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Abstract 

It is becoming clear that traditional 
evaluation measures used in 
Computational Linguistics (including 
Error Rates, Accuracy, Recall, Precision 
and F-measure) are of limited value for 
unbiased evaluation of systems, and are 
not meaningful for comparison of 
algorithms unless both the dataset and 
algorithm parameters are strictly 
controlled for skew (Prevalence and 
Bias). The use of techniques originally 
designed for other purposes, in particular 
Receiver Operating Characteristics Area 
Under Curve, plus variants of Kappa, 
have been proposed to fill the void.  

This paper aims to clear up some of the 
confusion relating to evaluation, by 
demonstrating that the usefulness of each 
evaluation method is highly dependent on 
the assumptions made about the 
distributions of the dataset and the 
underlying populations. The behaviour of 
a number of evaluation measures is 
compared under common assumptions. 

Deploying a system in a context which 
has the opposite skew from its validation 
set can be expected to approximately 
negate Fleiss Kappa and halve Cohen 
Kappa but leave Powers Kappa 
unchanged. For most performance 
evaluation purposes, the latter is thus 
most appropriate, whilst for comparison 
of behaviour, Matthews Correlation is 
recommended.  

Introduction 

Research in Computational Linguistics usually 
requires some form of quantitative evaluation. A 
number of traditional measures borrowed from 
Information Retrieval (Manning & Schütze, 
1999) are in common use but there has been 
considerable critical evaluation of these measures 
themselves over the last decade or so (Entwisle 
& Powers, 1998, Flach, 2003, Ben-David. 2008). 

Receiver Operating Analysis (ROC) has been 
advocated as an alternative by many,  and in 
particular has been used by Fürnkranz and Flach 
(2005), Ben-David (2008) and Powers (2008) to 
better understand both learning algorithms 
relationship and the between the various 
measures, and the inherent biases that make 
many of them suspect. One of the key advantages 
of ROC is that it provides a clear indication of 
chance level performance as well as a less well 
known indication of the relative cost weighting 
of positive and negative cases for each possible 
system or parameterization represented. 

ROC Area Under the Curve (Fig. 1) has been 
also used as a performance measure but averages 
over the false positive rate (Fallout) and is thus a 
function of cost that is dependent on the 
classifier rather than the application. For this 
reason it has come into considerable criticism 
and a number of variants and alternatives have 
been proposed (e.g. AUK, Kaymak et. Al, 2010 
and H-measure, Hand, 2009). An AUC curve 
that is at least as good as a second curve at all 
points, is said to dominate it and indicates that 
the first classifier is equal or better than the 
second for all plotted values of the parameters, 
and all cost ratios. However AUC being greater 
for one classifier than another does not have such 
a property – indeed deconvexities within or 
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intersections of ROC curves are both prima facie 
evidence that fusion of the parameterized 
classifiers will be useful (cf. Provost and Facett, 
2001; Flach and Wu, 2005). 

AUK stands for Area under Kappa, and 
represents a step in the advocacy of Kappa (Ben-
David, 2008ab) as an alternative to the traditional 
measures and ROC AUC. Powers (2003,2007) 
has also proposed a Kappa-like measure 
(Informedness) and analysed it in terms of ROC, 
and there are many more, Warrens (2010) analyzing 
the relationships between some of the others. 

Systems like RapidMiner (2011) and Weka 
(Witten and Frank, 2005) provide almost all of 
the measures we have considered, and many 
more besides.  This encourages the use of 
multiple measures, and indeed it is now 
becoming routine to display tables  of multiple 
results for each system, and this is in particular 
true for the frameworks of some of the 
challenges and competitions brought to the 
communities (e.g. 2nd i2b2 Challenge in NLP for 
Clinical Data, 2011; 2nd Pascal Challenge on 
HTC, 2011)).  

This use of multiple statistics is no doubt in 
response to the criticism levelled at the 
evaluation mechanisms used in earlier 
generations of competitions and the above 
mentioned critiques, but the proliferation of 
alternate measures in some ways merely 
compounds the problem. Researchers have the 
temptation of choosing those that favour their 
system as they face the dilemma of what to do 
about competing (and often disagreeing) 
evaluation measures that they do not completely 
understand. These systems and competitions also 
exhibit another issue, the tendency to macro-
averages over multiple classes, even of measures 
that are not denominated in class (e.g. that are 
proportions of predicted labels rather than real 
classes, as with Precision). 

This paper is directed at better understanding 
some of these new and old measures as well as  
providing recommendations as to which measures 
are appropriate in which circumstances. 

What’s in a Kappa? 

