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Abstract

Most event extraction systems are trained
with supervised learning and rely on a col-
lection of annotated documents. Due to
the domain-specificity of this task, event
extraction systems must be retrained with
new annotated data for each domain. In
this paper, we propose a bootstrapping so-
lution for event role filler extraction that re-
quires minimal human supervision. We aim
to rapidly train a state-of-the-art event ex-
traction system using a small set of “seed
nouns” for each event role, a collection
of relevant (in-domain) and irrelevant (out-
of-domain) texts, and a semantic dictio-
nary. The experimental results show that
the bootstrapped system outperforms previ-
ous weakly supervised event extraction sys-
tems on the MUC-4 data set, and achieves
performance levels comparable to super-
vised training with 700 manually annotated
documents.

1 Introduction

Event extraction systems process stories about
domain-relevant events and identify the role fillers
of each event. A key challenge for event extrac-
tion is that recognizing role fillers is inherently
contextual. For example, aPERSON can be a
perpetrator or a victim in different contexts (e.g.,
“John Smith assassinated the mayor”vs. “John
Smith was assassinated”). Similarly, anyCOM-
PANY can be an acquirer or an acquiree depending
on the context.

Many supervised learning techniques have
been used to create event extraction systems us-
ing gold standard “answer key” event templates
for training (e.g., (Freitag, 1998a; Chieu and Ng,

2002; Maslennikov and Chua, 2007)). How-
ever, manually generating answer keys for event
extraction is time-consuming and tedious. And
more importantly, event extraction annotations
are highly domain-specific, so new annotations
must be obtained for each domain.

The goal of our research is to use bootstrap-
ping techniques to automatically train a state-of-
the-art event extraction system without human-
generated answer key templates. The focus of our
work is the TIER event extraction model, which
is a multi-layered architecture for event extrac-
tion (Huang and Riloff, 2011). TIER’s innova-
tion over previous techniques is the use of four
different classifiers that analyze a document at in-
creasing levels of granularity. TIER progressively
zooms in on event information using a pipeline
of classifiers that perform document-level classi-
fication, sentence classification, and noun phrase
classification. TIER outperformed previous event
extraction systems on the MUC-4 data set, but re-
lied heavily on a large collection of 1,300 docu-
ments coupled with answer key templates to train
its four classifiers.

In this paper, we present a bootstrapping solu-
tion that exploits a large unannotated corpus for
training by usingrole-identifying nouns(Phillips
and Riloff, 2007) as seed terms. Phillips and
Riloff observed that some nouns, by definition,
refer to entities or objects that play a specific role
in an event. For example, “assassin”, “sniper”,
and “hitman” refer to people who play the role
of PERPETRATORin a criminal event. Similarly,
“victim”, “casualty”, and “fatality” refer to peo-
ple who play the role ofVICTIM , by virtue of
their lexical semantics. Phillips and Riloff called
these wordsrole-identifying nounsand used them
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to learn extraction patterns. Our research also
usesrole-identifying nounsto learn extraction pat-
terns, but the role-identifying nouns and patterns
are then used to create training data for event ex-
traction classifiers. Each classifier is then self-
trained in a bootstrapping loop.

Our weakly supervised training procedure re-
quires a small set of “seed nouns” for each event
role, and a collection of relevant (in-domain) and
irrelevant (out-of-domain) texts. No answer key
templates or annotated texts are needed. The seed
nouns are used to automatically generate a set
of role-identifying patterns, and then the nouns,
patterns, and a semantic dictionary are used to
label training instances. We also propagate the
event role labels across coreferent noun phrases
within a document to produce additional train-
ing instances. The automatically labeled texts are
used to train three components of TIER: its two
types of sentence classifiers and its noun phrase
classifiers. To create TIER’s fourth component,
its document genre classifier, we apply heuristics
to the output of the sentence classifiers.

We present experimental results on the MUC-
4 data set, which is a standard benchmark for
event extraction research. Our results show that
the bootstrapped system, TIERlite, outperforms
previous weakly supervised event extraction sys-
tems and achieves performance levels comparable
to supervised training with 700 manually anno-
tated documents.

