set the weights for
TM interpolation (Foster and Kuhn, 2007; Koehn
et al., 2010).

There are reasons against all these approaches.
Uniform weights are easy to implement, but give
little control. Empirically, it has been shown that
they often do not perform optimally (Finch and
Sumita, 2008; Yasuda et al., 2008). An opti-
mization of BLEU scores on a development set is
promising, but slow and impractical. There is no
easy way to integrate linear interpolation into log-
linear SMT frameworks and perform optimization
through MERT. Monolingual optimization objec-
tives such as language model perplexity have the
advantage of being well-known and readily avail-
able, but their relation to the ambiguity problem
is indirect at best.

Linear interpolation is seemingly well-defined
in equation 1. Still, there are a few implemen-
tation details worth pointing out. If we directly
interpolate each feature in the translation model,
and define the feature values of non-occurring
phrase pairs as 0, this disregards the meaning of
each feature. If we estimate p(x|y) via MLE as in
equation 2, and c(y) = 0, then p(x|y) is strictly
speaking undefined. Alternatively to a naive al-
gorithm, which treats unknown phrase pairs as
having a probability of 0, which results in a defi-
cient probability distribution, we propose and im-
plement the following algorithm. For each value
pair (x, y) for which we compute p(x|y), we re-
place λi with 0 for all models i with p(y) =
0, then renormalize the weight vector λ to 1.
We do this for p(t|s) and lex(t|s), but not for
p(s|t) and lex(s|t), the reasoning being the con-
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sequences for perplexity minimization (see sec-
tion 2.4). Namely, we do not want to penalize
a small in-domain model for having a high out-
of-vocabulary rate on the source side, but we do
want to penalize models that know the source
phrase, but not its correct translation. A sec-
ond modification pertains to the lexical weights
lex(s|t) and lex(t|s), which form no true proba-
bility distribution, but are derived from the indi-
vidual word translation probabilities of a phrase
pair (see (Koehn et al., 2003)). We propose to
not interpolate the features directly, but the word
translation probabilities which are the basis of the
lexical weight computation. The reason for this is
that word pairs are less sparse than phrase pairs,
so that we can even compute lexical weights for
phrase pairs which are unknown in a model.4

2.2 Weighted Counts
Weighting of different corpora can also be imple-
mented through a modified Maximum Likelihood
Estimation. The traditional equation for MLE is:

p(x|y) =
c(x, y)

c(y)
=

c(x, y)∑
x′ c(x′, y)

(2)

where c denotes the count of an observation, and
p the model probability. If we generalize the for-
mula to compute a probability from n corpora,
and assign a weight λi to each, we get5:

p(x|y;λ) =

∑n
i=1 λici(x, y)∑n

i=1

∑
x′ λici(x′, y)

(3)

The main difference to linear interpolation is
that this equation takes into account how well-
evidenced a phrase pair is. This includes the dis-
tinction between lack of evidence and negative ev-
idence, which is missing in a naive implementa-
tion of linear interpolation.

Translation models trained with weighted
counts have been discussed before, and have
been shown to outperform uniform ones in some
settings. However, researchers who demon-
strated this fact did so with arbitrary weights (e.g.
(Koehn, 2002)), or by empirically testing differ-
ent weights (e.g. (Nakov and Ng, 2009)). We do
not know of any research on automatically deter-
mining weights for this method, or which is not
limited to two corpora.

4For instance if the word pairs (the,der) and (man,Mann)
are known, but the phrase pair (the man, der Mann) is not.

5Unlike equation 1, equation 3 does not require that
(
∑

i λi) = 1.

2.3 Alternative Paths

A third method is using multiple translation mod-
els as alternative decoding paths (Birch et al.,
2007), an idea which Koehn and Schroeder (2007)
first used for domain adaptation. This approach
has the attractive theoretical property that adding
new models is guaranteed to lead to equal or bet-
ter performance, given the right weights. At best,
a model is beneficial with appropriate weights. At
worst, we can set the feature weights so that the
decoding paths of one model are never picked for
the final translation. In practice, each translation
model adds 5 features and thus 5 more dimensions
to the weight space, which leads to longer search,
search errors, and/or overfitting. The expectation
is that, at least with MERT, using alternative de-
coding paths does not scale well to a high number
of models.

