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Abstract 

In this paper, we describe a new approach to 
semi-supervised adaptive learning of event 
extraction from text. Given a set of exam-
ples and an un-annotated text corpus, the 
BEAR system (Bootstrapping Events And 
Relations) will automatically learn how to 
recognize and understand descriptions of 
complex semantic relationships in text, such 
as events involving multiple entities and 
their roles. For example, given a series of 
descriptions of bombing and shooting inci-
dents (e.g., in newswire) the system will 
learn to extract, with a high degree of accu-
racy, other attack-type events mentioned 
elsewhere in text, irrespective of the form of 
description. A series of evaluations using 
the ACE data and event set show a signifi-
cant performance improvement over our 
baseline system. 

1 Introduction 

We constructed a semi-supervised machine 
learning process that effectively exploits statisti-
cal and structural properties of natural language 
discourse in order to rapidly acquire rules to de-
tect mentions of events and other complex rela-
tionships in text, extract their key attributes, and 
construct template-like representations. The 
learning process exploits descriptive and struc-
tural redundancy, which is common in language; 
it is often critical for achieving successful com-
munication despite distractions, different con-
texts, or incompatible semantic models between 
a speaker/writer and a hearer/reader. We also 
take advantage of the high degree of referential 
consistency in discourse (e.g., as observed in 
word sense distribution by (Gale, et al. 1992), 
and arguably applicable to larger linguistic 
units), which enables the reader to efficiently 
correlate different forms of description across 
coherent spans of text.  

The method we describe here consists of two 
steps: (1) supervised acquisition of initial extrac-
tion rules from an annotated training corpus, and 

(2) self-adapting unsupervised multi-pass boot-
strapping by which the system learns new rules 
as it reads un-annotated text using the rules learnt 
in the first step and in the subsequent learning 
passes. When a sufficient quantity and quality of 
text material is supplied, the system will learn 
many ways in which a specific class of events 
can be described. This includes the capability to 
detect individual event mentions using a system 
of context-sensitive triggers and to isolate perti-
nent attributes such as agent, object, instrument, 
time, place, etc., as may be specific for each type 
of event. This method produces an accurate and 
highly adaptable event extraction that significant-
ly outperforms current information extraction 
techniques both in terms of accuracy and robust-
ness, as well as in deployment cost. 

2 Learning by bootstrapping  

As a semi-supervised machine learning method, 
bootstrapping can start either with a set of prede-
fined rules or patterns, or with a collection of 
training examples (seeds) annotated by a domain 
expert on a (small) data set. These are normally 
related to a target application domain and may be 
regarded as initial “teacher instructions” to the 
learning system. The training set enables the sys-
tem to derive initial extraction rules, which are 
applied to un-annotated text data in order to pro-
duce a much larger set of examples. The exam-
ples found by the initial rules will occur in a 
variety of linguistic contexts, and some of these 
contexts may provide support for creating alter-
native extraction rules. When the new rules are 
subsequently applied to the text corpus, addition-
al instances of the target concepts will be identi-
fied, some of which will be positive and some 
not. As this process continues to iterate over, the 
system acquires more extraction rules, fanning 
out from the seed set until no new rules can be 
learned.  

Thus defined, bootstrapping has been used in 
natural language processing research, notably in 
word sense disambiguation (Yarowsky, 1995). 
Strzalkowski and Wang (1996) were first to 
demonstrate that the technique could be applied 
to adaptive learning of named entity extraction 
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Figure 1. Skeletal dependency structure representation of an 

event mention. 

rules. For example, given a “naïve” rule for iden-
tifying company names in text, e.g., “capitalized 
NP followed by Co.”, their system would first 
find a large number of (mostly) positive instanc-
es of company names, such as “Henry Kauffman 
Co.” From the context surrounding each of these 
instances it would isolate alternative indicators, 
such as “the president of”, which is noted to oc-
cur in front of many company names, as in “The 
president of American Electric Automobile Co. 
…”. Such alternative indicators give rise to new 
extraction rules, e.g., “president of + CNAME”. 
The new rules find more entities, including com-
pany names that do not end with Co., and the 
process iterates until no further rules are found. 
The technique achieved a very high performance 
(95% precision and 90% recall), which encour-
aged more research in IE area by using boot-
strapping techniques. Using a similar approach, 
(Thelen and Riloff, 2002) generated new syntac-
tic patterns by exploiting the context of known 
seeds for learning semantic categories.  

