
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 336–344,
Avignon, France, April 23 - 27 2012. c©2012 Association for Computational Linguistics

Skip N-grams and Ranking Functions for Predicting Script Events

Bram Jans
KU Leuven

Leuven, Belgium
bram.jans@gmail.com

Steven Bethard
University of Colorado Boulder

Boulder, Colorado, USA
steven.bethard@colorado.edu

Ivan Vulić
KU Leuven

Leuven, Belgium
ivan.vulic@cs.kuleuven.be

Marie Francine Moens
KU Leuven

Leuven, Belgium
sien.moens@cs.kuleuven.be

Abstract

In this paper, we extend current state-of-the-
art research on unsupervised acquisition of
scripts, that is, stereotypical and frequently
observed sequences of events. We design,
evaluate and compare different methods for
constructing models for script event predic-
tion: given a partial chain of events in a
script, predict other events that are likely
to belong to the script. Our work aims
to answer key questions about how best
to (1) identify representative event chains
from a source text, (2) gather statistics from
the event chains, and (3) choose ranking
functions for predicting new script events.
We make several contributions, introducing
skip-grams for collecting event statistics, de-
signing improved methods for ranking event
predictions, defining a more reliable evalu-
ation metric for measuring predictiveness,
and providing a systematic analysis of the
various event prediction models.

1 Introduction

There has been recent interest in automatically ac-
quiring world knowledge in the form of scripts
(Schank and Abelson, 1977), that is, frequently
recurring situations that have a stereotypical se-
quence of events, such as a visit to a restaurant.
All of the techniques so far proposed for this task
share a common sub-task: given an event or partial
chain of events, predict other events that belong
to the same script (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Chambers and Ju-
rafsky, 2011; Manshadi et al., 2008; McIntyre and
Lapata, 2009; McIntyre and Lapata, 2010; Regneri
et al., 2010). Such a model can then serve as input
to a system that identifies the order of the events

within that script (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009) or that generates
a story using the selected events (McIntyre and
Lapata, 2009; McIntyre and Lapata, 2010).

In this article, we analyze and compare tech-
niques for constructing models that, given a partial
chain of events, predict other events that belong to
the script. In particular, we consider the following
questions:

• How should representative chains of events
be selected from the source text?

• Given an event chain, how should statistics
be gathered from it?

• Given event n-gram statistics, which ranking
function best predicts the events for a script?

In the process of answering these questions, this
article makes several contributions to the field of
script and narrative event chain understanding:

• We explore for the first time the use of skip-
grams for collecting narrative event statistics,
and show that this approach performs better
than classic n-gram statistics.

• We propose a new method for ranking events
given a partial script, and show that it per-
forms substantially better than ranking meth-
ods from prior work.

• We propose a new evaluation procedure (us-
ing Recall@N) for the cloze test, and advo-
cate its usage instead of average rank used
previously in the literature.

• We provide a systematic analysis of the in-
teractions between the choices made when
constructing an event prediction model.

336

Section 2 gives an overview of the prior work
related to this task. Section 3 lists and briefly de-
scribes different approaches that try to provide
answers to the three questions posed in this intro-
duction, while Section 4 presents the results of our
experiments and reports on our findings. Finally,
Section 5 provides a conclusive discussion along
with ideas for future work.

2 Prior Work

Our work is primarily inspired by the work of
Chambers and Jurafsky, which combined a depen-
dency parser with coreference resolution to col-
lect event script statistics and predict script events
(Chambers and Jurafsky, 2008; Chambers and Ju-
rafsky, 2009). For each document in their training
corpus, they used coreference resolution to iden-
tify all the entities, and a dependency parser to
identify all verbs that had an entity as either a sub-
ject or object. They defined an event as a verb plus
a dependency type (either subject or object), and
collected for each entity, the chain of events that
it participated in. They then calculated pointwise
mutual information (PMI) statistics over all the
pairs of events that occurred in the event chains in
their corpus. To predict a new script event given
a partial chain of events, they selected the event
with the highest sum of PMIs with all the events
in the partial chain.

The work of McIntyre and Lapata followed in
this same paradigm, (McIntyre and Lapata, 2009;
McIntyre and Lapata, 2010), collecting chains of
events by looking at entities and the sequence of
verbs for which they were a subject or object. They
also calculated statistics over the collected event
chains, though they considered both event bigram
and event trigram counts. Rather than predicting
an event for a script however, they used these sim-
ple counts to predict the next event that should be
generated for a children’s story.