A suboptimal choice of weights is not the only
weakness of alternative paths, however. Let us
assume that all models have the same weights.
Note that, if a phrase pair occurs in several mod-
els, combining models through alternative paths
means that the decoder selects the path with the
highest probability, whereas with linear interpo-
lation, the probability of the phrase pair would
be the (weighted) average of all models. Select-
ing the highest-scoring phrase pair favours statis-
tical outliers and hence is the less robust decision,
prone to data noise and data sparseness.

2.4 Perplexity Minimization

In language modelling, perplexity is frequently
used as a quality measure for language models
(Chen and Goodman, 1998). Among other appli-
cations, language model perplexity has been used
for domain adaptation (Foster and Kuhn, 2007).
For translation models, perplexity is most closely
associated with EM word alignment (Brown et
al., 1993) and has been used to evaluate different
alignment algorithms (Al-Onaizan et al., 1999).

We investigate translation model perplexity
minimization as a method to set model weights
in mixture modelling. For the purpose of opti-
mization, the cross-entropy H(p), the perplexity
2H(p), and other derived measures are equivalent.
The cross-entropy H(p) is defined as:6

6See (Chen and Goodman, 1998) for a short discussion
of the equation. In short, a lower cross-entropy indicates that
the model is better able to predict the development set.
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H(p) = −
∑
x,y

p̃(x, y) log2 p(x|y) (4)

The phrase pairs (x, y) whose probability we
measure, and their empirical probability p̃ need
to be extracted from a development set, whereas
p is the model probability. To obtain the phrase
pairs, we process the development set with the
same word alignment and phrase extraction tools
that we use for training, i.e. GIZA++ and heuris-
tics for phrase extraction (Och and Ney, 2003).
The objective function is the minimization of the
cross-entropy, with the weight vector λ as argu-
ment:

λ̂ = arg min
λ

−
∑
x,y

p̃(x, y) log2 p(x|y;λ) (5)

We can fill in equations 1 or 3 for p(x|y;λ). The
optimization itself is convex and can be done with
off-the-shelf software.7 We use L-BFGS with
numerically approximated gradients (Byrd et al.,
1995).

Perplexity minimization has the advantage that
it is well-defined for both weighted counts and lin-
ear interpolation, and can be quickly computed.
Other than in language modelling, where p(x|y)
is the probability of a word given a n-gram his-
tory, conditional probabilities in translation mod-
els express the probability of a target phrase given
a source phrase (or vice versa), which connects
the perplexity to the ambiguity problem. The
higher the probability of “correct” phrase pairs,
the lower the perplexity, and the more likely
the model is to successfully resolve the ambigu-
ity. The question is in how far perplexity min-
imization coincides with empirically good mix-
ture weights.8 This depends, among others, on
the other model components in the SMT frame-
work, for instance the language model. We will
not evaluate perplexity minimization against em-
pirically optimized mixture weights, but apply it
in situations where the latter is infeasible, e.g. be-
cause of the number of models.

7A quick demonstration of convexity: equation 1 is
affine; equation 3 linear-fractional. Both are convex in the
domain R>0. Consequently, equation 4 is also convex be-
cause it is the weighted sum of convex functions.

8There are tasks for which perplexity is known to be un-
reliable, e.g. for comparing models with different vocabular-
ies. However, such confounding factors do not affect the op-
timization algorithm, which works with a fixed set of phrase
pairs, and merely varies λ.

Our main technical contributions are as fol-
lows: Additionally to perplexity optimization for
linear interpolation, which was first applied by
Foster et al. (2010), we propose perplexity opti-
mization for weighted counts (equation 3), and a
modified implementation of linear interpolation.
Also, we independently perform perplexity mini-
mization for all four features of the standard SMT
translation model: the phrase translation proba-
bilities p(t|s) and p(s|t), and the lexical weights
lex(t|s) and lex(s|t).

3 Other Domain Adaptation Techniques

So far, we discussed mixture modelling for trans-
lation models, which is only a subset of domain
adaptation techniques in SMT.

Mixture-modelling for language models is well
established (Foster and Kuhn, 2007). Language
model adaptation serves the same purpose as
translation model adaptation, i.e. skewing the
probability distribution in favour of in-domain
translations. This means that LM adaptation may
have similar effects as TM adaptation, and that
the two are to some extent redundant. Foster and
Kuhn (2007) find that “both TM and LM adap-
tation are effective”, but that “combined LM and
TM adaptation is not better than LM adaptation
on its own”.