2 Related Work

Event extraction techniques have largely focused
on detecting event “triggers” with their arguments
for extracting role fillers. Classical methods are
either pattern-based (Kim and Moldovan, 1993;
Riloff, 1993; Soderland et al., 1995; Huffman,
1996; Freitag, 1998b; Ciravegna, 2001; Califf and
Mooney, 2003; Riloff, 1996; Riloff and Jones,
1999; Yangarber et al., 2000; Sudo et al., 2003;
Stevenson and Greenwood, 2005) or classifier-
based (e.g., (Freitag, 1998a; Chieu and Ng, 2002;
Finn and Kushmerick, 2004; Li et al., 2005; Yu et
al., 2005)).

Recently, several approaches have been pro-
posed to address the insufficiency of using only
local context to identify role fillers. Some ap-
proaches look at the broader sentential context
around a potential role filler when making a de-
cision (e.g., (Gu and Cercone, 2006; Patwardhan

and Riloff, 2009)). Other systems take a more
global view and consider discourse properties of
the document as a whole to improve performance
(e.g., (Maslennikov and Chua, 2007; Ji and Gr-
ishman, 2008; Liao and Grishman, 2010; Huang
and Riloff, 2011)). Currently, the learning-based
event extraction systems that perform best all use
supervised learning techniques that require a large
number of texts coupled with manually-generated
annotations or answer key templates.

A variety of techniques have been explored
for weakly supervised training of event extrac-
tion systems, primarily in the realm of pattern or
rule-based approaches (e.g., (Riloff, 1996; Riloff
and Jones, 1999; Yangarber et al., 2000; Sudo et
al., 2003; Stevenson and Greenwood, 2005)). In
some of these approaches, a human must man-
ually review and “clean” the learned patterns to
obtain good performance. Research has also been
done to learn extraction patterns in an unsuper-
vised way (e.g., (Shinyama and Sekine, 2006;
Sekine, 2006)). But these efforts target open do-
main information extraction. To extract domain-
specific event information, domain experts are
needed to select the pattern subsets to use.

There have also been weakly supervised ap-
proaches that use more than just local context.
(Patwardhan and Riloff, 2007) uses a semantic
affinity measure to learn primary and secondary
patterns, and the secondary patterns are applied
only to event sentences. The event sentence clas-
sifier is self-trained using seed patterns. Most
recently, (Chambers and Jurafsky, 2011) acquire
event words from an external resource, group the
event words to form event scenarios, and group
extraction patterns for different event roles. How-
ever, these weakly supervised systems produce
substantially lower performance than the best su-
pervised systems.

3 Overview of TIER

The goal of our research is to develop a weakly
supervised training process that can successfully
train a state-of-the-art event extraction system for
a new domain with minimal human input. We de-
cided to focus our efforts on the TIER event ex-
traction model because it recently produced bet-
ter performance on the MUC-4 data set than prior
learning-based event extraction systems (Huang
and Riloff, 2011). In this section, we briefly give
an overview of TIER’s architecture and its com-
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Figure 1: TIER Overview

ponents.
TIER is a multi-layered architecture for event

extraction, as shown in Figure 1. Documents pass
through a pipeline where they are analyzed at dif-
ferent levels of granularity, which enables the sys-
tem to gradually “zoom in” on relevant facts. The
pipeline consists of a document genre classifier,
two types of sentence classifiers, and a set of noun
phrase (role filler) classifiers.

The lower pathway in Figure 1 shows that all
documents pass through anevent sentence clas-
sifier. Sentences labeled as event descriptions
then proceed to the noun phrase classifiers, which
are responsible for identifying the role fillers in
each sentence. The upper pathway in Figure 1 in-
volves a document genre classifier to determine
whether a document is an “event narrative” story
(i.e., an article that primarily discusses the details
of a domain-relevant event). Documents that are
classified as event narratives warrant additional
scrutiny because they most likely contain a lot of
event information. Event narrative stories are pro-
cessed by an additional set ofrole-specific sen-
tence classifiersthat look for role-specific con-
texts that will not necessarily mention the event.
For example, a victim may be mentioned in a sen-
tence that describes the aftermath of a crime, such
as transportation to a hospital or the identifica-
tion of a body. Sentences that are determined to
have “role-specific” contexts are passed along to
the noun phrase classifiers for role filler extrac-
tion. Consequently, event narrative documents
pass through both the lower pathway and the up-
per pathway. This approach creates an event ex-
traction system that can discover role fillers in a
variety of different contexts by considering the
type of document being processed.