Manshadi and colleagues were concerned about
the scalability of running parsers and coreference
over a large collection of story blogs, and so used
a simplified version of event chains – just the main
verb of each sentence (Manshadi et al., 2008).
Rather than rely on an ad-hoc summation of PMIs,
they apply language modeling techniques (specifi-
cally, a smoothed 5-gram model) over the sequence
of events in the collected chains. However, they
only tested these language models on sequencing
tasks (e.g. is the real sequence better than a ran-

dom sequence?) rather than on prediction tasks
(e.g. which event should follow these events?).

In the current article, we attempt to shed some
light on these previous works by comparing differ-
ent ways of collecting and using event chains.

3 Methods

Models that predict script events typically have
three stages. First, a large corpus is processed to
find event chains in each of the documents. Next,
statistics over these event chains are gathered and
stored. Finally, the gathered statistics are used to
create a model that takes as input a partial script
and produces as output a ranked list of events for
that script. The following sections give more de-
tails about each of these stages and identify the
decisions that must be made in each step, and an
overview of the whole process with an example
source text is displayed in Figure 1.

3.1 Identifying Event Chains
Event chains are typically defined as a sequence
of actions performed by some actor. Formally, an
event chain C for some actor a, is a partially or-
dered set of events (v, d) where each v is a verb
that has the actor a as its dependency d. Following
prior work (Chambers and Jurafsky, 2008; Cham-
bers and Jurafsky, 2009; McIntyre and Lapata,
2009; McIntyre and Lapata, 2010), these event
chains are identified by running a coreference sys-
tem and a dependency parser. Then for each en-
tity identified by the coreference system, all verbs
that have a mention of that entity as one of their
dependencies are collected1. The event chain is
then the sequence of (verb, dependency-type) tu-
ples. For example, given the sentence A Crow
was sitting on a branch of a tree when a Fox ob-
served her, the event chain for the Crow would be
(sitting, SUBJECT), (observed, OBJECT).

Once event chains have been identified, the most
appropriate event chains for training the model
must be selected. The goal of this process is to
select the subset of the event chains identified by
the coreference system and the dependency parser
that look to be the most reliable. Both the coref-
erence system and the dependency parser make
some errors, so not all event chains are necessarily
useful for training a model. The three strategies
we consider for this selection process are:

1Also following prior work, we consider only the depen-
dencies subject and object.

337

John woke up. He opened his eyes and yawned. Then he crossed the room and walked to the door.There he saw Mary. Mary smiled and kissed him. Then they both blushed.JOHN(woke, SUBJ)(opened, SUBJ)(yawned, SUBJ)(crossed, SUBJ)(walked, SUBJ)(saw, SUBJ)(kissed, OBJ)(blushed, SUBJ) MARY(saw, OBJ)(smiled, SUBJ)(kissed, SUBJ)(blushed, SUBJ)all chains, long chains,the longest chain all chains 1. Identifying event chains... [(saw, OBJ), (smiled, SUBJ)][(smiled, SUBJ), (kissed, SUBJ)][(kissed, SUBJ), (blushed, SUBJ)] [(saw, OBJ), (smiled, SUBJ)][(saw, OBJ), (kissed, SUBJ)][(smiled, SUBJ), (kissed, SUBJ)][(smiled, SUBJ), (blushed, SUBJ)][(kissed, SUBJ), (blushed, SUBJ)] [(saw, OBJ), (smiled, SUBJ)][(saw, OBJ), (kissed, SUBJ)][(saw, OBJ), (blushed, SUBJ)]...[(kissed, SUBJ), (blushed, SUBJ)]regular bigrams 2-skip bigrams1-skip bigrams 2. Gathering event chain statistics(saw, OBJ)(smiled, SUBJ)(kissed, SUBJ)_________ (missing event)constructing a partial script (cloze test)1. (looked, OBJ)2. (gave, SUBJ)3. (saw, SUBJ)... 1. (kissed, OBJ)2. (looked, OBJ)3. (waited, SUBJ)... 1. (blushed, SUBJ)2. (kissed, OBJ)3. (smiled, SUBJ)C&J PMIOrdered PMIBigram prob. 3. Predicting script events
Figure 1: An overview of the whole linear work flow showing the three key steps – identifying event chains,
collecting statistics out of the chains and predicting a missing event in a script. The figure also displays how a
partial script for evaluation (Section 4.3) is constructed. We show the whole process for Mary’s event chain only,
but the same steps are followed for John’s event chain.