A second strand of research in domain adap-
tation is data selection, i.e. choosing a subset of
the training data that is considered more relevant
for the task at hand. This has been done for lan-
guage models using techniques from information
retrieval (Zhao et al., 2004), or perplexity (Lin et
al., 1997; Moore and Lewis, 2010). Data selec-
tion has also been proposed for translation mod-
els (Axelrod et al., 2011). Note that for transla-
tion models, data selection offers an unattractive
trade-off between the data sparseness and the am-
biguity problem, and that the optimal amount of
data to select is hard to determine.

Our discussion of mixture-modelling is rela-
tively coarse-grained, with 2-10 models being
combined. Matsoukas et al. (2009) propose an ap-
proach where each sentence is weighted accord-
ing to a classifier, and Foster et al. (2010) ex-
tend this approach by weighting individual phrase
pairs. These more fine-grained methods need not
be seen as alternatives to coarse-grained ones.
Foster et al. (2010) combine the two, apply-
ing linear interpolation to combine the instance-
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weighted out-of-domain model with an in-domain
model.

4 Evaluation

Apart from measuring the performance of the ap-
proaches introduced in section 2, we want to in-
vestigate the following open research questions.

1. Does an implementation of linear interpola-
tion that is more closely tailored to trans-
lation modelling outperform a naive imple-
mentation?

2. How do the approaches perform outside a
binary setting, i.e. when we do not work
with one in-domain and one out-of-domain
model, but with a higher number of models?

3. Can we apply perplexity minimization to
other translation model features such as the
lexical weights, and if yes, does a separate
optimization of each translation model fea-
ture improve performance?

4.1 Data and Methods

In terms of tools and techniques used, we mostly
adhere to the work flow described for the WMT
2011 baseline system9. The main tools are Moses
(Koehn et al., 2007), SRILM (Stolcke, 2002), and
GIZA++ (Och and Ney, 2003), with settings as
described in the WMT 2011 guide. We report
two translation measures: BLEU (Papineni et al.,
2002) and METEOR 1.3 (Denkowski and Lavie,
2011). All results are lowercased and tokenized,
measured with five independent runs of MERT
(Och and Ney, 2003) and MultEval (Clark et al.,
2011) for resampling and significance testing.

We compare three baselines and four transla-
tion model mixture techniques. The three base-
lines are a purely in-domain model, a purely out-
of-domain model, and a model trained on the con-
catenation of the two, which corresponds to equa-
tion 3 with uniform weights. Additionally, we
evaluate perplexity optimization with weighted
counts and the two implementations of linear in-
terpolation contrasted in section 2.1. The two lin-
ear interpolations that are contrasted are a naive
one, i.e. a direct, unnormalized interpolation of

9http://www.statmt.org/wmt11/baseline.
html

Data set sentences words (fr)
Alpine (in-domain) 220k 4 700k
Europarl 1 500k 44 000k
JRC Acquis 1 100k 24 000k
OpenSubtitles v2 2 300k 18 000k
Total train 5 200k 91 000k
Dev 1424 33 000
Test 991 21 000

Table 1: Parallel data sets for German – French trans-
lation task.

Data set sentences words
Alpine (in-domain) 650k 13 000k
News-commentary 150k 4 000k
Europarl 2 000k 60 000k
News 25 000k 610 000k
Total 28 000k 690 000k

Table 2: Monolingual French data sets for German –
French translation task.

all translation model features, and a modified one
that normalizes λ for each phrase pair (s, t) for
p(t|s) and recomputes the lexical weights based
on interpolated word translation probabilites. The
fourth weighted combination is using alternative
decoding paths with weights set through MERT.
The four weighted combinations are evaluated
twice: once applied to the original four or ten par-
allel data sets, once in a binary setting in which
all out-of-domain data sets are first concatenated.

Since we want to concentrate on translation
model domain adaptation, we keep other model
components, namely word alignment and the lex-
ical reordering model, constant throughout the ex-
periments. We contrast two language models. An
unadapted, out-of-domain language model trained
on data sets provided for the WMT 2011 transla-
tion task, and an adapted language model which is
the linear interpolation of all data sets, optimized
for minimal perplexity on the in-domain develop-
ment set.

While unadapted language models are becom-
ing more rare in domain adaptation research, they
allow us to contrast different TM mixtures with-
out the effect on performance being (partially)
hidden by language model adaptation with the
same effect.

