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Abstract

Most event extraction systems are trained
with supervised learning and rely on a col-
lection of annotated documents. Due to
the domain-specificity of this task, event
extraction systems must be retrained with
new annotated data for each domain. In
this paper, we propose a bootstrapping so-
lution for event role filler extraction that re-
quires minimal human supervision. We aim
to rapidly train a state-of-the-art event ex-
traction system using a small set of “seed
nouns” for each event role, a collection
of relevant (in-domain) and irrelevant (out-
of-domain) texts, and a semantic dictio-
nary. The experimental results show that
the bootstrapped system outperforms previ-
ous weakly supervised event extraction sys-
tems on the MUC-4 data set, and achieves
performance levels comparable to super-
vised training with 700 manually annotated
documents.

Introduction

2002; Maslennikov and Chua, 2007)). How-

ever, manually generating answer keys for event
extraction is time-consuming and tedious. And

more importantly, event extraction annotations
are highly domain-specific, so new annotations
must be obtained for each domain.

The goal of our research is to use bootstrap-
ping techniques to automatically train a state-of-
the-art event extraction system without human-
generated answer key templates. The focus of our
work is the TIER event extraction model, which
is a multi-layered architecture for event extrac-
tion (Huang and Riloff, 2011). TIER'’s innova-
tion over previous techniques is the use of four
different classifiers that analyze a document at in-
creasing levels of granularity. TIER progressively
zooms in on event information using a pipeline
of classifiers that perform document-level classi-
fication, sentence classification, and noun phrase
classification. TIER outperformed previous event
extraction systems on the MUC-4 data set, but re-
lied heavily on a large collection of 1,300 docu-
ments coupled with answer key templates to train

Event extraction systems process stories aboli four classifiers.

domain-relevant events and identify the role fillers In this paper, we present a bootstrapping solu-
of each event. A key challenge for event extraction that exploits a large unannotated corpus for
tion is that recognizing role fillers is inherently training by usingrole-identifying noungPhillips
contextual. For example, BERSON can be a and Riloff, 2007) as seed terms. Phillips and
perpetrator or a victim in different contexts (e.g. Riloff observed that some nouns, by definition,
“John Smith assassinated the mayars. “John  refer to entities or objects that play a specific role
Smith was assassinated” Similarly, anycom- in an event. For example, “assassin”, “sniper”,
PANY can be an acquirer or an acquiree dependingnd “hitman” refer to people who play the role
on the context. of PERPETRATORIN a criminal event. Similarly,
Many supervised learning techniques havévictim”, “casualty”, and “fatality” refer to peo-
been used to create event extraction systems ygde who play the role ofvicTim, by virtue of
ing gold standard “answer key” event templatesheir lexical semantics. Phillips and Riloff called
for training (e.g., (Freitag, 1998a; Chieu and Ngthese wordsole-identifying nounsnd used them
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to learn extraction patterns. Our research alsand Riloff, 2009)). Other systems take a more
usegole-identifying hounso learn extraction pat- global view and consider discourse properties of
terns, but the role-identifying nouns and patternthe document as a whole to improve performance
are then used to create training data for event exe.g., (Maslennikov and Chua, 2007; Ji and Gr-
traction classifiers. Each classifier is then selfishman, 2008; Liao and Grishman, 2010; Huang
trained in a bootstrapping loop. and Riloff, 2011)). Currently, the learning-based
Our weakly supervised training procedure reevent extraction systems that perform best all use
quires a small set of “seed nouns” for each evergupervised learning techniques that require a large
role, and a collection of relevant (in-domain) anchumber of texts coupled with manually-generated
irrelevant (out-of-domain) texts. No answer keyannotations or answer key templates.
templates or annotated texts are needed. The seed\ variety of techniques have been explored
nouns are used to automatically generate a sfetr weakly supervised training of event extrac-
of role-identifying patternsand then the nouns, tion systems, primarily in the realm of pattern or
patterns, and a semantic dictionary are used tole-based approaches (e.g., (Riloff, 1996; Riloff
label training instances. We also propagate thand Jones, 1999; Yangarber et al., 2000; Sudo et
event role labels across coreferent noun phrasat, 2003; Stevenson and Greenwood, 2005)). In
within a document to produce additional train-some of these approaches, a human must man-
ing instances. The automatically labeled texts angally review and “clean” the learned patterns to
used to train three components of TIER: its twambtain good performance. Research has also been
types of sentence classifiers and its noun phrasi®ne to learn extraction patterns in an unsuper-
classifiers. To create TIER'’s fourth componentyised way (e.g., (Shinyama and Sekine, 2006;
its document genre classifier, we apply heuristicSekine, 2006)). But these efforts target open do-
to the output of the sentence classifiers. main information extraction. To extract domain-
We present experimental results on the MUCspecific event information, domain experts are
4 data set, which is a standard benchmark fareeded to select the pattern subsets to use.
event extraction research. Our results show that There have also been weakly supervised ap-
the bootstrapped system, TIER, outperforms proaches that use more than just local context.
previous weakly supervised event extraction sygPatwardhan and Riloff, 2007) uses a semantic
tems and achieves performance levels comparakadfinity measure to learn primary and secondary
to supervised training with 700 manually anno-patterns, and the secondary patterns are applied
tated documents. only to event sentences. The event sentence clas-
sifier is self-trained using seed patterns. Most
2 Related Work recently, (Chambers and Jurafsky, 2011) acquire