• Select all event chains, that is, all sequences
of two or more events linked by common
actors. This strategy will produce the largest
number of event chains to train a model from,
but it may produce noisier training data as
the very short chains included by this strategy
may be less likely to represent real scripts.
• Select all long event chains consisting of 5

or more events. This strategy will produce a
smaller number of event chains, but as they
are longer, they may be more likely to repre-
sent scripts.
• Select only the longest event chain. This

strategy will produce the smallest number of
event chains from a corpus. However, they
may be of higher quality, since this strategy
looks for the key actor in each story, and only
uses the events that are tied together by that
key actor. Since this is the single actor that
played the largest role in the story, its actions
may be the most likely to represent a real
script.

3.2 Gathering Event Chain Statistics

Once event chains have been collected from the
corpus, the statistics necessary for constructing
the event prediction model must be gathered. Fol-
lowing prior work (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Manshadi et al.,
2008; McIntyre and Lapata, 2009; McIntyre and
Lapata, 2010), we focus on gathering statistics
about the n-grams of events that occur in the
collected event chains. Specifically, we look at
strategies for collecting bigram statistics, the most
common type of statistics gathered in prior work.
We consider three strategies for collecting bigram
statistics:

• Regular bigrams. We find all pairs of
events that are adjacent in an event chain
and collect the number of times each event
pair was observed. For example, given the
chain of events (saw, SUBJ), (kissed, OBJ),
(blushed, SUBJ), we would extract the two
event bigrams: ((saw, SUBJ), (kissed, OBJ))

338

and ((kissed, OBJ), (blushed, SUBJ)). In addi-
tion to the event pair counts, we also collect
the number of times each event was observed
individually, to allow for various conditional
probability calculations. This strategy fol-
lows the classic approach for most language
models.

• 1-skip bigrams. We collect pairs of events
that occur with 0 or 1 events intervening be-
tween them. For example, given the chain
(saw, SUBJ), (kissed, OBJ), (blushed, SUBJ),
we would extract three bigrams: the two regu-
lar bigrams ((saw, SUBJ), (kissed, OBJ)) and
((kissed, OBJ), (blushed, SUBJ)), plus the 1-
skip-bigram, ((saw, SUBJ), (blushed, SUBJ)).
This approach to collecting n-gram statistics
is sometimes called skip-gram modeling, and
it can reduce data sparsity by extracting more
event pairs per chain (Guthrie et al., 2006).
It has not previously been applied in the task
of predicting script events, but it may be
quite appropriate to this task because in most
scripts it is possible to skip some events in
the sequence.

• 2-skip bigrams. We collect pairs of events
that occur with 0, 1 or 2 intervening events,
similar to what was done in the 1-skip bi-
grams strategy. This will extract even more
pairs of events from each chain, but it is pos-
sible the statistics over these pairs of events
will be noisier.

3.3 Predicting Script Events

Once statistics over event chains have been col-
lected, it is possible to construct the model for
predicting script events. The input of this model
will be a partial script c of n events, where c =
c1c2 . . . cn = (v1, d1), (v2, d2), . . . , (vn, dn), and
the output of this model will be a ranked list of
events where the highest ranked events are the ones
most likely to belong to the event sequence in the
script. Thus, the key issue for this model is to de-
fine the function f for ranking events. We consider
three such ranking functions:

• Chambers & Jurafsky PMI. Chambers and
Jurafsky (2008) define their event ranking
function based on pointwise mutual infor-
mation. Given a partial script c as defined
above, they consider each event e = (v′, d′)

collected from their corpus, and score it as
the sum of the pointwise mutual informations
between the event e and each of the events in
the script:

f(e, c) =
n∑
i

log
P (ci, e)

P (ci)P (e)

Chambers and Jurafsky’s description of this
score suggests that it is unordered, such that
P (a, b) = P (b, a). Thus the probabilities
must be defined as:

P (e1, e2) =
C(e1, e2) + C(e2, e1)∑

ei

∑
ej

C(ei, ej)

P (e) =
C(e)∑
e′ C(e′)

where C(e1, e2) is the number of times that
the ordered event pair (e1, e2) was counted in
the training data, and C(e) is the number of
times that the event e was counted.