In this paper we focus on the Kappa family of 
measures, as well as some closely related 
statistics named for other letters of the Greek 
alphabet, and some measures that we will show 
behave as Kappa measures although they were 
not originally defined as such.  These include 
Informedness, Gini Coefficient and single point 

ROC AUC, which are in fact all equivalent to 
DeltaP’ in the dichotomous case, which we deal 
with first, and to the other Kappas when the 
marginal prevalences (or biases) match. 

1.1 Two classes and non-negative Kappa. 

Kappa was originally proposed (Cohen, 1960) to 
compare human ratings in a binary, or 
dichotomous, classification task. Cohen (1960) 
recognized that Rand Accuracy did not take 
chance into account and therefore proposed to 
subtract off the chance level of Accuracy and 
then renormalize to the form of a probability: 
K(Acc) = [Acc – E(Acc)] / [1 – E(Acc)] (1) 

This leaves the question of how to estimate the 
expected Accuracy, E(Acc). Cohen (1960) made 
the assumption that raters would have different 
distributions that could be estimated as  
the products of the corresponding marginal 
coefficients of the contingency table: 

 
 +ve Class −ve Class  
+ve Prediction A=TP B=FP PP 
−ve Prediction C=FN D=TN PN 
Notation RP RN N 
Table 1. Statistical and IR Contingency Notation 

In order to discuss this further it is important 
to discuss our notational conventions, and it is 
noted that in statistics, the letters A-D (upper 
case or lower case) are conventionally used to 
label the cells, and their sums may be used to 
label the marginal cells.  However in the 
literature on ROC analysis, which we follow 
here, it is usual to talk about true and false 
positives (that is positive predictions that are 
correct or incorrect), and conversely true and 
false negatives.  Often upper case is used to 
indicate counts in the contingency table, which 
sum to the number of instances, N. In this case 
lower case letters are used to indicate 
probabilities, which means that the 
corresponding upper case values in the 
contingency table are all divided by N, and n=1.  

Statistics relative to (the total numbers of 
items in) the real classes are called Rates and 
have the number (or proportion) of Real 
Positives (RP) or Real Negatives (RN) in the 
denominator. In this notation, we have Recall = 
TPR = TP/RP. 

Conversely statistics relative to the (number 
of) predictions are called Accuracies, so relative 
to the predictions that label instances positively, 
Predicted Positives (PP), we have Precision = 
TPA = TP/PP.   
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The accuracy of all our predictions, positive or 
negative, is given by Rand Accuracy = 
(TF+TN)/N = tf+tn, and this is what is meant in 
general by the unadorned term Accuracy, or the 
abbreviation Acc. 

Rand Accuracy is the weighted average of 
Precision and Inverse Precision (probability that 
negative predictions are correctly labeled), where 

the weighting is made according to the number 
of predictions made for the corresponding labels. 
Rand Accuracy is also the weighted average of 
Recall and Inverse Recall (probability that 
negative instances are correctly predicted), 
where the weighting is made according to the 
number of instances in the corresponding 
classes. 

The marginal probabilities rp and pp are also 
known as Prevalence (the class prevalence of 
positive instances) and Bias (the label bias to 
positive predictions), and the corresponding 
probabilities of negative classes and labels are 
the Inverse Prevalence and Inverse Bias 
respectively. In the ROC literature, the ratios of 
negative to positive classes is often referred to as 
the class ratio or skew.  We can similarly also 
refer to a label ratio, prediction ratio or 
prediction skew.  Note that optimal performance 
can only be achieved if class skew = label skew. 

The Expected True Positives and Expected 
True Negatives for Cohen Kappa, as well as Chi-
squared significance, are estimated as the 
product of Bias and Prevalence, and the product 
of Inverse Bias and Inverse Prevalence, resp., 
where traditional uses of Kappa for agreement of 
human raters, the contingency table represents 
one rater as providing the classification to be 
predicted by the other rater. Cohen assumes that 
their distribution of ratings are independent, as 
reflected both by the margins and the 
contingencies: ETP = RP*PP; ETN = RN*NN. 
This gives us E(Acc) = (ETP+ETN)/N=etp+etn. 

By contrast the two rater two class form of 
Fleiss (1981) Kappa, also known as Scott Pi, 
assumes that both raters are labeling 
independently using the same distribution, and 
that the margins reflect this potential variation. 
The expected number of positives is thus 
effectively estimated as the average of the two 
raters’ counts, so that EP = (RP+PP)/2, and EN = 
(RN+PN)/2, ETP = EP2 and ETN = EN2. 