TIER was originally trained with supervised
learning using 1,300 texts and their corresponding
answer key templates from the MUC-4 data set
(MUC-4 Proceedings, 1992). Human-generated
answer key templates are expensive to produce
because the annotation process is both difficult

and time-consuming. Furthermore, answer key
templates for one domain are virtually never
reusable for different domains, so a new set of
answer keys must be produced from scratch for
each domain. In the next section, we present our
weakly supervised approach for training TIER’s
event extraction classifiers.

4 Bootstrapped Training of Event
Extraction Classifiers

We adopt a two-phase approach to train TIER’s
event extraction modules using minimal human-
generated resources. The goal of the first phase
is to automatically generate positive training ex-
amples usingrole-identifyingseed nouns as input.
The seed nouns are used to automatically gener-
ate a set ofrole-identifying patternsfor each event
role. Each set of patterns is then assigned a set
of semantic constraints (selectional restrictions)
that are appropriate for that event role. The se-
mantic constraints consist of the role-identifying
seed nouns as well as general semantic classes
that constrain the event role (e.g., a victim must
be aHUMAN ). A noun phrase will satisfy the se-
mantic constraints if its head noun is in the seed
noun list or if it has the appropriate semantic type
(based on dictionary lookup). Each pattern is then
matched against the unannotated texts, and if the
extracted noun phrase satisfies its semantic con-
straints, then the noun phrase is automatically la-
beled as a role filler.

The second phase involves bootstrapped train-
ing of TIER’s classifiers. Using the labeled in-
stances generated in the first phase, we iteratively
train three of TIER’s components: the two types
of sentential classifiers and the noun phrase clas-
sifiers. For the fourth component, the document
classifier, we apply heuristics to the output of the
sentence classifiers to assess the density of rel-
evant sentences in a document and label high-
density stories as event narratives. In the fol-
lowing sections, we present the details of each of
these steps.

4.1 Automatically Labeling Training Data

Finding seeding instances of high precision and
reasonable coverage is important in bootstrap-
ping. However, this is especially challenging
for event extraction task because identifying role
fillers is inherently contextual. Furthermore, role
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Figure 2: Using Basilisk to Induce Role-Identifying
Patterns

fillers occur sparsely in text and in diverse con-
texts.

In this section, we explain how we gener-
ate role-identifying patternsautomatically using
seed nouns, and we discuss why we add seman-
tic constraints to the patterns when producing la-
beled instances for training. Then, we discuss the
coreference-based label propagation that we used
to obtain additional training instances. Finally, we
give examples to illustrate how we create training
instances.

4.1.1 Inducing Role-Identifying Patterns

The input to our system is a small set of
manually-definedseed nounsfor each event role.
Specifically, the user is required to provide
10 role-identifying nounsfor each event role.
(Phillips and Riloff, 2007) defined a noun as be-
ing “role-identifying” if its lexical semantics re-
veal the role of the entity/object in an event. For
example, the words “assassin” and “sniper” are
people who participate in a violent event as aPER-
PETRATOR. Therefore, the entities referred to by
role-identifying nouns are probable role fillers.

However, treating every context surrounding a
role-identifying noun as a role-identifying pattern
is risky. The reason is that many instances of role-
identifying nouns appear in contexts that do not
describe the event. But, if one pattern has been
seen to extract many role-identifying nouns and
seldomly seen to extract other nouns, then the pat-
tern likely represents an event context.

As (Phillips and Riloff, 2007) did, we use
Basilisk to learn patterns for each event role.
Basilisk was originally designed for semantic
class learning (e.g., to learn nouns belonging to
semantic categories, such asbuilding or human).
As shown in Figure 2, beginning with a small set
of seed nouns for each semantic class, Basilisk
learns additional nouns belonging to the same se-
mantic class. Internally, Basilisk uses extraction

patterns automatically generated from unanno-
tated texts to assess the similarity of nouns. First,
Basilisk assigns a score to each pattern based on
the number of seed words that co-occur with it.
Basilisk then collects the noun phrases extracted
by the highest-scoring patterns. Next, the head
noun of each noun phrase is assigned a score
based on the set of patterns that it co-occurred
with. Finally, Basilisk selects the highest-scoring
nouns, automatically labels them with the seman-
tic class of the seeds, adds these nouns to the lex-
icon, and restarts the learning process in a boot-
strapping fashion.