• Ordered PMI. A variation on the approach
of Chambers and Jurafsky is to have a score
that takes the order of the events in the chain
into account. In this scenario, we assume that
in addition to the partial script of events, we
are given an insertion point, m, where the
new event should be added. The score is then
defined as:

f(e, c) =

m∑
k=1

log
P (ck, e)

P (ck)P (e)
+

n∑
k=m+1

log
P (e, ck)

P (e)P (ck)

where the probabilities are defined as:

P (e1, e2) =
C(e1, e2)∑

ei

∑
ej

C(ei, ej)

P (e) =
C(e)∑
e′ C(e′)

This approach uses pointwise mutual infor-
mation but also models the event chain in the
order it was observed.

• Bigram probabilities. Finally, a natural
ranking function, which has not been applied
to the script event prediction task (but has

339

been applied to related tasks (Manshadi et
al., 2008)) is to use the bigram probabilities
of language modeling rather than pointwise
mutual information scores. Again, given an
insertion point m for the event in the script,
we define the score as:

f(e, c) =
m∑

k=1

log P (e|ck) +

n∑
k=m+1

log P (ck|e)

where the conditional probability is defined
as2:

P (e1|e2) =
C(e1, e2)

C(e2)

This approach scores an event based on the
probability that it was observed following all
the events before it in the chain and preceding
all the events after it in the chain. This ap-
proach most directly models the event chain
in the order it was observed.

4 Experiments

Our experiments aimed to answer three questions:
Which event chains are worth keeping? How
should event bigram counts be collected? And
which ranking method is best for predicting script
events? To answer these questions we use two
corpora, the Reuters Corpus and the Andrew Lang
Fairy Tale Corpus, to evaluate our three differ-
ent chain selection methods, {all chains, long
chains, the longest chain}, our three different bi-
gram counting methods, {regular bigrams, 1-skip
bigrams, 2-skip bigrams}, and our three different
ranking methods, {Chambers & Jurafsky PMI, or-
dered PMI, bigram probabilities}.

4.1 Corpora
We consider two corpora for evaluation:

• Reuters Corpus, Volume 1 3 (Lewis et
al., 2004) – a large collection of 806, 791
news stories written in English concerning
a number of different topics such as politics,

2Note that predicted bigram probabilities are calculated
in this way for both classic language modeling and skip-gram
modeling. In skip-gram modeling, skips in the n-grams are
only used to increase the size of the training data; prediction
is performed exactly as in classic language modeling.

3http://trec.nist.gov/data/reuters/reuters.html

economics, sports, etc., strongly varying in
length, topics and narrative structure.

• Andrew Lang Fairy Tale Corpus 4 – a
small collection of 437 children stories with
an average length of 125 sentences, and used
previously for story generation by McIntyre
and Lapata (2009).

In general, the Reuters Corpus is much larger and
allows us to see how well script events can be
predicted when a lot of data is available, while the
Andrew Lang Fairy Tale Corpus is much smaller,
but has a more straightforward narrative structure
that may make identifying scripts simpler.

4.2 Corpus Processing

Constructing a model for predicting script events
requires a corpus that has been parsed with a de-
pendency parser, and whose entities have been
identified via a coreference system. We there-
fore processed our corpora by (1) filtering out
non-narrative articles, (2) applying a dependency
parser, (3) applying a coreference resolution sys-
tem and (4) identifying event chains via entities
and dependencies.

First, articles that had no narrative content were
removed from the corpora. In the Reuters Corpus,
we removed all files solely listing stock exchange
values, interest rates, etc., as well as all articles
that were simply summaries of headlines from dif-
ferent countries or cities. After removing these
files, the Reuters corpus was reduced to 788, 245
files. Removing files from the Fairy Tale corpus
was not necessary – all 437 stories were retained.

We then applied the Stanford Parser (Klein and
Manning, 2003) to identify the dependency struc-
ture of each sentence in each article in the corpus.
This parser produces a constitutent-based syntactic
parse tree for each sentence, and then converts this
tree to a collapsed dependency structure via a set
of tree patterns.

Next we applied the OpenNLP coreference en-
gine5 to identify the entities in each article, and the
noun phrases that were mentions of each entity.

Finally, to identify the event chains, we took
each of the entities proposed by the coreference
system, walked through each of the noun phrases
associated with that entity, retrieved any subject

4http://www.mythfolklore.net/andrewlang/
5http://incubator.apache.org/opennlp/

340

or object dependencies that linked a verb to that
noun phrase, and created an event chain from the
sequence of (verb, dependency-type) tuples in the
order that they appeared in the text.