In Snowball (Agichtein and Gravano, 2000 ) 
and Yangarber’s IE system (2000), bootstrapping 
technique was applied for extraction of binary 
relations, such as Organization-Location, e.g., 
between Microsoft and Redmond, WA. Then, Xu 
(2007) extended the method for more complex 
relations extraction by using sentence syntactic 
structure and a data driven pattern generation. In 
this paper, we describe a different approach on 
building event patterns and adapting to the dif-
ferent structures of unseen events. 

3 Bootstrapping applied to event learn-
ing  

Our objective in this project was to expand the 
bootstrapping technique to learn extraction of 
events from text, irrespective of their form of 
description, a property essential for successful 
adaptability to new domains and text genres. The 
major challenge in advancing from entities and 
binary relations to event learning is the complex-
ity of structures involved that not only consist of 
multiple elements but their linguistic context 
may now extend well beyond a few surrounding 
words, even past sentence boundaries. These 
considerations guided the design of the BEAR 
system (Bootstrapping Events And Relations), 
which is described in this paper. 

3.1 Event representation  

An event description can vary from very concise, 
newswire-style to very rich and complex as may 

be found in essays and other narrative forms. The 
system needs to recognize any of these forms and 
to do so we need to distill each description to a 
basic event pattern. This pattern will capture the 
heads of key phrases and their dependency struc-
ture while suppressing modifiers and certain oth-
er non-essential elements. Such skeletal 
representations cannot be obtained with keyword 
analysis or linear processing of sentences at word 
level (e.g., Agichtein and Gravano, 2000), be-
cause such methods cannot distinguish a phrase 
head from its modifier. A shallow dependency 
parser, such as Minipar (Lin, 1998), that recog-
nizes dependency relations between words is 
quite sufficient for deriving head-modifier rela-
tions and thus for construction of event tem-
plates. Event templates are obtained by stripping 
the parse tree of modifiers while preserving the 
basic dependency structure as shown in Figure 1, 
which is a stripped down parse tree of, “Also 
Monday, Israeli soldiers fired on four diplomatic 
vehicles in the northern Gaza town of Beit 
Hanoun, said diplomats” 

The model proposed here represents a signifi-
cant advance over the current methods for rela-
tion extraction, such as the SVO model 
(Yangarber, et al. 2000) and its extension, e.g., 
the chain model (Sudo, et al. 2001) and other 
related variants (Riloff, 1996) all of which lack 
the expressive power to accurately recognize and 
represent complex event descriptions and to sup-
port successful machine learning. While Sudo’s 
subtree model (2003) overcomes some of the 
limitations of the chain models and is thus con-
ceptually closer to our method, it nonetheless 
lacks efficiency required for practical applica-
tions.  

We represent complex relations as tree-like 
structures anchored at an event trigger (which is 
usually but not necessarily the main verb) with 
branches extending to the event attributes (which 
are usually named entities). Unlike the singular 
concepts (i.e., named entities such as ‘person’ or 
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‘location’) or linear relations (i.e., tuples such as 
‘Gates – CEO – Microsoft’), an event description 
consists of elements that form non-linear de-
pendencies, which may not be apparent in the 
word order and therefore require syntactic and 
semantic analysis to extract. Furthermore, an ar-
rangement of these elements in text can vary 
greatly from one event mention to the next, and 
there is usually other intervening material in-
volved. Consequently, we construe event repre-
sentation as a collection of paths linking the 
trigger to the attributes through the nodes of a 
parse tree1.  

To create an event pattern (which will be part 
of an extraction rule), we generalize the depend-
ency paths that connect the event trigger with 
each of the event key attributes (the roles). A 
dependency path consists of lexical and syntactic 
relations (POS and phrase dependencies), as well 
as semantic relations, such as entity tags (e.g., 
Person, Company, etc.) of event roles and word 
sense designations (based on Wordnet senses) of 
event triggers. In addition to the trigger-role 
paths (which we shall call the sub-patterns), an 
event pattern also contains the following: 

• Event Type and Subtype – which is inher-
ited from seed examples; 

• Trigger class – an instance of the trigger 
must be found in text before any patterns 
are applied; 

• Confidence score – expected accuracy of 
the pattern established during training 
process; 

• Context profile – additional features col-
lected from the context surrounding the 
event description, including references of 
other types of events near this event, in 
the same sentence, same paragraph, or ad-
jacent paragraphs. 