For our work, we give Basiliskrole-identifying
seed nounsfor each event role. We run the boot-
strapping process for 20 iterations and then har-
vest the 40 best patterns that Basilisk identifies
for each event role. We also tried using the addi-
tional role-identifying nouns learned by Basilisk,
but found that these nouns were too noisy.

4.1.2 Using the Patterns to Label NPs

The inducedrole-identifying patternscan be
matched against the unannotated texts to produce
labeled instances. However, relying solely on the
pattern contexts can be misleading. For example,
the pattern context<subject> caused damage
will extract some noun phrases that are weapons
(e.g., the bomb) but some noun phrases that are
not (e.g.,the tsunami).

Based on this observation, we add selectional
restrictions to each pattern that requires a noun
phrase to satisfy certain semantic constraints in
order to be extracted and labeled as a positive
instances for an event role. The selectional re-
strictions are satisfied if the head noun is among
the role-identifying seed nounsor if the semantic
class of the head noun is compatible with the cor-
responding event role. In the previous example,
tsunamiwill not be extracted as a weapon because
it has an incompatible semantic class (EVENT),
but bombwill be extracted because it has a com-
patible semantic class (WEAPON).

We use the semantic class labels assigned by
the Sundance parser (Riloff and Phillips, 2004) in
our experiments. Sundance looks up each noun
in a semantic dictionary to assign the semantic
class labels. As an alternative, general resources
(e.g., WordNet (Miller, 1990)) or a semantic tag-
ger (e.g., (Huang and Riloff, 2010)) could be
used.

289



John Smith was killed by 

. . . . . .

 

was killed by <np>

Role−Identifying
Patterns

two armed men
1

an hour later.
Police arrestedthe unidentified men  

3

 

in broad daylight this morning.  

left his house to go to work about 8:00 am.

The assassins
2

attackedthe mayor as he 

<subject> fired shots

men = Human

Role−Identifying  Semantic
 Dictionary 

terrorists

snipers
assassins

. . .

building = Object
<subject> attacked

Noun
Constraints Constraints

Figure 3: Automatic Training Data Creation

4.1.3 Propagating Labels with Coreference

To enrich the automatically labeled training in-
stances, we also propagate the event role labels
across coreferent noun phrases within a docu-
ment. The observation is that once a noun phrase
has been identified as a role filler, its corefer-
ent mentions in the same document likely fill the
same event role since they are referring to the
same real world entity.

To leverage these coreferential contexts, we
employ a simple head noun matching heuristic to
identify coreferent noun phrases. This heuristic
assumes that two noun phrases that have the same
head noun are coreferential. We considered us-
ing an off-the-shelf coreference resolver, but de-
cided that the head noun matching heuristic would
likely produce higher precision results, which is
important to produce high-quality labeled data.

4.1.4 Examples of Training Instance
Creation

Figure 3 illustrates how we label training in-
stances automatically. The text example shows
three noun phrases that are automatically labeled
as perpetrators. Noun phrases #1 and #2 oc-
cur in role-identifying pattern contexts (was killed
by <np> and <subject> attacked) and satisfy
the semantic constraints for perpetrators because
“men” has a compatible semantic type and “assas-
sins” is a role-identifying noun for perpetrators.

Noun phrase #3 (“the unidentified men”) does
not occur in a pattern context, but it is deemed
to be coreferent with “two armed men” because
they have the same head noun. Consequently, we

propagate the perpetrator label from noun phrase
#1 to noun phrase #3.

4.2 Creating TIERlite with Bootstrapping

In this section, we explain how the labeled in-
stances are used to train TIER’s classifiers with
bootstrapping. In addition to the automatically
labeled instances, the training process depends
on a text corpus that consists of both relevant
(in-domain) and irrelevant (out-of-domain) doc-
uments. Positive instances are generated from
the relevant documents and negative instances are
generated by randomly sampling from the irrele-
vant documents.

The classifiers are all support vector machines
(SVMs), implemented using the SVMlin software
(Keerthi and DeCoste, 2005). When applying the
classifiers during bootstrapping, we use a sliding
confidence threshold to determine which labels
are reliable based on the values produced by the
SVM. Initially, we set the threshold to be 2.0 to
identify highly confident predictions. But if fewer
thank instances pass the threshold, then we slide
the threshold down in decrements of 0.1 until we
obtain at leastk labeled instances or the thresh-
old drops below 0, in which case bootstrapping
ends. We usedk=10 for both sentence classifiers
andk=30 for the noun phrase classifiers.