The first data set is a DE–FR translation sce-
nario in the domain of mountaineering. The in-
domain corpus is a collection of Alpine Club pub-
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lications (Volk et al., 2010). As parallel out-of-
domain dataset, we use Europarl, a collection of
parliamentary proceedings (Koehn, 2005), JRC-
Acquis, a collection of legislative texts (Stein-
berger et al., 2006), and OpenSubtitles v2, a par-
allel corpus extracted from film subtitles10 (Tiede-
mann, 2009). For language modelling, we use in-
domain data and data from the 2011 Workshop
on Statistical Machine Translation. The respec-
tive sizes of the data sets are listed in tables 1 and
2.

As the second data set, we use the Haitian Cre-
ole – English data from the WMT 2011 featured
translation task. It consists of emergency SMS
sent in the wake of the 2010 Haiti earthquake.
Originally, Microsoft Research and CMU oper-
ated under severe time constraints to build a trans-
lation system for this language pair. This limits
the ability to empirically verify how much each
data set contributes to translation quality, and in-
creases the importance of automated and quick
domain adaptation methods.

Note that both data sets have a relatively high
ratio of in-domain to out-of-domain parallel train-
ing data (1:20 for DE–EN and 1:5 for HT–EN)
Previous research has been performed with ratios
of 1:100 (Foster et al., 2010) or 1:400 (Axelrod
et al., 2011). Since domain adaptation becomes
more important when the ratio of IN to OUT is
low, and since such low ratios are also realistic11,
we also include results for which the amount of
in-domain parallel data has been restricted to 10%
of the available data set.

We used the same development set for lan-
guage/translation model adaptation and setting
the global model weights with MERT. While it
is theoretically possible that MERT will give too
high weights to models that are optimized on the
same development set, we found no empirical evi-
dence for this in experiments with separate devel-
opment sets.

4.2 Results

The results are shown in tables 5 and 6. In the
DE–FR translation task, results vary between 13.5
and 18.9 BLEU points; in the HT–EN task, be-
tween 24.3 and 33.8. Unsurprisingly, an adapted

10http://www.opensubtitles.org
11We predict that the availability of parallel data will

steadily increase, most data being out-of-domain for any
given task.

Data set units words (en)
SMS (in-domain) 16 500 380 000
Medical 1 600 10 000
Newswire 13 500 330 000
Glossary 35 700 90 000
Wikipedia 8 500 110 000
Wikipedia NE 10 500 34 000
Bible 30 000 920 000
Haitisurf dict 3 700 4000
Krengle dict 1 600 2 600
Krengle 650 4 200
Total train 120 000 1 900 000
Dev 900 22 000
Test 1274 25 000

Table 3: Parallel data sets for Haiti Creole – English
translation task.

Data set sentences words
SMS (in-domain) 16k 380k
News 113 000k 2 650 000k

Table 4: Monolingual English data sets for Haiti Cre-
ole – English translation task.

LM performs better than an out-of-domain one,
and using all available in-domain parallel data is
better than using only part of it. The same is not
true for out-of-domain data, which highlights the
problem discussed in the introduction. For the
DE–FR task, adding 86 million words of out-of-
domain parallel data to the 5 million in-domain
data set does not lead to consistent performance
gains. We observe a decrease of 0.3 BLEU points
with an out-of-domain LM, and an increase of 0.4
BLEU points with an adapted LM. The out-of-
domain training data has a larger positive effect
if less in-domain data is available, with a gain of
1.4 BLEU points. The results in the HT–EN trans-
lation task (table 6) paint a similar picture. An
interesting side note is that even tiny amounts of
in-domain parallel data can have strong effects on
performance. A training set of 1600 emergency
SMS (38 000 tokens) yields a comparable perfor-
mance to an out-of-domain data set of 1.5 million
tokens.