1.2 Inverting Kappa 

The definition of Kappa in Eqn (1) can be seen 
to be applicable to arbitrary definitions of 
Expected Accuracy, and in order to discover how 
other measures relate to the family of Kappa 
measures it is useful to invert Kappa to discover 
the implicit definition of Expected Accuracy that 
allows a measure to be interpreted as a form of 
Kappa. We simply make E(Acc) the subject by 
multiplying out Eqn (1) to a common 
denominator and associating factors of E(Acc):  

 
 

Figure 1. Illustration of ROC Analysis. The 
solid diagonal represents chance performance 
for different rates of guessing positive or 
negative labels.  The dotted line represent the 
convex hull enclosing the results of different 
systems, thresholds or parameters tested. The 
(0,0) and (1,1) points represent guessing always 
negative and always positive and are always 
nominal systems in a ROC curve.  The points 
along any straight line segment of a convex hull 
are achievable by probabilistic interpolation of 
the systems at each end, the gradient represents 
the cost ratio and all points along the segment, 
including the endpoints have the same effective 
cost benefit. AUC is the area under the curve 
joining the systems with straight edges and 
AUCH is the area under the convex hull where 
points within it are ignored. The height above 
the chance line of any point represents DeltaP’,  
the Gini Coefficient and also the Dichotomous 
Informedness of the corresponding system, and 
also corresponds to  twice the area of the triangle 
between it and the chance line, and thus 2AUC-1 
where AUC is calculated on this single point 
curve (not shown) joining it to (0,0) and (1,1).  
The (1,0) point represents perfect performance 
with 100% True Positive Rate and 0% False 
Negative Rate.   

!
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K(Acc) = [Acc – E(Acc)] / [1 – E(Acc)] (1) 
E(Acc) = [Acc – K(Acc)] / [1 – K(Acc)] (2) 

Note that for a given value of Acc the function 
connecting E(Acc) and K(Acc) is its own 
inverse: 
E(Acc) = fAcc(K(Acc)) (3) 
K(Acc) = fAcc(E(Acc)) (4) 

For the future we will tend to drop the Acc 
argument or subscript when it is clear, and we 
will also subscript E and K with the name or 
initial of the corresponding definition of 
Expectation and thus Kappa (viz. Fleiss and 
Cohen so far). 

Note that given Acc and E(Acc) are in the 
range of 0..1 as probabilities, Kappa is also 
restricted to this range, and takes the form of a 
probability. 

1.3 Multiclass multirater Kappa 

Fleiss (1981) and others sought to generalize the 
Cohen (1960) definition of Kappa to handle both 
multiple class (not just positive/negative) and 
multiple raters (not just two – one of which we 
have called real and the other prediction).  Fleiss 
in fact generalized Scott’s (1955) Pi in both 
senses, not Cohen Kappa. The Fleiss Kappa is 
not formulated as we have done here for 
exposition, but in terms of pairings (agreements) 
amongst the raters, who are each assumed to 
have rated the same number of items, N, but not 
necessarily all.  Krippendorf’s (1970, 1978) 
effectively generalizes further by dealing with 
arbitrary numbers of raters assessing different 
numbers of items. 

Light (1971) and Hubert (1977) successfully 
generalized Cohen Kappa. Another approach to 
estimating E(Acc) was taken by Bennett et al 
(1955) which basically assumed all classes were 
equilikely (effectively what use of Accuracy, F-
Measure etc. do, although they don’t subtract off 
the chance component).  

The Bennett Kappa was generalized by 
Randolph (2005), but as our starting point is that 
we need to take the actual margins into account, 
we do not pursue these further.  However, 
Warrens (2010a) shows that, under certain 
conditions, Fleiss Kappa is a lower bound of 
both the Hubert generalization of Cohen Kappa 
and the Randolph generalization of Bennet 
Kappa, which is itself correspondingly an upper 
bound of both the Hubert and the Light 
generalizations of Cohen Kappa. Unfortunately 
the conditions are that there is some agreement 
between the class and label skews (viz. the 

prevalence and bias of each class/label). Our 
focus in this paper is the behaviour of the various 
Kappa measures as we move from strongly 
matched to strongly mismatched biases. 

Cohen (1968) also introduced a weighted 
variant of Kappa. We have also discussed cost 
weighting in the context of ROC, and Hand 
(2009) seeks to improve on ROC AUC by 
introducing a beta distribution as an estimated 
cost profile, but we will not discuss them further 
here as we are more interested in the 
effectiveness of the classifer overall rather than 
matching a particular cost profile, and are 
skeptical about any generic cost distribution.  In 
particular the beta distribution gives priority to 
central tendency rather than boundary conditions, 
but boundary conditions are frequently 
encountered in optimization.  Similarly Kaymak 
et al.’s (2010) proposal to replace AUC by AUK 
corresponds to a Cohen Kappa reweighting of 
ROC that eliminates many of its useful 
properties, without any expectation that the 
measure, as an integration across a surrogate cost 
distribution, has any validity for system 
selection.  Introducing alternative weights is also 
allowed in the definition of F-Measure, although 
in practice this is almost invariably employed as 
the equally weighted harmonic mean of Recall 
and Precision. Introducing additional weight or 
distribution parameters, just multiplies the 
confusion as to which measure to believe. 