We note that the trigger-attribute sub-patterns 
are defined over phrase structures rather than 
over linear text, as shown in Figure 2. In order to 
compose a complete event pattern, sub-patterns 
are collected across multiple mentions of the 
same-type event. 

                                                             
1 Details of how to derive the skeletal tree representation are 
described in (Liu, 2009). 
2 t – the type of the event, w_pos – the lemma of a word and 
its POS. 
3 In this figure we omit the parse tree trimming step which 
was explained in the previous section. 

3.2 Designating the sense of event triggers  

An event trigger may have multiple senses but 
only one of them is for the event representation. 
If the correct sense can be determined, we would 
be able to use its synonyms and hyponym as al-
ternative event triggers, thus enabling extraction 
of more events. This, in turn, requires sense dis-
ambiguation to be performed on the event trig-
gers. 

In MUC evaluations, participating groups ( 
Yangarber and Grishman, 1998) used human 
experts to decide the correct sense of event trig-
gers and then manually added correct synonyms 
to generalize event patterns. Although accurate, 
the process is time consuming and not portable to 
new domains. 

We developed a new approach for utilizing 
Wordnet to decide the correct sense of an event 
trigger. The method is based on the hypothesis 
that event triggers will share same sense when 
represent same type of event. For example, when 
the verbs, attack, assail, strike, gas, bomb, are 
trigger words of Conflict-Attack event, they 
share same sense. This process is described in the 
following steps: 
1)  From training corpus, collect all triggers, 

which specify the lemma, POS tag, the type 
of event and get all possible senses of them 
from Wordnet. 

2)  Order the triggers by the trigger frequency 
TrF(t, w_pos),2 which is calculated by divid-
ing number of times each word (w_pos) is 
used as a trigger for the event of type (t) by 
the total number of times this word occurs in 
the training corpus. Clearly, the greater trig-
ger frequency of a word, the more discrimi-
native it is as a trigger for the given type of 
event. When the senses of the triggers with 
high accuracy are defined, they can be the 
reference for the triggers in low accuracy. 

3)  From the top of the trigger list, select the 
first none-sense defined trigger (Tr1) 

4)  Again, beginning from the top of the trigger 
list, for every trigger Tr2 (other than Tr1), 
we look for a pair of compatible senses be-
tween Tr1 and Tr2. To do so, traverse Syno-
nym, Hypernym, and Hyponym links starting 
from the sense(s) of Tr2 (use either the sense 
already assigned to Tr2 if has or all its possi-
ble senses) and see whether there are paths 
which can reach the senses of Tr1. If such 
converging paths exist, the compatible senses 

                                                             
2 t – the type of the event, w_pos – the lemma of a word and 
its POS. 

Attacker:  <N(subj, PER): Attacker> <V(fire): trigger> 
Place:  <V(fire): trigger> <Prep> <N> <Prep(in)> <N(GPE): Place> 
Target:  <V(fire): trigger> <Prep(on)> <N(VEH): Target> 

Time-Within:<N(timex2): Time-Within><SentHead><V(fire): 
trigger> 

Figure 2. Trigger-attribute sub-patterns for key roles in a Conflict-
Attack event pattern. 
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are identified and assigned to Tr1 and Tr2 (if 
Tr2’s sense wasn’t assigned before). Then go 
back to step 3. However, if no such path ex-
ist between Tr1 senses with other triggers 
senses, the first sense listed in Wordnet will 
be assigned to Tr1 

This algorithm tries to assign the most proper 
sense to every trigger for one type of event. For 
example, the sense of fire as trigger of Conflict-
Attack event is “start firing a weapon”; while it is 
used in Personal-End_Position, its sense is “ter-
minate the employment of”. After the trigger 
sense is defined, we can expand event triggers by 
adding their synonyms and hyponyms during the 
event extraction. 

3.3 Deriving initial rules from seed exam-
ples  

Extraction rules are construed as transformations 
from the event patterns derived from text onto a 
formal representation of an event. The initial 
rules are derived from a manually annotated 
training text corpus (seed data), supplied as part 
of an application task. Each rule contains the 
type of events it extracts, trigger, a list of role 
sub-patterns, and the confidence score obtained 
through a validation process (see section 3.6). 
Figure 3 shows an extraction pattern for the Con-
flict-Attack event derived from the training cor-
pus (but not validated yet)3.  