4.3 Evaluation Metrics

We follow the approach of Chambers and Jurafsky
(2008), evaluating our models for predicting script
events in a narrative cloze task. The narrative
cloze task is inspired by the classic psychological
cloze task in which subjects are given a sentence
with a word missing and asked to fill in the blank
(Taylor, 1953). Similarly, in the narrative cloze
task, the system is given a sequence of events from
a script where one event is missing, and asked
to predict the missing event. The difficulty of a
cloze task depends a lot on the context around
the missing item – in some cases it may be quite
predictable, but in many cases there is no single
correct answer, though some answers are more
probable than others. Thus, performing well on a
cloze task is more about ranking the missing event
highly, and not about proposing a single “correct”
event.

In this way, narrative cloze is like perplexity
in a language model. However, where perplexity
measures how good the model is at predicting a
script event given the previous events in the script,
narrative cloze measures how good the model is
at predicting what is missing between events in
the script. Thus narrative cloze is somewhat more
appropriate to our task, and at the same time sim-
plifies comparisons to prior work.

Rather than manually constructing a set of
scripts on which to run the cloze test, we follow
Chambers and Jurafsky in reserving a section of
our parsed corpora for testing, and then using the
event chains from that section as the scripts for
which the system must predict events. Given an
event chain of length n, we run n cloze tests, with
a different one of the n events removed each time
to create a partial script from the remaining n− 1
events (see Figure 1). Given a partial script as
input, an accurate event prediction model should
rank the missing event highly in the guess list that
it generates as output.

We consider two approaches to evaluating the
guess lists produced in response to narrative cloze
tests. Both are defined in terms of a test collection
C, consisting of |C| partial scripts, where for each
partial script c with missing event e, ranksys(c) is

the rank of e in the system’s guess list for c.

• Average rank. The average rank of the miss-
ing event across all of the partial scripts:

1

|C|
∑
c∈C

ranksys(c)

This is the evaluation metric used by Cham-
bers and Jurafsky (2008).

• Recall@N. The fraction of partial scripts
where the missing event is ranked N or less6

in the guess list.

1

|C|
|{c : c ∈ C ∧ ranksys(c) ≤ N}|

In our experiments we use N = 50, but re-
sults are roughly similar for lower and higher
values of N .

Recall@N has not been used before for evaluat-
ing models that predict script events, however we
suggest that it is a more reliable metric than Av-
erage rank. When calculating the average rank,
the length of the guess lists will have a significant
influence on results. For instance, if a small model
is trained with only a small vocabulary of events,
its guess lists will usually be shorter than a larger
model, but if both models predict the missing event
at the bottom of the list, the larger model will get
penalized more. Recall@N does not have this is-
sue – it is not influenced by length of the guess
lists.

An alternative evaluation metric would have
been mean average precision (MAP), a metric
commonly used to evaluate information retrieval.
Mean average precision reduces to mean recipro-
cal rank (MRR) when there’s only a single answer
as in the case of narrative cloze, and would have
scored the ranked lists as:

1

|C|
∑
c∈C

1

ranksys(c)

Note that mean reciprocal rank has the same issues
with guess list length that average rank does. Thus,
since it does not aid us in comparing to prior work,
and it has the same deficiencies as average rank,
we do not report MRR in this article.

6Rank 1 is the event that the system predicts is most prob-
able, so we want the missing event to have the smallest rank
possible.

341

2-skip + bigram prob.
Chain selection Av. rank Recall@50

all chains 502 0.5179
long chains 549 0.4951

the longest chain 546 0.4984

Table 1: Chain selection methods for the Reuters corpus
- comparison of average ranks and Recall@50.

2-skip + bigram prob.
Chain selection Av. rank Recall@50

all chains 1650 0.3376
long chains 452 0.3461

the longest chain 1534 0.3376

Table 2: Chain selection methods for the Fairy Tale
corpus - comparison of average ranks and Recall@50.

4.4 Results

We considered all 27 combinations of our chain
selection methods, bigram counting methods, and
ranking methods: {all chains, long chains, the
longest chain}x{regular bigrams, 1-skip bigrams,
2-skip bigrams}x{Chambers & Jurafsky PMI, or-
dered PMI, bigram probabilities}. The best among
these 27 combinations for the Reuters corpus was
{all chains}x{2-skip bigrams}x{bigram probabil-
ities} achieving an average rank of 502 and a Re-
call@50 of 0.5179.