Powers (2003) derived a further multiclass 
Kappa-like measure from first principles, 
dubbing it Informedness, based on an analogy of 
Bookmaker associating costs/payoffs based on 
the odds. This is then proven to measure the 
proportion of time (or probability) a decision is 
informed versus random, based on the same 
assumptions re expectation as Cohen Kappa, and 
we will thus call it Powers Kappa, and derive an 
formulation of the corresponding expectation. 

Powers (2007) further identifies that the 
dichotomous form of Powers Kappa is equivalent 
to the Gini cooefficient as a deskewed version of 
the weighted Relative Accuracy proposed by 
Flach (2003) based on his analysis and 
deskewing of common evaluation measures in 
the ROC paradigm. Powers (2007) also identifies 
that Dichotomous Informedness is equivalent to 
an empirically derived psychological measure 
called DeltaP’ (Perruchet et al. 2004). DeltaP’ 
(and its dual DeltaP) were derived based on 
analysis of human word association data – the 
combination of this empirical observation with 
the place of DeltaP’ as the dichotomous case of 
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Powers’ ‘Informedness’ suggests that human 
association is in some sense optimal. Powers 
(2007) also introduces a dual of Informedness 
that he names Markedness, and shows that the 
geometric mean of Informedness and 
Markedness is Matthews Correlation, the 
nominal analog of Pearson Correlation. 

Powers’ Informedness is in fact a variant of 
Kappa with some similarities to Cohen Kappa, 
but also some advantages over both Cohen and 
Fleiss Kappa due to its asymmetric relation with 
Recall, in the dichotomous form of Powers (2007), 
Informedness =  Recall + InverseRecall – 1 
                       = (Recall – Bias) / (1 – Prevalence). 

If we think of Kappa as assessing the 
relationship between two raters, Powers’ statistic 
is not evenhanded and the Informedness and 
Markedness duals measure the two directions of 
prediction, normalizing Recall and Precision.  In 
fact, the relationship with Correlation allows 
these to be interpreted as regression coefficients 
for the prediction function and its inverse. 

1.4 Kappa vs Correlation 
It is often asked why we don’t just use 
Correlation to measure.  In fact, Castellan (1996) 
uses Tetrachoric Correlation, another 
generalization of Pearson Correlation that 
assumes that the two class variables are given by 
underlying normal distributions.  Uebersax 
(1987), Hutchison (1993) and Bonnet and Price 
(2005) each compare Kappa and Correlation and 
conclude that there does not seem to be any 
situation where Kappa would be preferable to 
Correlation. However all the Kappa and 
Correlation variants considered were symmetric, 
and it is thus interesting to consider the separate 
regression coefficients underlying it that 
represent the Powers Kappa duals of 
Informedness and Markedness, which have the 
advantage of separating out the influences of 
Prevalence and Bias (which then allows macro-
averaging, which is not admissable for any 
symmetric form of Correlation or Kappa, as we 
will discuss shortly).  Powers (2007) regards 
Matthews Correlation as an appropriate measure 
for symmetric situations (like rater agreement) 
and generalizes the relationships between 
Correlation and Significance to the Markedness 
and Informedness Measures. The differences 
between Informedness and Markedness, which 
relate to mismatches in Prevalence and Bias, 
mean that the pair of numbers provides further 
information about the nature of the relationship 
between the two classifications or raters, whilst 

the ability to take the geometric mean (of macro-
averaged) Informedness and Markedness means 
that a single Correlation can be provided when 
appropriate. 

Our aim now is therefore to characterize 
Informedness (and hence as its dual Markedness) 
as a Kappa measure in relation to the families of 
Kappa measures represented by Cohen and Fleiss 
Kappa in the dichotomous case.  Note that 
Warrens (2011) shows that a linearly weighted 
versions of Cohen’s (1968) Kappa is in fact a 
weighted average of dichotomous Kappas.  
Similarly Powers (2003) shows that his Kappa 
(Informedness) has this property.  Thus it is 
appropriate to consider the dichotomous case, 
and from this we can generalize as required. 

1.5 Kappa vs Determinant 

Warrens (2010c) discusses another commonly 
used measure, the Odds Ratio ad/bc (in 
Epidemiology rather than Computer Science or 
Computational Linguistics). Closely related to 
this is the Determinant of the Contingency 
Matrix dtp = ad-bc = etp-etn (in the Chi-Sqr, 
Cohen and Powers sense based on independent 
marginal probabilities).  Both show whether the 
odds favour positives over negatives more for the 
first rater (real) than the second (predicted) – for 
the ratio it is if it is greater than one, for the 
difference it is if it is greater than 0. Note that 
taking logs of all coefficients would maintain the 
same relationship and that the difference of the 
logs corresponds to the log of the ratio, mapping 
into the information domain. 