3.4 Learning through pattern mutation  

Given an initial set of extraction rules, a variety 
of pattern mutation techniques are applied to de-
rive new patterns and new rules. This is done by 
selecting elements of previously learnt patterns, 
based on the history of partial matches and com-
bining them into new patterns. This form of 
learning, which also includes conditional rule 
                                                             
3 In this figure we omit the parse tree trimming step which 
was explained in the previous section. 

relaxation, is particularly useful for rapid adapta-
tion of extraction capability to slightly altered, 
partly ungrammatical, or otherwise variant data.  

The basic idea is as follows: the patterns ac-
quired in prior learning iterations (starting with 
those obtained from the seed examples) are 
matched against incoming text to extract new 
events. Along the way there will be a number of 
partial matches, i.e., when no existing pattern 
fully matches a span of text. This may simply 
mean that no event is present; however, depend-
ing upon the degree of the partial match we may 
also consider that a novel structural variant was 
found. BEAR would automatically test this hy-
pothesis by attempting to construe a new pattern, 
out of the elements of existing patterns, in order 
to achieve a full match. If a match is achieved, 
the new “mutated” pattern will be added to 
BEAR learned collection, subject to a validation 
step. The validation step (discussed later in this 
paper) is to assure that the added pattern would 
not introduce an unacceptable drop in overall 
system precision. Specific pattern mutation tech-
niques include the following: 
• Adding a role subpattern: When a pattern 

matches an event mention while there is a 
sufficient linguistic evidence (e.g., pres-
ence of certain types of named entities) 
that additional roles may be present in 
text, then appropriate role subpatterns can 
be "imported" from other, non-matching 
patterns (Figure 4). 

•  Replacing a role subpattern: When a pat-
tern matches but for one role, the system 
can replace this role subpattern by another 
subpattern for the same role taken from a 
different pattern for the same event type. 

•  Adding or replacing a trigger: When a 
pattern matches but for the trigger, a new 
trigger can be added if it either is already 
present in another pattern for the same 
event type or the syno-
nym/hyponym/hypernym of the trigger 
(found in section 3.2). 

We should point out that some of the same ef-
fects can be obtained by making patterns more 
general, i.e., adding "optional" attributes (i.e., 
optional sub-patterns), etc. Nonetheless, the pat-
tern mutation is more efficient because it will 
automatically learn such generalization on an as-
needed basis in an entirely data-driven fashion, 
while also maintaining high precision of the re-
sulting pattern set. It is thus a more general 
method. Figure 4 illustrated the use of the ele-
ments combination technique. In this example, 

 
Figure 3. A Conflict-Attack event pattern derived from a 

positive example in the training corpus 

299



 
Figure 5. A new extraction pattern is derived by iden-

tifying an alternative trigger for an event. 

Pattern ID: 1286 
Type: Conflict   Subtype: Attack 
Trigger:  attack_N 
Target:  <N(FAC): Target> <Prep(in)> <N(attack): trigger> 
Attacker:  <N(PER): Attacker> <V> <N> <Prep> <N> <Prep(in)> 
<N(attack): trigger> 
Time-Within: <N(attack): trigger> <E0> <V> <N(timex2): Time-
within> 

Figure 5B. A new pattern is derived for event in Fig 5, with an attack as the 
trigger. 

Pattern ID: 1207 
Type: Conflict    Subtype: Attack 
Trigger:  bombing_N 
Target:  <N(bombing): trigger> <Prep(of)> <N(FAC): Target>  
Attacker:  <N(PER): Attacker> <V> <N(bombing): trigger>  
Time-Within: <N(bombing): trigger> <Prep> <N> <Prep> <N> 
<E0> <V> <N(timex2): Time-within> 

Figure 5A. A pattern with the bombing trigger matches the event 
mention in Fig. 5. 

 
Figure 4. Deriving a new pattern by importing a role from another pattern 

neither of the two existing patterns can fully 
match the new event description; however, by 
combining the first pattern with the Place role 
sub-pattern from the second pattern we obtain a 
new pattern that fully matches the text. While 
this adjustment is quite simple, it is nonetheless 
performed automatically and without any human 
assistance. The new pattern is then “learned” by 
BEAR, subject to a verification step explained in 
a later section. 

3.5 Learning by exploiting structural duali-
ty  

As the system reads through new text extracting 
more events using already learnt rules, each ex-
tracted event mention is analyzed for presence of 
alternative trigger elements that can consistently 
predict the presence of a subset of events that 
includes the current one. Subsequently, an alter-
native sub-pattern structure will be built with 
branches extending from the new trigger to the 
already identified attributes, as shown schemati-
cally in Figure 5.  