Since viewing all the combinations at once
would be confusing, instead the following sec-
tions investigate each decision (selection, counting,
ranking) one at a time. While one decision is var-
ied across its three choices, the other decisions are
held to their values in the best model above.

4.4.1 Identifying Event Chains
We first try to answer the question: How should

representative chains of events be selected from
the source text? Tables 1 and 2 show perfor-
mance when we vary the strategy for selecting
event chains, while fixing the counting method to
2-skip bigrams, and fixing the ranking method to
bigram probabilities.

For the Reuters collection, we see that using all
chains gives a lower average rank and a higher
Recall@50 than either of the strategies that select
a subset of the event chains. The explanation is
probably simple: using all chains produces more
than 700,000 bigrams from the Reuters corpus,
while using only the long chains produces only
around 300,000. So more data is better data for

all chains + bigram prob.
Bigram selection Av. rank Recall@50
regular bigrams 789 0.4886
1-skip bigrams 630 0.4951
2-skip bigrams 502 0.5179

Table 3: Event bigram selection methods for the
Reuters corpus - comparison of average ranks and Re-
call@50.

all chains + bigram prob.
Bigram selection Av. rank Recall@50
regular bigrams 2363 0.3227
1-skip bigrams 1690 0.3418
2-skip bigrams 1650 0.3376

Table 4: Event bigram selection methods for the Fairy
Tales corpus - comparison of average ranks and Re-
call@50.

predicting script events.
For the Fairy Tale collection, long chains gives

the lowest average rank and highest Recall@50. In
this collection, there is apparently some benefit to
filtering the shorter event chains, probably because
the collection is small enough that the noise in-
troduced from dependency and coreference errors
plays a larger role.

4.4.2 Gathering Event Chain Statistics

We next try to answer the question: Given an
event chain, how should statistics be gathered from
it? Tables 3 and 4 show performance when we vary
the strategy for counting event pairs, while fixing
the selecting method to all chains, and fixing the
ranking method to bigram probabilities.

For the Reuters corpus, 2-skip bigrams achieves
the lowest average rank and the highest Recall@50.
For the Fairy Tale corpus, 1-skip bigrams and 2-
skip bigrams perform similarly, and both have
lower average rank and higher Recall@50 than
regular bigrams.

Skip-grams probably outperform regular n-
grams on both of these corpora because the skip-
grams provide many more event pairs over which
to calculate statistics: in the Reuters corpus, regu-
lar bigrams extracts 737,103 bigrams, while 2-skip
bigrams extracts 1,201,185 bigrams. Though skip-
grams have not been applied to predicting script
events before, it seems that they are a good fit,
and better capture statistics about narrative event
chains than regular n-grams do.

342

all bigrams + 2-skip
Ranking method Av. rank Recall@50

C&J PMI 2052 0.1954
ordered PMI 3584 0.1694
bigram prob. 502 0.5179

Table 5: Ranking methods for the Reuters corpus -
comparison of average ranks and Recall@50.

all bigrams + 2-skip
Ranking method Av. rank Recall@50

C&J PMI 1455 0.1975
ordered PMI 2460 0.0467
bigram prob. 1650 0.3376

Table 6: Ranking methods for the Fairy Tale corpus -
comparison of average ranks and Recall@50.

4.4.3 Predicting Script Events
Finally, we try to answer the question: Given

event n-gram statistics, which ranking function
best predicts the events for a script? Tables 5 and
6 show performance when we vary the strategy for
ranking event predictions, while fixing the selec-
tion method to all chains, and fixing the counting
method to 2-skip bigrams.

For both Reuters and the Fairy Tale corpus, Re-
call@50 identifies bigram probabilities as the best
ranking function by far. On the Reuters corpus
the Chambers & Jurafsky PMI ranking method
achieves Recall@50 of only 0.1954, while bigram
probabilities ranking method achieves 0.5179. The
gap is also quite large on the Fairy Tales corpus:
0.1975 vs. 0.3376.

On the Reuters corpus, average rank also identi-
fies bigram probabilities as the best ranking func-
tion, yet for the Fairy Tales corpus, Chambers &
Jurafsky PMI and bigram probabilities have simi-
lar average ranks. This inconsistency is probably
due to the flaws in the average rank evaluation
measure that were discussed in Section 4.3 – the
measure is overly sensitive to the length of the
guess list, particularly when the missing event is
ranked lower, as it is likely to be when training on
a smaller corpus like the Fairy Tales corpus.