Event extraction techniques have largely focuse@vent words from an external resource, group the
on detecting event “triggers” with their argumentsevent words to form event scenarios, and group
for extracting role fillers. Classical methods areextraction patterns for different event roles. How-
either pattern-based (Kim and Moldovan, 1993¢ever, these weakly supervised systems produce
Riloff, 1993: Soderland et al., 1995; Huffman,substantially lower performance than the best su-
1996; Freitag, 1998b; Ciravegna, 2001; Califf andPervised systems.
Mooney, 2003; Riloff, 1996; Riloff and Jones, .
1999: Yangarber et al., 2000 Sudo et al., 2003 COVverview of TIER
Stevenson and Greenwood, 2005) or classifieirhe goal of our research is to develop a weakly
based (e.g., (Freitag, 1998a; Chieu and Ng, 2002upervised training process that can successfully
Finn and Kushmerick, 2004; Li et al., 2005; Yu ettrain a state-of-the-art event extraction system for
al., 2005)). a new domain with minimal human input. We de-
Recently, several approaches have been proided to focus our efforts on the TIER event ex-
posed to address the insufficiency of using onlyraction model because it recently produced bet-
local context to identify role fillers. Some ap-ter performance on the MUC-4 data set than prior
proaches look at the broader sentential contektarning-based event extraction systems (Huang
around a potential role filler when making a de-and Riloff, 2011). In this section, we briefly give
cision (e.g., (Gu and Cercone, 2006; Patwardhaen overview of TIER’s architecture and its com-
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Event Narrative | | Role-Specific and time-consuming. Furthermore, answer key
Texts—-> Document > Sentence ) .
Classifier Recognizers \ templates for one domain are virtually never
/ Pole filler 1>EXt2en reysable for different domains, so a new set of
sentence answer keys must be produced from scratch for
Recognizer . .
each domain. In the next section, we present our
. . weakly supervised approach for training TIER'’s
Figure 1: TIER Overview event extraction classifiers.

Local

ponents. 4 Bootstrapped Training of Event

TIER is a multi-layered architecture for event  EXxtraction Classifiers

extraction, as shown in Figure 1. Documents pass

through a pipeline where they are analyzed at ditWe adopt a two-phase approach to train TIER’s

ferent levels of granularity, which enables the Sys(_event extraction modules using minimal human-

tem to gradually “zoom in” on relevant facts. Thegenerated resources. The goal of the first phase

pipeline consists of a document genre classifie?? to automatically generate positive training ex-

two types of sentence classifiers, and a set of no@}{;ples l:jsmgole-ldentlfylr;gtseedtnounts aTI Input.
phrase (role filler) classifiers. e seed nouns are used to automatically gener-