In this example, a Conflict-Attack-type event 
is extracted using a pattern (shown in Figure 5A) 
anchored at the “bombing” trigger. Nonetheless, 
an alternative trigger structure is discovered, 
which is anchored at “an attack” NP, as shown 
on the right side of Figure 5. This “discovery” is 
based upon seeing the new trigger repeatedly – it 
needs to “explain” a subset of previously seen 
events to be adopted. The new trigger will 
prompt BEAR to derive additional event pat-
terns, by computing alternative trigger-attribute 
paths in the dependency tree. The new pattern 

(shown in Figure 5B) is of course subject to con-
fidence validation, after which it will be immedi-
ately applied to extract more events. 

 Another way of getting at this kind of struc-
tural duality is to exploit co-referential con-
sistency within coherent spans of discourse, e.g., 
a single news article or a similar document. Such 
documents may contain references to multiple 
events, but when the same type of event is men-
tioned along with the same attributes, it is more 
likely than not in reference to the same event.  
This hypothesis is a variant of an argument ad-
vanced in (Gale, et al. 2000) that a polysemous 
word used multiple times within a single docu-
ment, is consistently used in the same sense. So 
if we extract an event mention (of type T) with 
trigger t in one part of a document, and then find 
that t occurs in another part of the same docu-
ment, then we may assume that this second oc-
currence of t has the same sense as the first. 
Since t is a trigger for an event of type T, we can 
hypothesize its subsequent occurrences indicate 
additional mentions of type T events that were 
not extracted by any of the existing patterns. Our 
objective is to exploit these unextracted mentions 
and then automatically generate additional event 
patterns. 

Indeed, Ji (2008) showed that trigger co-
occurrence helps finding new mentions of the 
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Pattern ID: -1 
Type: Personnel  Subtype: End-Position 
Trigger: resign_V 
Person: <N(PER, subj): Person> <V(resign): trigger> 
Entity: <V(resign):trigger> <E0> <N(ORG): Entity> <N> <V> 

Figure 7A. A new pattern for End-Position learned by exploiting 
event co-reference. 

 
Figure 7. Two event mentions have different triggers and 

sub-patterns structures 
 

 
Figure 6. The probability of a sentence containing a mention of the 

same type of event within a single document 

same event; however, we found that if using enti-
ty co-reference as another factor, more new men-
tions could be identified when the trigger has low 
projected accuracy (Liu, 2009; Yu Hong, et al. 
2011). Our experiments (Figure 64), which com-
pared the triggers and the roles across all event 
mentions within each document on ACE training 
corpus, showed that when the trigger accuracy is 
0.5 or higher, each of its occurrences within the 
document indicates an event mention of the same 
type with a very high probability (mostly > 0.9). 
For triggers with lower accuracy, this high prob-
ability is only achieved when the two mentions 
share at least 60% of their roles, in addition to 
having a common trigger. Thus our approach 
uses co-occurrence of both trigger and event ar-
gument for detecting new event mentions.  

In Figure 7, an End-Position event is extracted 
from left sentence (L), with “resign” as the trig-
ger and “Capek” and “UBS” assigned Person and 
Entity roles, respectively5. The right sentence 
(R), taken from the same document, contains the 
same trigger word, “resigned” and also the same 

                                                             
4 The X-axis is the percentage of entities coreferred between 
the EVMs (Event mentions) and the SEs (Sentences); while 
the Y-axis shows the probability that the SE contains a men-
tion that is the same type as the EVM. 
5 Entity is the employer in the event 

entities, “Howard G. Capek” and “UBS”. The 
projected accuracy of resign_V as an End-
Position trigger is 0.88. With 100% argument 
overlap rate, we estimate the probability that sen-
tence R contains an event mention of the same 
type as sentence L (and in fact co-referential 
mention) at 97% (We set 80% as the threshold). 
Thus a new event mention is found and a new 
pattern for End-Position is automatically derived 
from R, as shown in Figure 7A. 

3.6 Pattern validation  

Extraction patterns are validated after each learn-
ing cycle against the already annotated data. In 
the first supervised learning step, patterns accu-
racy is tested against the training corpus based on 
the similarity between the extracted events and 
human annotated events:  

• A Full match is achieved when the event 
type is correctly identified and all its roles 
are correctly matched. A full credit is 
added to the pattern score. 

• A Partial match is achieved when the 
event type is correctly identified but only 
a subset of roles is correctly extracted. A 
partial score, which is the ratio of the 
matched roles to the whole roles, is add-
ed. 