Warrens (2010c) further shows (in cost-
weighted form) that Cohen Kappa is given by the 
following (in the notation of this paper, but 
preferring the notations Prevalence and Inverse 
Prevalence to rp and rn for clarity): 
KC = dtp/[(Prev*IBias+Bias*IPrev)/2]. (5) 

Based on the previous characterization of 
Fleiss Kappa, we can further characterize it by 
KF = dtp/[(Prev+Bias)*(IBias+IPrev)/4]. (6) 

Powers (2007) also showed corresponding 
formulations for Bookmaker Informedness (B, or 
Powers Kappa = KP), Markedness and Matthews 
Correlation: 
B  = dtp/[(Prev*IPrev)]. (7) 
M = dtp/[(Bias*IBias)]. (8) 
C  = dtp/[√(Prev*IPrev*Bias*IBias)]. (9) 

These elegant dichotomous forms are 
straightforward, with the independence 
assumptions on Bias and Prevalence clear in 
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Cohen Kappa, the arithmetic means of Bias and 
Prevalence clear in Fleiss Kappa, and the  
geometric means of Bias and Prevalence in the 
Matthews Correlation.  Further the independence 
of Bias is apparent for Powers Kappa in the 
Informedness form, and independence of 
Prevalence is clear in the Markedness direction. 

Note that the names Powers uses suggest that 
we are measuring something about the 
information conveyed by the prediction about the 
class in the case of Informedness, and the 
information conveyed to the predictor by the 
class state in the case of Markedness. To the 
extent that Prevalence and Bias can be controlled 
independently, Informedness and Markedness are 
independent and Correlation represents the joint 
probability of information being passed in both 
directions! Powers (2007) further proposes using 
log formulations of these measures to take them 
into the information domain, as well as relating 
them to mutual information, G-squared and chi-
squared significance. 

1.6 Kappa vs Concordance 

The pairwise approach used by Fleiss Kappa and 
its relatives does not assume raters use a 
common distribution, but does assume they are 
using the same set, and number of categories.  
When undertaking comparison of unconstrained 
ratings or unsupervised learning, this constraint 
is removed and we need to use a measure of 
concordance to compare clusterings against each 
other or against a Gold Standard.  Some of the 
concordance measures use operators in 
probability space and relate closely to the 
techniques here, whilst others operate in 
information space. See Pfitzner et al. (2009) for 
reviews of clustering comparison/concordance. 

A complete coverage of evaluation would also 
cover significance and the multiple testing 
problem, but we will confine our focus in this 
paper to the issue of choice of Kappa or 
Correlation statistic, as well as addressing some 
issues relating to the use of macro-averaging. In 
this paper we are regarding the choice of Bias as 
under the control of the experimenter, as we have 
a focus on learned or hand crafted computational 
linguistics systems.  In fact, when we are using 
bootstrapping techniques or dealing with 
multiple real samples or different subjects or 
ecosystems, Prevalence may also vary. Thus the 
simple marginal assumptions of Cohen or 
Powers statistics are the appropriate ones. 

1.7 Averaging 
We now consider the issue of dealing with 
multiple measures and results of multiple 
classifiers by averaging.  We first consider 
averages of some of the individual measures we 
have seen. The averages need not be arithmetic 
means, or may represent means over the 
Prevalences and Biases. 

We will be punctuating our theoretical 
discussions and explanations with empirical 
demonstrations where we use 1:1 and 4:1 
prevalence versus matching and mismatching 
bias to generate the chance level contingency 
based on marginal independence.  We then mix 
in a proportion of informed decisions, with the 
remaining decisions made by chance.   

Table 2 compares Accuracy and F-Measure 
for an informed decision percentage of 0, 100, 15 
and -15. Note that Powers Kappa or 
‘Informedness’ purports to recover this 
proportion or probability. 

F-Measure is one of the most common 
measures in Computational Linguistics and 
Information Retrieval, being a Harmonic Mean 
of Recall and Precision, which in the common 
unweighted form also is interpretable with 
respect to a mean of Prevalence and Bias: 
F = tp / [(Prev+Bias)/2] (10) 

Note that like Recall and Precision, F-Measure 
ignores totally cell D corresponding to tn.  This 
is an issue when Prevalence and Bias are uneven 
or mismatched. In Information Retrieval, it is 
often justified on the basis that the number of 
irrelevant documents is large and not precisely 
known, but in fact this is due to lack of 
knowledge of the number of relevant documents, 
which affects Recall. In fact if tn is large with 
respect to both rp and pp, and thus with respect 
to components tp, fp and fn, then both tn/pn and 
tn/rn approach 0 as tn increases without bound. 