The following sections present the details of the
bootstrapped training process for each of TIER’s
components.

Figure 4: The Bootstrapping Process

4.2.1 Noun Phrase Classifiers

The mission of the noun phrase classifiers is to
determine whether a noun phrase is a plausible
event role filler based on the local features sur-
rounding the noun phrase (NP). A set of classifiers
is needed, one for each event role.

As shown in Figure 4, to seed the classifier
training, the positive noun phrase instances are
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generated from the relevant documents follow-
ing Section 4.1. The negative noun phrase in-
stances are drawn randomly from the irrelevant
documents. Considering the sparsity of role fillers
in texts, we set the negative:positive ratio to be
10:1. Once the classifier is trained, it is applied to
the unlabeled noun phrases in the relevant docu-
ments. Noun phrases that are assigned role filler
labels by the classifier with high confidence (us-
ing the sliding threshold) are added to the set of
positive instances. New negative instances are
drawn randomly from the irrelevant documents to
maintain the 10:1 (negative:positive) ratio.

We extract features from each noun phrase
(NP) and its surrounding context. The features
include the NP head noun and its premodifiers.
We also use the Stanford NER tagger (Finkel et
al., 2005) to identify Named Entities within the
NP. The context features include four words to the
left of the NP, four words to the right of the NP,
and the lexico-syntactic patterns generated by Au-
toSlog to capture expressions around the NP (see
(Riloff, 1993) for details).

4.2.2 Event Sentence Classifier

The event sentence classifier is responsible
for identifying sentences that describe a relevant
event. Similar to the noun phrase classifier train-
ing, positive training instances are selected from
the relevant documents and negative instances are
drawn from the irrelevant documents. All sen-
tences in the relevant documents that contain one
or more labeled noun phrases (belonging to any
event role) are labeled as positive training in-
stances. We randomly sample sentences from the
irrelevant documents to obtain a negative:positive
training instance ratio of 10:1. The bootstrapping
process is then identical to that of the noun phrase
classifiers. The feature set for this classifier con-
sists of unigrams, bigrams and AutoSlog’s lexico-
syntactic patterns surrounding allnoun phrases in
the sentence.

4.2.3 Role-Specific Sentence Classifiers

The role-specific sentence classifiers are
trained to identify the contexts specific to each
event role. All sentences in the relevant doc-
uments that contain at least one labeled noun
phrase for the appropriate event role are used
as positive instances. Negative instances are
randomly sampled from the irrelevant documents

to maintain the negative:positive ratio of 10:1.
The bootstrapping process and feature set are the
same as for the event sentence classifier.

The difference between the two types of sen-
tence classifiers is that the event sentence classi-
fier uses positive instances from allevent roles,
while each role-specific sentence classifiers only
uses the positive instances for one particular event
role. The rationale is similar as in the super-
vised setting (Huang and Riloff, 2011); the event
sentence classifier is expected to generalize over
all event roles to identify event mention contexts,
while the role-specific sentence classifiers are ex-
pected to learn to identify contexts specific to in-
dividual roles.

4.2.4 Event Narrative Document Classifier

TIER also uses an event narrative document
classifier and only extracts information from role-
specific sentences within event narrative docu-
ments. In the supervised setting, TIER uses
heuristic rules derived from answer key templates
to identify the event narrative documents in the
training set, which are used to train an event nar-
rative document classifier. The heuristic rules re-
quire that an event narrative should have a high
density of relevant information and tend to men-
tion the relevant information within the first sev-
eral sentences.

In our weakly supervised setting, we use the
information density heuristic directly instead of
training an event narrative classifier. We approxi-
mate the relevant information density heuristic by
computing the ratio of relevant sentences (both
event sentences and role-specific sentences) out of
all the sentences in a document. Thus, the event
narrative labeller only relies on the output of the
two sentence classifiers. Specifically, we label a
document as an event narrative if≥ 50% of the
sentences in the document are relevant (i.e., la-
beled positively by either sentence classifier).

5 Evaluation

In this section, we evaluate our bootstrapped sys-
tem, TIERlite, on the MUC-4 event extraction
data set. First, we describe the IE task, the data
set, and the weakly supervised baseline systems
that we use for comparison. Then we present the
results of our fully bootstrapped system TIERlite,
the weakly supervised baseline systems, and two
fully supervised event extraction systems, TIER
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and GLACIER. In addition, we analyze the per-
formance of TIERlite using different configura-
tions to assess the impact of its components.