• A False Alarm occurs when a wrong type 
of event is extracted (including when no 
event is present in text). No credit is add-
ed to the pattern score. 

In the subsequent steps, the validation is ex-
tended over parts of the unannotated corpus. In 
Riloff (1996) and Sudo et al. (2001), the pattern 
accuracy is mainly dependent on its occurrences 
in the relevant documents6 vs. the whole corpus. 
However, one document may contain multiple 
types of events, thus we set a more restricted val-
idation measure on new rules: 

• Good Match If a new rule “rediscovers” 
already extracted events of the same type, 
then it will be counted as either a Full 
Match or Partial Match based on previ-
ous rules 

• Possible Match If an already extracted 
event of same type of a rule contains 
same entities and trigger as the candidate 
extracted by the rule. This candidate is a 
possible match, so it will get a partial 

                                                             
6 If a document contains same type of events extracted from 
previous steps, the document is a relevant document to the 
pattern. 
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Victim pattern: <N(obj, PER): Victim> <V(kill): trigger> (Life-Die) 
Projected Accuracy: 0.9390243902439024 
Number of negative matches: 5 
Number of Positive matches: 77 
 
Attacker pattern: <N(subj, PE/PER/ORG): Attacker> <V> <V(use): 
trigger>  (Conflict-Attack) 
Projected Accuracy: 0.025210084033613446  
Number of negative matches: 116  
Number of positive matches: 3 

 
Attacker pattern: <N(subj, GPE/PER): Attacker> <V(attack): trig-
ger>  (Conflict-Attack) 
Projected Accuracy: 0.4166666666666667  
Number of negative matches: 7  
Number of positive matches: 5 
categories of posi-
tive matches: 

GPE: 4  GPE_Nation: 4  PER: 1 
PER_Individual: 1 

categories of nega-
tive matches: 

GPE: 1  GPE_Nation: 1  PER: 6  
PER_Group: 1 
PER_Individual: 5 

Figure 9. sub-patterns with projected accuracy scores 

Event id: 27 
from: sample 
Projected Accuracy: 0.1765 
Adjusted Projected Accuracy: 0.91 
Type: Justice Subtype: Arrest-Jail 
Trigger: capture 
Person sub-pattern:  <N(obj, PER): Person> <V(capture): trigger> 
Co-occurrence ratio: {para_Conflict_Demonstrate=100%,  …} 
Mutually exclusive ratio: {sent_Conflict_Attack=100%, pa-
ra_Conflict_Attack=96.3%,  …} 

Figure 8. An Arrest-Jail pattern with context profile information 

score based on the statistics result from 
Figure 6. 

• False Alarm If a new rule picks up an al-
ready extracted event in different type 

Thus, event patterns are validated for overall 
expected precision by calculating the ratio of 
positive matches to all matches against known 
events. This produces pattern confidence scores, 
which are used to decide if a pattern is to be 
learned or not. Learning only the patterns with 
sufficiently high confidence scores helps to 
guard the bootstrapping process from spinning 
off track; nonetheless, the overall objective is to 
maximize the performance of the resulting set of 
extraction rules, particularly by expanding its 
recall rate. 

For the patterns where the projected accuracy 
score falls under the cutoff threshold, we may 
still be able to make some “repairs” by taking 
into account their context profile. To do so, we 
applied a similar approach as (Liao, 2010), which 
showed that some types of events can appeared 
frequently with each other. We collected all the 
matches produced by such a failed pattern and 
created a list of all other events that occur in their 
immediate vicinity: in the same sentence, as well 
as the sentences before and after it7. These other 
events, of different types and detected by differ-
ent patterns, may be seen as co-occurring near 
the target event: these that co-occur near positive 
matches of our pattern will be added to the posi-
tive context support of this pattern; conversely, 
events co-occurring near false alarms will be 
added to the negative context support for this 
pattern. By collecting such contextual infor-
mation, we can find contextually-based indica-
tors and non-indicators for occurrence of event 
mentions. When these extra constraints are in-
cluded in a previously failed pattern, its projected 

                                                             
7 If a known event is detected in the same sentence 
(sent_…), the same paragraph (para_…), or an adjacent 
paragraph (adj_para_...) as the candidate event, it be-
comes an element of the pattern context support. 

accuracy is expected to increase, in some cases 
above the threshold.  