5 Discussion

Our experiments have led us to several important
conclusions. First, we have introduced skip-grams
and proved their utility for acquiring script knowl-
edge – our models that employ skip bigrams score
consistently higher on event prediction. By follow-

ing the intuition that events do not have to appear
strictly one after another to be closely semantically
related, skip-grams decrease data sparsity and in-
crease the size of the training data.

Second, our novel bigram probabilities ranking
function outperforms the other ranking methods.
In particular, it outperforms the state-of-the-art
pointwise mutual information method introduced
by Chambers and Jurafsky (2008), and it does so
by a large margin, more than doubling the Re-
call@50 on the Reuters corpus. The key insight
here is that, when modeling events in a script, a
language-model-like approach better fits the task
than a mutual information approach.

Third, we have discussed why Recall@N is a
better and more consistent evaluation metric than
Average rank. However, both evaluation metrics
suffer from the strictness of the narrative cloze test,
which accepts only one event being the correct
event, while it is sometimes very difficult, even
for humans, to predict the missing events, and
sometimes more solutions are possible and equally
correct. In future research, our goal is to design
a better evaluation framework which is more suit-
able for this task, where credit can be given for
proposed script events that are appropriate but not
identical to the ones observed in a text.

Fourth, we have observed some differences in
results between the Reuters and the Fairy Tale
corpora. The results for Reuters are consistently
better (higher Recall@50, lower average rank), al-
though fairy tales contain a plainer narrative struc-
ture, which should be more appropriate to our task.
This again leads us to the conclusion that more
data (even with more noise as in Reuters) leads to
a greater coverage of events, better overall models
and, consequently, to more accurate predictions.
Still, the Reuters corpus seems to be far from a
perfect corpus for research in the automatic acqui-
sition of scripts, since only a small portion of the
corpus contains true narratives. Future work must
therefore gather a large corpus of true narratives,
like fairy tales and children’s stories, whose sim-
ple plot structures should provide better learning
material, both for models predicting script events,
and for related tasks like automatic storytelling
(McIntyre and Lapata, 2009).

One of the limitations of the work presented
here is that it takes a fairly linear, n-gram-based ap-
proach to characterizing story structure. We think
such an approach is useful because it forms a natu-

343

ral baseline for the task (as it does in many other
tasks such as named entity tagging and language
modeling). However, story structure is seldom
strictly linear, and future work should consider
models based on grammatical or discourse links
that can capture the more complex nature of script
events and story structure.

Acknowledgments

We would like to thank the anonymous reviewers
for their constructive comments. This research
was carried out as a master thesis in the frame-
work of the TERENCE European project (EU FP7-
257410).

References
Nathanael Chambers and Dan Jurafsky. 2008. Un-

supervised learning of narrative event chains. In
Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Un-
supervised learning of narrative schemas and their
participants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the Association for
Computational Linguistics and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 602–610.

Nathanael Chambers and Dan Jurafsky. 2011.
Template-based information extraction without the
templates. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 976–986.

David Guthrie, Ben Allison, W. Liu, Louise Guthrie,
and Yorick Wilks. 2006. A closer look at skip-gram
modelling. In Proceedings of the Fifth international
Conference on Language Resources and Evaluation
(LREC), pages 1222–1225.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. RCV1: a new benchmark collection for
text categorization research. Journal of Machine
Learning Research, 5:361–397.

Mehdi Manshadi, Reid Swanson, and Andrew S. Gor-
don. 2008. Learning a probabilistic model of event
sequences from internet weblog stories. In Proceed-
ings of the Twenty-First International Florida Artifi-
cial Intelligence Research Society Conference.

Neil McIntyre and Mirella Lapata. 2009. Learning to
tell tales: A data-driven approach to story genera-
tion. In Proceedings of the Joint Conference of the

47th Annual Meeting of the Association for Compu-
tational Linguistics and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 217–225.

Neil McIntyre and Mirella Lapata. 2010. Plot induc-
tion and evolutionary search for story generation.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages
1562–1572.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979–988.

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
plans, goals, and understanding: an inquiry into
human knowledge structures. Lawrence Erlbaum
Associates.

Wilson L. Taylor. 1953. Cloze procedure: a new tool
for measuring readibility. Journalism Quarterly,
30:415–433.

344