As discussed earlier, Rand Accuracy is a 
prevalence (real class) weighted average of 
Precision and Inverse Precision, as well as a bias 
(prediction label) weighted average of Recall and 
Inverse Precision. It reflects the D (tn) cell unlike 
F, and while it does not remove the effect of 
chance it does not have the positive bias of F. 
Acc = tp + fp (11) 

We also point out that the differences between 
the various Kappas shown in Determinant 
normalized form in Eqns (5-9) vary only in the 
way prevalences and biases are averaged 
together in the normalizing denominator. 
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Informed   1:1/1:1 4:1/4:1 4:1/1:4 
Acc 50% 68% 32% 0% F 50% 80% 32% 
Acc 100% 100% 100% 100% F 100% 100% 100% 
Acc 57.5% 72.8% 42.2% 15% F 57.5% 83% 46.97% 
Acc 42.5% 57.8% 27.2% -15% F 42.5% 72% 27.2% 

Table 2. Accuracy and F-Measure for different 
mixes of prevalence and bias skew (odds ratio 

shown) as well as different proportions of correct 
(informed) answers versus guessing – negative 

proportions imply that the informed decisions are 
deliberately made incorrectly (oracle tells me 

what to do and I do the opposite). 

From Table 2 we note that the first set of 
statistics notes the chance level varies from the 
50% expected for Bias=Prevalence=50%. This is 
in fact the E(Acc) used in calculating Cohen 
Kappa.  Where Prevalences and Biases are equal 
and balanced, all common statistics agree – 
Recall = Precision = Accuracy = F, and they are 
interpretable with respect to this 50% chance 
level. All the Kappas will also agree, as the  
different averages of the identical prevalences 
and biases all come down to 50% as well.  So 
subtracting 50% from 57.5% and normalizing 
(dividing) by the average effective prevalence of 
50%, we return 15% informed decisions in all 
cases (as seen in detail in Table 3). 

However, F-measure gives an inflated estimate 
when it focus on the more prevalent positive 
class, with corresponding bias in the chance 
component. 

Worse still is the strength of the Acc and F 
scores under conditions of matched bias and 
prevalence when the deviation from chance is -
15% - that is making the wrong decision 15% of 
the time and guessing the rest of the time.  In 
academic terms, if we bump these rates up to  
±25% F-factor gives a High Distinction for 
guessing 75% of the time and putting the right 
answer for the other 25%, a Distinction for 100% 
guessing, and a Credit for guessing 75% of the 
time and putting a wrong answer for the other 
25%!  In fact, the Powers Kappa corresponds to 
the methodology of multiple choice marking, 
where for questions with k+1 choices, a right 
answer gets 1 mark, and a wrong answer gets -1/k 
so that guessing achieves an expected mark of 0. 
Cohen Kappa achieves a very similar result for 
unbiased guessing strategies. 

We now turn to macro-averaging across 
multiple classifiers or raters.  The Area Under the 
Curve measures are all of this form, whether we 
are talking about ROC, Kappa, Recall-Precision 
curves or whatever. The controversy over these 
averages, and macro-averaging in general, relates 
to one of two issues: 1. The averages are not in 
general over the appropriate units or 
denominators of the individual statistics; or 2. 
The averages are over a classifier determined 
cost function rather than an externally or 
standardly defined cost function.  AUK and H-
Measure seek to address these issues as discussed 
earlier.  In fact they both boil down to averaging 
with an inappropriate distribution of weights. 

Commonly macro-averaging averages across 
classes as average statistics derived for each class 
weighted by the cardinality of the class (viz. 
prevalence). In our review above, we cited four 
examples, but we will refer only to WEKA 
(Witten et al., 2005) here as a commonly used 
system and associated text book that employs 
and advocates macro-averaging. WEKA 
averages over tpr, fpr, Recall (yes redundantly), 
Precision, F-Factor and ROC AUC.  Only the 
average over tpr=Recall is actually meaningful, 
because only it has the number of members of 
the class, or its prevalence, as its denominator. 
Precision needs to be macro-averaged over the 
number of predictions for each class, in which 
case it is equivalent to micro-averaging. 

Other micro-averaged statistics are also 
shown, including Kappa (with the expectation 
determined from ZeroR – predicting the majority 
class, leading to a Cohen-like Kappa).  