For example, the pattern in Figure 8 has an in-
itially low projected accuracy score; however, we 
find that positive matches of this pattern show a 
very high (100% in fact) degree of correlation 
with mentions of Demonstrate events. Therefore, 
limiting the application of this pattern to situa-
tions where a Justice-Arrest-Jail event is men-
tioned in a nearby text improves its projected 
accuracy to 91%, which is well above the re-
quired threshold.  

In addition to the confidence rate of each new 
pattern, we also calculate projected accuracy of 
each of the role sub-patterns, because they may 
be used in the process of detecting new patterns, 
and it will be necessary to score partial matches, 
as a function confidence weights for pattern 
components. To validate a sub-pattern we apply 
it to the training corpus and calculate its project-
ed accuracy score by dividing the number of cor-
rectly matched roles by the total number of 
matches returned. The projected accuracy score 
will tell us how well a sub-pattern can distin-
guish a specific event role from other infor-
mation, when used independently from other 
elements of the complete pattern. 

Figure 9 shows three sub-pattern examples. 
The first sub-pattern extracts the Victim role in a 
Life-Die event with very high projected accuracy. 
This sub-pattern is also a good candidate for 
generations of additional patterns for this type of 
event, a process which we describe in section D. 
The second sub-pattern was built to extract the 
Attacker role in Conflict-Attack events, but it has 
very low projected accuracy. The third one 
shows another Attacker sub-pattern whose pro-
jected accuracy score is 0.417 after the first step 
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Figure 10. BEAR cross-validated scores 

Table 1. Sub-patterns whose projected accuracy is significantly increased after noisy samples are removed 

Sub-patterns Projected 
Accuracy 

Additional con-
straints 

Revised Accu-
racy 

Movement-Transport: 
<N(obj, PER/VEH): Artifact> <V(send): trigger> 0.475 removing PER 0.667 

<V(bring): trigger> <N(obj)> <Prep = to> <N(FAC/GPE): Destina-
tion> 0.375 removing GPE 1.0 

…    
Conflict Attack: 

<N(PER/ORG/GPE):Attacker><N(attack):trigger> 0.682 removing PER 0.8 
<N(subj,GPE/PER):Attacker><V(attack): trigger> 0.417 removing GPE 0.8 

<N(obj,VEH/PER/FAC):Target><V(target):trigger> 0.364 removing 
PER_Individual 0.667 

…    
 

 
Figure 11. BEAR’s unsupervised learning curve. 

in validation process. This is quite low; however, 
it can be repaired by constraining its entity type 
to GPE. This is because we note that with a GPE 
entity, the subpattern is 80% on target, while 
with PER entity it is 85% a false alarm. After 
this sub-pattern is restricted to GPE its projected 
accuracy becomes 0.8. 

Table 1 lists example sub-patterns for which 
the projected accuracy increases significantly 
after adding more constrains. When the projected 
accuracy of a sub-pattern is improved, all pat-
terns containing this sub-pattern will also im-
prove their projected accuracy. If the adjusted 
projected accuracy rises above the predefined 
threshold, the repaired pattern will be saved. 

 In the following section, we will discuss the 
experiments conducted to evaluate the perfor-
mance of the techniques underlying BEAR: how 
effectively it can learn and how accurately it can 
perform its extraction task. 

4 Evaluation  

We test the system learning effectiveness by 
comparing its performance immediately follow-
ing the first iteration (i.e., using rules derived 
from the training data) with its performance after 
N cycles of unsupervised learning. We split ACE 
training corpus 8  randomly into 5 folders and 
trained BEAR on the four folders and evaluated 
it on the left one. Then, we did 5 fold cross vali-
dation. Our experiments showed that BEAR 

                                                             
8 ACE training data contains 599 documents from news, 
weblog, usenet, and conversational telephone speech. Total 
33 types of events are defined in ACE corpus.  

reached the best cross-validated score, 66.72%, 
when pattern accuracy threshold is set at 0.5. The 
highest score of single run is 67.62%. In the fol-
lowing of this section, we will use results of one 
single run to display the learning behavior of 
BEAR.  