As to the domain adaptation experiments,
weights optimized through perplexity minimiza-
tion are significantly better in the majority of
cases, and never significantly worse, than uniform
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System
out-of-domain LM adapted LM

full IN TM full IN TM small IN TM
BLEU METEOR BLEU METEOR BLEU METEOR

in-domain 16.8 35.9 17.9 37.0 15.7 33.5
out-of-domain 13.5 31.3 14.8 32.3 14.8 32.3
counts (concatenation) 16.5 35.7 18.3 37.3 17.1 35.4
binary in/out
weighted counts 17.4 36.6 18.7 37.9 17.6 36.2
linear interpolation (naive) 17.4 36.7 18.8 37.9 17.6 36.1
linear interpolation (modified) 17.2 36.5 18.9 38.0 17.6 36.2
alternative paths 17.2 36.5 18.6 37.8 17.4 36.0
4 models
weighted counts 17.3 36.6 18.8 37.8 17.4 36.0
linear interpolation (naive) 17.1 36.5 18.5 37.7 17.3 35.9
linear interpolation (modified) 17.2 36.5 18.7 37.9 17.3 36.0
alternative paths 17.0 36.2 18.3 37.4 16.3 35.1

Table 5: Domain adaptation results DE–FR. Domain: Alpine texts. Full IN TM: Using the full in-domain parallel
corpus; small IN TM: using 10% of available in-domain parallel data.

weights.12 However, the difference is smaller for
the experiments with an adapted language model
than for those with an out-of-domain one, which
confirms that the benefit of language model adap-
tation and translation model adaptation are not
fully cumulative. Performance-wise, there seems
to be no clear winner between weighted counts
and the two alternative implementations of lin-
ear interpolation. We can still argue for weighted
counts on theoretical grounds. A weighted MLE
(equation 3) returns a true probability distribution,
whereas a naive implementation of linear interpo-
lation results in a deficient model. Consequently,
probabilities are typically lower in the naively in-
terpolated model, which results in higher (worse)
perplexities. While the deficiency did not affect
MERT or decoding negatively, it might become
problematic in other applications, for instance if
we want to use an interpolated model as a compo-
nent in a second perplexity-based combination of
models.13

When moving from a binary setting with
one in-domain and one out-of-domain transla-
tion model (trained on all available out-of-domain
data) to 4–10 translation models, we observe a
serious performance degradation for alternative
paths, while performance of the perplexity opti-

12This also applies to linear interpolation with uniform
weights, which is not shown in the tables.

13Specifically, a deficient model would be dispreferred by
the perplexity minimization algorithm.

mization methods does not change significantly.
This is positive for perplexity optimization be-
cause it demonstrates that it requires less a priori
information, and opens up new research possibil-
ities, i.e. experiments with different clusterings of
parallel data. The performance degradation for
alternative paths is partially due to optimization
problems in MERT, but also due to a higher sus-
ceptibility to statistical outliers, as discussed in
section 2.3.14

A pessimistic interpretation of the results
would point out that performance gains compared
to the best baseline system are modest or even
inexistent in some settings. However, we want
to stress two important points. First, we often
do not know a priori whether adding an out-of-
domain data set boosts or weakens translation per-
formance. An automatic weighting of data sets re-
duces the need for trial-and-error experimentation
and is worthwhile even if a performance increase
is not guaranteed. Second, the potential impact
of a weighted combination depends on the trans-
lation scenario and the available data sets. Gen-
erally, we expect non-uniform weighting to have
a bigger impact when the models that are com-
bined are more dissimilar (in terms of fitness for
the task), and if the ratio of in-domain to out-of-
domain data is low. Conversely, there are situa-

14We empirically verified this weakness in a synthetic ex-
periment with a randomly split training corpus and identical
weights for each path.
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System
out-of-domain LM adapted LM

full IN TM full IN TM small IN TM
BLEU METEOR BLEU METEOR BLEU METEOR

in-domain 30.4 30.7 33.4 31.7 29.7 28.6
out-of-domain 24.3 28.0 28.9 30.2 28.9 30.2
counts (concatenation) 30.3 31.2 33.6 32.4 31.3 31.3
binary in/out
weighted counts 31.0 31.6 33.8 32.4 31.5 31.3
linear interpolation (naive) 30.8 31.4 33.7 32.4 31.9 31.3
linear interpolation (modified) 30.8 31.5 33.7 32.4 31.7 31.2
alternative paths 30.8 31.3 33.2 32.4 29.8 30.7
10 models
weighted counts 31.0 31.5 33.5 32.3 31.8 31.5
linear interpolation (naive) 30.9 31.4 33.8 32.4 31.9 31.3
linear interpolation (modified) 31.0 31.6 33.8 32.5 32.1 31.5
alternative paths 25.9 29.2 24.3 29.1 29.8 30.9

Table 6: Domain adaptation results HT–EN. Domain: emergency SMS. Full IN TM: Using the full in-domain
parallel corpus; small IN TM: using 10% of available in-domain parallel data.

tions where we actually expect a simple concate-
nation to be optimal, e.g. when the data sets have
very similar probability distributions.