5.1 IE Task and Data

We evaluated the performance of our systems on
the MUC-4 terrorism IE task (MUC-4 Proceed-
ings, 1992) about Latin American terrorist events.
We used 1,300 texts (DEV) as our training set and
200 texts (TST3+TST4) as the test set. All the
documents have answer key templates. For the
training set, we used the answer keys to separate
the documents into relevant and irrelevant sub-
sets. Any document containing at least one rel-
evant event was considered to be relevant.

PerpInd PerpOrg Target Victim Weapon
129 74 126 201 58

Table 1: # of Role Fillers in the MUC-4 Test Set

Following previous studies, we evaluate our
system on five MUC-4 string event roles:perpe-
trator individuals (PerpInd),perpetrator organi-
zations(PerpOrg),physical targets, victims, and
weapons. Table 1 shows the distribution of role
fillers in the MUC-4 test set. The complete IE task
involves the creation of answer key templates, one
template per event1. Our work focuses on extract-
ing individual role fillers and not template genera-
tion, so we evaluate the accuracy of the role fillers
irrespective of which template they occur in.

We used the samehead nounscoring scheme
as previous systems, where an extraction is cor-
rect if its head noun matches the head noun in the
answer key2. Pronouns were discarded from both
the system responses and the answer keys since
no coreference resolution is done. Duplicate ex-
tractions were conflated before being scored, so
they count as just one hit or one miss.

5.2 Weakly Supervised Baselines

We compared the performance of our system with
three previous weakly supervised event extraction
systems.

AutoSlog-TS (Riloff, 1996) generates lexico-
syntactic patterns exhaustively from unannotated
texts and ranks them based on their frequency and
probability of occurring in relevant documents.
A human expert then examines the patterns and

1Documents may contain multiple events per article.
2For example, “armed men” will match “5 armed men”.

manually selects the best patterns for each event
role. During testing, the patterns are matched
against unseen texts to extract event role fillers.

PIPER (Patwardhan and Riloff, 2007; Patward-
han, 2010) learns extraction patterns using a se-
mantic affinity measure, and it distinguishes be-
tween primary and secondary patterns and ap-
plies them selectively. (Chambers and Jurafsky,
2011) (C+J) created an event extraction system
by acquiring event words from WordNet (Miller,
1990), clustering the event words into different
event scenarios, and grouping extraction patterns
for different event roles.

5.3 Performance of TIERlite

Table 2 shows the seed nouns that we used in our
experiments, which were generated by sorting the
nouns in the corpus by frequency and manually
identifying the first 10 role-identifying nouns for
each event role.3 Table 3 shows the number of
training instances (noun phrases) that were auto-
matically labeled for each event role using our
training data creation approach (Section 4.1).

Event Role Seed Nouns
Perpetrator terrorists assassins criminals rebels
Individual murderers deathsquads guerrillas

member members individuals
Perpetrator FMLN ELN FARC MRTA M-19 Front
Organization ShiningPath MedellinCartel

The Extraditables
Army of National Liberation

Target houses residence building home homes
offices pipeline hotel car vehicles

Victim victims civilians children jesuits Galan
priests students women peasants Romero

Weapon weapons bomb bombs explosives rifles
dynamite grenades device carbomb

Table 2: Role-Identifying Seed Nouns

PerpInd PerpOrg Target Victim Weapon
296 157 522 798 248

Table 3: # of Automatically Labeled NPs

Table 4 shows how our bootstrapped system
TIERlite compares with previous weakly super-
vised systems and two supervised systems, its su-
pervised counterpart TIER (Huang and Riloff,
2011) and a model that jointly considers local
and sentential contexts, GLACIER (Patwardhan

3We only found 9 weapon terms among the high-
frequency terms.
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Weakly Supervised Baselines
PerpInd PerpOrg Target Victim Weapon Average

AUTOSLOG-TS (1996) 33/49/40 52/33/41 54/59/56 49/54/51 38/44/41 45/48/46
PIPERBest (2007) 39/48/43 55/31/40 37/60/46 44/46/45 47/47/47 44/46/45
C+J (2011) - - - - - 44/36/40