AUC will be pointwise for classifiers that 
don’t provide any probabilistic information 
associated with label prediction, and thus don’t 
allow varying a threshold for additional points on 
the ROC or other threshold curves. In the case 
where multiple threshold points are available, 
ROC AUC cannot be interpreted as having any 
relevance to any particular classifier, but is an 
average over a range of classifiers. Even then it 
is not so meaningful as AUCH, which should be 
used as classifiers on the convex hull are usually 
available. The AUCH measure will then 
dominate any individual classifiers, as if the 
convex hull is not the same as the single 
classifier it must include points that are above the 
classifier curve and thus its enclosed area totally 
includes the area that is enclosed by the 
individual classifier. 

Macroaveraging of the curve based on each 
class in turn as the Positive Class, and weighted 
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by the size of the positive class, is not 
meaningful as effectively shown by Powers 
(2003) for the special case of the single point 
curve given its equivalence to Powers Kappa. 

In fact Markedness does admit averaging over 
classes, whilst Informedness requires averaging 
over predicted labels, as does Precision.  The 
other Kappa and Correlations are more complex 
(note the demoninators in Eqns 5-9) and how 
they might be meaningfully macro-averaged is 
an open question.  However, microaveraging can 
always be done quickly and easily by simply 
summing all the contingency tables (the true 
contingency tables are tables of counts, not 
probabilities, as shown in Table 1). 

Macroaveraging should never be done except 
for the special cases of Recall and Markedness 
when it is equivalent to micro-average, which is 
only slightly more expensive/complicated to do. 

Comparison of Kappas 
We now turn to explore the different definitions 
of Kappas, using the same approach employed 
with Accuracy and F-Factor in Table 1: We will 
consider 0%, 100%, 15% and -15% informed 
decisions, with random decisions modelled on 
the basis of independent Bias and Prevalence.   

This clearly biases against the Fleiss family of 
Kappas, which is entirely appropriate.  As 
pointed out by Entwisle & Powers (1998) the 
practice of deliberately skewing bias to achieve 
better statistics is to be deprecated – they used 
the real-life example of a CL researcher choosing 
to say water was always a noun because it was a 
noun more often than not. With Cohen or Powers’ 
measures, any actual power of the system to 
determine PoS, however weak, would be 
reflected in an improvement in the scores versus 
any random choice, whatever the distribution.  
Recall that choosing one answer all the time 
corresponds to the extreme points of the chance 
line in the ROC curve. 

Studies like Fitzgibbon et al (2007) and 
Leibbrandt and Powers (2012) show divergences 
amongst the conventional and debiased measures, 
but it is tricky to prove which is better. 

Kappa in the Limit 
It is however straightforward to derive limits for 
the various Kappas and Expectations under 
extreme and central conditions of bias and 
prevalence, including both match and mismatch. 
The 36 theoretical results match the mixture 
model results in Table 3, however, due to space 
constraints, formal treatment will be limited to 

two of the more complex cases that both relate to 
Fleiss Kappa with its mismatch to the marginal 
independence assumptions we prefer. These will 
provide informedness of probability B plus a 
remaining proportion 1-B of random responses 
exhibiting extreme bias versus both neutral and 
contrary prevalence. Note that we consider only 
|B|<1 as all Kappas give Acc=1 and thus K=1 for 
B=1, and only Powers Kappa is designed to work 
for B<1, giving K= -1 for B= -1. 

Recall that the general calculation of Expected 
Accuracy is 
E(Acc) = etp+etn (11) 

For Fleiss Kappa we must calculate the 
expected values of the correct contingencies as 
discussed previously with expected probabilities 
ep = (rp+pp)/2      &      en = (rn+pn)/2 (12) 
etp = ep2               &      etn = en2 (13) 

We first consider cases where prevalence is 
extreme and the chance component exhibits 
inverse bias. We thus consider limits as  
rp0, rn1, pp1-B, pnB. This gives us 
(assuming |B|<1) 
EF(Acc)  = (1/4+B2/4+B/2)2+(1/4+B2/4-B/2)2 
               = (1+B2)/2 (14) 
KF(Acc) = (1-B)2/[B2-2] (15) 

We second consider cases where the 
prevalence is balanced and chance extreme, with 
rp0.5, rn0.5, pp1-B, pnB, giving 
EF(Acc) = 1/2 + (B-1/2)2/2 
              = 5/8 + B(B-1)/2 (16) 
KF(Acc)=[(B-1/2)-(B-1/2)2/2]/[1/2-(B-1/2)2/2] (17) 
             =[B-5/8+B(B-1)/2]/[1-(5/8+B(B-1)/2) 

Conclusions 
The asymmetric Powers Informedness gives 

the clearest measure of the predictive value of a 
system, while the Matthews Correlation (as 
geometric mean with the Powers Markedness 
dual) is appropriate for comparing equally valid 
classifications or ratings into an agreed number 
of classes. Concordance measures should be used 
if number of classes is not agreed or specified. 