4.2.1 Individually Optimizing Each TM
Feature

It is hard to empirically show how translation
model perplexity optimization compares to using
monolingual perplexity measures for the purpose
of weighting translation models, as e.g. done by
(Foster and Kuhn, 2007; Koehn et al., 2010). One
problem is that there are many different possible
configurations for the latter. We can use source
side or target side language models, operate with
different vocabularies, smoothing techniques, and
n-gram orders.

One of the theoretical considerations that
favour measuring perplexity on the translation
model rather than using monolingual measures
is that we can optimize each translation model
feature separately. In the default Moses transla-
tion model, the four features are p(s|t), lex(s|t),
p(t|s) and lex(t|s).

We empirically test different optimization
schemes as follows. We optimize perplexity on
each feature independently, obtaining 4 weight
vectors. We then compute one model with one
weight vector per feature (namely the feature that
the vector was optimized on), and four models
that use one of the weight vectors for all features.
A further model uses a weight vector that is the

weights
perplexity

BLEU
1 2 3 4

weighted counts
uniform 5.12 7.68 4.84 13.67 30.3
separate 4.68 6.62 4.24 8.57 31.0
1 4.68 6.84 4.50 10.86 30.3
2 4.78 6.62 4.48 10.54 30.3
3 4.86 7.31 4.24 9.15 30.8
4 5.33 7.87 4.52 8.57 30.9
average 4.72 6.71 4.38 9.95 30.4
linear interpolation (modified)
uniform 19.89 82.78 4.80 10.78 30.6
separate 5.45 8.56 4.28 8.85 31.0
1 5.45 8.79 4.40 8.89 30.8
2 5.71 8.56 4.54 8.91 30.9
3 6.46 11.88 4.28 9.07 31.0
4 6.12 10.86 4.47 8.85 30.9
average 5.73 9.72 4.34 8.89 30.9
LM 6.01 9.83 4.56 8.96 30.8

Table 7: Contrast between a separate optimization of
each feature and applying the weight vector optimized
on one feature to the whole model. HT–EN with out-
of-domain LM.
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average of the other four. For linear interpolation,
we also include a model whose weights have been
optimized through language model perplexity op-
timization, with a 3-gram language model (modi-
fied Knesey-Ney smoothing) trained on the target
side of each parallel data set.

Table 7 shows the results. In terms of BLEU

score, a separate optimization of each feature is a
winner in our experiment in that no other scheme
is better, with 8 of the 11 alternative weighting
schemes (excluding uniform weights) being sig-
nificantly worse than a separate optimization. The
differences in BLEU score are small, however,
since the alternative weighting schemes are gen-
erally felicitious in that they yield both a lower
perplexity and better BLEU scores than uniform
weighting. While our general expectation is that
lower perplexities correlate with higher transla-
tion performance, this relation is complicated by
several facts. Since the interpolated models are
deficient (i.e. their probabilities do not sum to 1),
perplexities for weighted counts and our imple-
mentation of linear interpolation cannot be com-
pard. Also, note that not all features are equally
important for decoding. Their weights in the log-
linear model are set through MERT and vary be-
tween optimization runs.

5 Conclusion

This paper contributes to SMT domain adaptation
research in several ways. We expand on work
by (Foster et al., 2010) in establishing transla-
tion model perplexity minimization as a robust
baseline for a weighted combination of translation
models.15 We demonstrate perplexity optimiza-
tion for weighted counts, which are a natural ex-
tension of unadapted MLE training, but are of lit-
tle prominence in domain adaptation research. We
also show that we can separately optimize the four
variable features in the Moses translation model
through perplexity optimization.

We break with prior domain adaptation re-
search in that we do not rely on a binary clustering
of in-domain and out-of-domain training data. We
demonstrate that perplexity minimization scales
well to a higher number of translation models.
This is not only useful for domain adaptation, but
for various tasks that profit from mixture mod-

15The source code is available in the Moses repository
http://github.com/moses-smt/mosesdecoder

elling. We envision that a weighted combination
could be useful to deal with noisy datasets, or ap-
plied after a clustering of training data.
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