Supervised Models
GLACIER (2009) 51/58/54 34/45/38 43/72/53 55/58/56 57/53/55 48/57/52
TIER (2011) 48/57/52 46/53/50 51/73/60 56/60/58 53/64/58 51/62/56

Weakly Supervised Models
TIERlite 47/51/49 60/39/47 37/65/47 39/53/45 53/55/54 47/53/50

Table 4: Performance of the Bootstrapped Event Extraction System (Precision/Recall/F-score)
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Figure 5: The Learning Curve of Supervised TIER

and Riloff, 2009). We see that TIERlite outper-
forms all three weakly supervised systems, with
slightly higher precision and substantially more
recall. When compared to the supervised sys-
tems, the performance of TIERlite is similar to
GLACIER, with comparable precision but slightly
lower recall. But the supervised TIER system,
which was trained with 1,300 annotated docu-
ments, is still superior, especially in recall.

Figure 5 shows the learning curve for TIER
when it is trained with fewer documents, rang-
ing from 100 to 1,300 in increments of 100. Each
data point represents five experiments where we
randomly selectedk documents from the train-
ing set and averaged the results. The bars show
the range of results across the five runs. Figure 5
shows that TIER’s performance increases from an
F score of 34 when trained on just 100 documents
up to an F score of 56 when training on 1,300 doc-
uments. The circle shows the performance of our
bootstrapped system, TIERlite, which achieves an
F score comparable to supervised training with
about 700 manually annotated documents.

5.4 Analysis

Table 6 shows the effect of the coreference prop-
agation step described in Section 4.1.3 as part of
training data creation. Without this step, the per-
formance of the bootstrapped system yields an F
score of 41. With the benefit of the additional
training instances produced by coreference prop-
agation, the system yields an F score of 53. The
new instances produced by coreference propaga-
tion seem to substantially enrich the diversity of
the set of labeled instances.

Seeding P/R/F
wo/Coref 45/38/41
w/Coref 47/53/50

Table 6: Effects of Coreference Propagation

In the evaluation section, we saw that the su-
pervised event extraction systems achieve higher
recall than the weakly supervised systems. Al-
though our bootstrapped event extraction sys-
tem TIERlite produces higher recall than previ-
ous weakly supervised systems, a substantial re-
call gap still exists.

Considering the pipeline structure of the event
extraction system, as shown in Figure 1, the noun
phrase extractors are responsible for identifying
all candidate role fillers. The sentential classifiers
and the document classifier effectively serve as
filters to rule out candidates from irrelevant con-
texts. Consequently, there is no way to recover
missing recall (role fillers) if the noun phrase ex-
tractors fail to identify them.

Since the noun phrase classifiers are so central
to the performance of the system, we compared
the performance of the bootstrapped noun phrase
classifiers directly with their supervised conter-
parts. The results are shown in Table 5. Both sets
of classifiers produce low precision when used in
isolation, but their precision levels are compara-
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PerpInd PerpOrg Target Victim Weapon Average
Supervised Classifier 25/67/36 26/78/39 34/83/49 32/72/45 30/75/43 30/75/42
Bootstrapped Classifier 30/54/39 37/53/44 30/71/42 28/63/39 36/57/44 32/60/42

Table 5: Evaluation of Bootstrapped Noun Phrase Classifiers(Precision/Recall/F-score)

ble. The TIER pipeline architecture is successful
at eliminating many of the false hits. However,
the recall of the bootstrapped classifiers is consis-
tently lower than the recall of the supervised clas-
sifiers. Specifically, the recall is about 10 points
lower for three event roles (PerpInd, Target and
Victim) and 20 points lower for the other two event
roles (PerpOrgandWeapon). These results sug-
gest that our bootstrapping approach to training
instance creation does not fully capture the diver-
sity of role filler contexts that are available in the
supervised training set of 1,300 documents. This
issue is an interesting direction for future work.

6 Conclusions

We have presented a bootstrapping approach for
training a multi-layered event extraction model
using a small set of “seed nouns” for each event
role, a collection of relevant (in-domain) and ir-
relevant (out-of-domain) texts and a semantic dic-
tionary. The experimental results show that the
bootstrapped system, TIERlite, outperforms pre-
vious weakly supervised event extraction sys-
tems on a standard event extraction data set, and
achieves performance levels comparable to super-
vised training with 700 manually annotated docu-
ments. The minimal supervision required to train
such a model increases the portability of event ex-
traction systems.
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