The lower pathway in Figure 1 shows that a”ate a set ofole-identifying patterngor each event

documents pass through ament sentence clas- r(:le. Eacth set oftpqttfrns 'IS tT.en EIISSIQ??C;. a set
sifier. Sentences labeled as event description semantic constraints (selectional restrictions)

then proceed to the noun phrase classifiers, whid® are approprlate for_that event rolg. The' S€
are responsible for identifying the role fillers inmamIC constraints consist of the roIe-|de_nt|fy|ng
each sentence. The upper pathway in Figure 1 igeed nouns as well as general semantic classes
volves a document genre classifier to determinté1alt constrain the event role (e_.g., a victim must
whether a document is an “event narrative” stor)be aHUMAN). A noun phrase will satisfy the se-

(i.e., an article that primarily discusses the detailgnant'c. cons_tr_amts It its head noun Is in th_e seed
of a domain-relevant event). Documents that ar oun list or if it has the appropriate semantic type

classified as event narratives warrant addition ased on dictionary lookup). Each pattern is then

scrutiny because they most likely contain a lot O]matched against the unannotated texts, and if the

. . . . Xtr noun phr isfies i manti n-
event information. Event narrative stories are pro(-a tracted noun phrase satisfies its semantic co

cessed by an additional set mfle-specific sen- straints, then the noun phrase is automatically la-

tence classifierghat look for role-specific con- beled as a role filler. ) )
texts that will not necessarily mention the event, '€ Second phase involves bootstrapped train-
For example, a victim may be mentioned in a seriN9 Of TIER's classifiers. Using the labeled in-
tence that describes the aftermath of a crime, sudi@nces generated in the first phase, we iteratively
as transportation to a hospital or the identificali@in three of TIER's components: the two types
tion of a body. Sentences that are determined ﬁ')f sentential classifiers and the noun phrase clas-

have “role-specific’ contexts are passed along iSifiers. For the fourth component, the document

the noun phrase classifiers for role filler extrac¢lassifier, we apply heuristics to the output of the

tion. Consequently, event narrative documentséntence classifiers to assess the density of rel-

pass through both the lower pathway and the UFs-:;vant sentences in a document and label high-

per pathway. This approach creates an event egensity stories as event narratives. In the fol-

traction system that can discover role fillers in 40Wing sections, we present the details of each of
variety of different contexts by considering theth€se steps.
type of document being processed.

TIER was originally trained with supervised
learning using 1,300 texts and their correspondinginding seeding instances of high precision and
answer key templates from the MUC-4 data sateasonable coverage is important in bootstrap-
(MUC-4 Proceedings, 1992). Human-generateding. However, this is especially challenging
answer key templates are expensive to produder event extraction task because identifying role
because the annotation process is both difficufillers is inherently contextual. Furthermore, role

4.1 Automatically Labeling Training Data
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10 Seeds patterns automatically generated from unanno-

tated texts to assess the similarity of nouns. First,
7 reccore Basilisk assigns a score to each pattern ba_sed_ on

Basilick — the 'n'umber of seed words that co-occur with it.
<—_ Basilisk then collects the noun phrases extracted

by the highest-scoring patterns. Next, the head
noun of each noun phrase is assigned a score
Figure 2: Using Basilisk to Induce Role-Identifyingbased on the set of patterns that it co-occurred
Patterns with. Finally, Basilisk selects the highest-scoring
nouns, automatically labels them with the seman-
fillers occur sparsely in text and in diverse con-f”c class of the seeds, adds_these nouns_to the lex-
texts. icon, and restarts the learning process in a boot-
In this section, we explain how we gener-sm’1pp|ng fashion. ) - ) o
ate role-identifying patternsautomatically using ~ FOF our work, we give Basiliskole-identifying
seed nouns, and we discuss why we add semasged noungor each event role. We run the boot-
tic constraints to the patterns when producing laSf@PPing process for 20 iterations and then har-
beled instances for training. Then, we discuss theSt the 40 best patterns that Basilisk identifies
coreference-based label propagation that we us&y €ach event role. We also tried using the addi-
to obtain additional training instances. Finally, wgional role-identifying nouns learned by Basilisk,

give examples to illustrate how we create traininUt found that these nouns were too noisy.
Instances. 4.1.2 Using the Patterns to Label NPs