In Figure 10, X-axis shows values of the 
learning threshold (in descending order), while 
Y-axis is the average F-score achieved by the 
automatically learned patterns for all types of 
events against the test corpus. The red (lower) 
line represents BEAR’s base run immediately 
after the first iteration (supervised learning step); 
the blue (upper) line represents BEAR’s perfor-
mance after an additional 10 unsupervised learn-
ing cycles9 are completed. We note that the final 
performance of the bootstrapped system steadily 
increases as the learning threshold is lowered, 
peaking at about 0.5 threshold value, and then 
declines as the threshold value is further de-
creased, although it remains solidly above the 
base run. Analyzing more closely a few selected 
points on this chart we note, for example, that the 
base run at threshold of 0 has F-score of 34.5%, 
which represents 30.42% recall, 40% precision. 
On the other end of the curve, at the threshold of 
0.9, the base run precision is 91.8% but recall at 
only 21.5%, which produces F-score of 34.8%. It 
is interesting to observe that at neither of these 
two extremes the system learning effectiveness is 
particularly good, and is significantly less than at 

                                                             
9 The learning process for one type of event will stop when 
no new patterns can be generated, so the number of learning 
cycles for each event type is different. The highest number 
of learning cycles is 10 and lowest one is 2. 
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Table 2. BEAR performance following different selections of 
learning steps 

 Precision Recall F-score 
Base1 0.89 0.22 0.35 
Base2 0.87 0.28 0.42 

All 0.84 0.56 0.67 
PMM 0.84 0.48 0.61 
CBM 0.86 0.37 0.52 

 

 
Figure 13. Event mention extraction after learning: recall for 

each type of event 

 
Figure 12. Event mention extraction after learning: preci-

sion for each type of event 

the median threshold of 0.5 (based on the exper-
iments conducted thus far), where the system 
performance improves from 42% to 66.86% F-
score, which represents 83.9% precision and 
55.57% recall.   

Figure 11 explains BEAR’s learning effec-
tiveness at what we determined empirically to be 
the optimal confidence threshold (0.5) for pattern 
acquisition. We note that the performance of the 
system steadily increases until it reaches a plat-
eau after about 10 learning cycles.  

Figure 12 and Figure 13 show a detailed 
breakdown of BEAR extraction performance 
after 10 learning cycles for different types of 
events. We note that while precision holds steady 
across the event types, recall levels vary signifi-
cantly. The main reason for low recall in some 
types of events is the failure to find a sufficient 
number of high-confidence patterns. This may 
point to limitations of the current pattern discov-
ery methods and may require new ways of reach-
ing outside of the current feature set. 

In the previous section we described several 
learning methods that BEAR uses to discover, 
validate and adapt new event extraction rules. 
Some of them work by manipulating already 
learnt patterns and adapting them to new data in 
order to create new patterns, and we shall call 
these pattern-mutation methods (PMM). Other 
described methods work by exploiting a broader 
linguistic context in which the events occur, or 
context-based methods (CBM). CB methods look 
for structural duality in text surrounding the 
events and thus discover alternative extraction 
patterns.  

In Table 2, we report the results of running 
BEAR with each of these two groups of learning 
methods separately and then in combination to 

see how they contribute to the end performance. 
Base1 and Base2 showed the result without and 
with adding trigger synonyms in event extrac-
tion. By introducing trigger synonyms, 27% 
more good events were extracted at the first it-
eration and thus, BEAR had more resources to 
use in the unsupervised learning steps.  

The ALL is the combination of PMM and 
CBM, which demonstrate both methods have the 
contribution to the final results. Furthermore, as 
explained before, new extraction rules are 
learned in each iteration cycle based on what was 
learned in prior cycles and that new rules are 
adopted only after they are tested for their pro-
jected accuracy (confidence score), so that the 
overall precision of the resulting rule set is main-
tained at a high level relative to the base run. 

5 Conclusion and future work  

In this paper, we presented a semi-supervised 
method for learning new event extraction pat-
terns from un-annotated text. The techniques de-
scribed here add significant new tools that 
increase capabilities of information extraction 
technology in general, and more specifically, of 
systems that are built by purely supervised meth-
ods or from manually designed rules. Our eval-
uation using ACE dataset demonstrated that that 
bootstrapping can be effectively applied to learn-
ing event extraction rules for 33 different types 
of events and that the resulting system can out-
perform supervised system (base run) significant-
ly.  
Some follow-up research issues include: 

• New techniques are needed to recognize 
event descriptions that still evade the cur-
rent pattern derivation techniques, espe-
cially for the events defined in Personnel, 
Business, and Transactions classes. 

• Adapting the bootstrapping method to ex-
tract events in a different language, e.g. 
Chinese or Arabic. 

• Expanding this method to extraction of 
larger “scenarios”, i.e., groups of correlat-
ed events that form coherent “stories” of-
ten described in larger sections of text, 
e.g., an event and its immediate conse-
quences. 
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