For mismatch cases (15) Fleiss is always 
negative for |B|<1) and thus fails to adequately 
reward good performance under these marginal 
conditions. For the chance case (17), the first 
form we provide shows that the deviation from 
matching Prevalence is a driver in a Kappa-like 
function. Cohen on the other hand (Table 3) 
tends to apply multiply the weight given to error 
in even mild prevalence-bias mismatch 
conditions. None of the symmetric Kappas 
designed for raters are suitable for classifiers. 
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  1:1 1:1 4:1 4:1 4:1 1:4 1:1 1:1 4:1 4:1 4:1 1:4 1:1 1:1 4:1 4:1 4:1 1:4 

Informedness 0% 0% 0% 0% 0% 0% 0% 0% 0% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 20% 50% 80% 20% 50% 20% 80% 
Ibias 50% 20% 80% 50% 20% 80% 50% 80% 20% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 400% 100% 25% 400% 100% 400% 25% 

OddsRatio 100% 100% 6% 100% 100% 6% 100% 100% 1600% 
ePowers 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eCohen 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eFleiss 50% 68% 50% 50% 68% 50% 50% 68% 50% 

kPowers 0% 0% 0% 0% 0% 0% 0% 0% 0% 
kCohen 0% 0% 0% 0% 0% 0% 0% 0% 0% 
kFleiss 0% 0% -36% 0% 0% -36% 0% 0% -36% 

Informedness 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Ibias 50% 20% 20% 50% 20% 20% 50% 80% 80% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 25% 100% 25% 25% 100% 400% 400% 

OddsRatio 100% 100% 100% 100% 100% 100% 100% 100% 100% 
ePowers 50% 68% 68% 50% 68% 68% 50% 68% 68% 
aCohen 50% 68% 68% 50% 68% 68% 50% 68% 68% 
aFleiss 50% 68% 68% 50% 68% 68% 50% 68% 68% 

kPowers 100% 100% 100% 100% 100% 100% 100% 100% 100% 
kCohen 100% 100% 100% 100% 100% 100% 100% 100% 100% 
kFleiss 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Informedness 15% 15% 15% 99% 99% 99% 99% 99% 99% 
Prevalence 50% 80% 80% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 20% 50% 20% 20% 50% 80% 80% 

Bias 50% 80% 29% 50% 80% 79% 50% 20% 79% 
Ibias 50% 20% 71% 50% 20% 21% 50% 80% 21% 

             
SkewR 100% 25% 25% 100% 25% 25% 100% 400% 400% 
SkewP 100% 25% 245% 100% 25% 26% 100% 400% 26% 

OddsRatio 100% 100% 6% 100% 100% 6% 100% 100% 1600% 
ePowers 50% 68% 32% 50% 68% 32% 50% 68% 32% 
eCohen 50% 68% 37% 50% 68% 68% 50% 68% 32% 
eFleiss 50% 68% 50% 50% 68% 68% 50% 68% 50% 

kPowers 15% 15% 15% 99% 99% 99% 1% 1% 1% 
kCohen 15% 15% 8% 99% 99% 98% 1% 1% 0% 
kFleiss 15% 15% -17% 99% 99% 98% 1% 1% -35% 

Informedness -15% -15% -15% -99% -99% -99% -99% -99% -99% 
Prevalence 50% 80% 20% 50% 80% 80% 50% 20% 20% 
Iprevalence 50% 20% 80% 50% 20% 20% 50% 80% 80% 

Bias 50% 71% 80% 50% 21% 20% 50% 21% 80% 
Ibias 50% 29% 20% 50% 79% 80% 50% 79% 20% 

             
SkewR 100% 25% 400% 100% 25% 25% 100% 400% 400% 
SkewP 100% 41% 25% 100% 385% 400% 100% 385% 25% 

OddsRatio 100% 65% 1038% 100% 25% 25% 100% 104% 1542% 
ePowers 50% 63% 37% 50% 50% 50% 50% 68% 32% 
eCohen 50% 63% 32% 50% 32% 32% 50% 68% 32% 
eFleiss 50% 63% 50% 50% 50% 50% 50% 68% 50% 

kPowers -15% -15% -15% -99% -99% -99% -1% -1% -1% 
kCohen -15% -13% -7% -99% -47% -47% -1% -1% 0% 
kFleiss -15% -14% -46% -99% -99% -99% -1% -1% -37% 

 
Table 3. Empirical Results for Accuracy and Kappa for Fleiss/Scott, Cohen and Powers. Shaded 
cells indicate misleading results, which occur for both Cohen and Fleiss Kappas. 
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