4.1.1 Inducing Role-Identifying Patterns The inducedrole-identifying patternscan be
The input to our system is a small set ofmatched against the unannotated texts to produce
manually-definegeed nounsor each event role. labeled instances. However, relying solely on the
Specifically, the user is required to providepattern contexts can be misleading. For example,
10 role-identifying nounsfor each event role. the pattern contexksubject- caused damage
(Phillips and Riloff, 2007) defined a noun as bewill extract some noun phrases that are weapons
ing “role-identifying” if its lexical semantics re- (e.g.,the bomb but some noun phrases that are
veal the role of the entity/object in an event. Fonot (e.g.the tsunan)i
example, the words “assassin” and “sniper” are Based on this observation, we add selectional
people who participate in a violent event aser-  restrictions to each pattern that requires a noun
PETRATOR Therefore, the entities referred to byphrase to satisfy certain semantic constraints in
role-identifying nouns are probable role fillers. order to be extracted and labeled as a positive
However, treating every context surrounding anstances for an event role. The selectional re-
role-identifying noun as a role-identifying patternstrictions are satisfied if the head noun is among
is risky. The reason is that many instances of rolethe role-identifying seed noursr if the semantic
identifying nouns appear in contexts that do notlass of the head noun is compatible with the cor-
describe the event. But, if one pattern has beem®sponding event role. In the previous example,
seen to extract many role-identifying nouns andsunamiwill not be extracted as a weapon because
seldomly seen to extract other nouns, then the pat-has an incompatible semantic class/gEnT),
tern likely represents an event context. but bombwill be extracted because it has a com-
As (Phillips and Riloff, 2007) did, we use patible semantic classv\EAPON).
Basilisk to learn patterns for each event role. We use the semantic class labels assigned by
Basilisk was originally designed for semanticthe Sundance parser (Riloff and Phillips, 2004) in
class learning (e.g., to learn nouns belonging tour experiments. Sundance looks up each noun
semantic categories, such faglding or humarn. in a semantic dictionary to assign the semantic
As shown in Figure 2, beginning with a small setclass labels. As an alternative, general resources
of seed nouns for each semantic class, Basiligle.g., WordNet (Miller, 1990)) or a semantic tag-
learns additional nouns belonging to the same sger (e.g., (Huang and Riloff, 2010)) could be
mantic class. Internally, Basilisk uses extractionused.

Role-Specific Nouns
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propagate the perpetrator label from noun phrase
was killed by <np> | #1 to noun phrase #3.

terrorists

men = Human assassin
building = Object | gnipers

<subject> attacked
<subject> fired shot

4.2 Creating TIER;. with Bootstrapping

Semantic  RoleIdentifying Role-Identifying  IN this section, we explain how the labeled in-
Dictionary Noun Patterns stances are used to train TIER's classifiers with
Constraints onstraints

bootstrapping. In addition to the automatically
labeled instances, the training process depends

John Smithwas killed bywo armed men on a texF corpus that consists of both_ relevant
in broad daylight this morning. (in-domain) and irrelevant (out-of-domain) doc-
The agsassinattackedhe mayor as he uments. Positive instances are generated from

left his house to go to work about 8:00 am.

. S the relevant documents and negative instances are
Police arrestedhe unlde%tlfled men . .
an hour later. generated by randomly sampling from the irrele-
vant documents.
Figure 3: Automatic Training Data Creation The classifiers are all support vector machines

(SVMs), implemented using the SVMlin software
(Keerthi and DeCoste, 2005). When applying the
4.1.3 Propagating Labels with Coreference  classifiers during bootstrapping, we use a sliding
To enrich the automatically labeled training in-confidence threshold to determine which labels
stances, we also propagate the event role labelse reliable based on the values produced by the
across coreferent noun phrases within a doc$VM. Initially, we set the threshold to be 2.0 to
ment. The observation is that once a noun phraddentify highly confident predictions. But if fewer
has been identified as a role filler, its coreferthank instances pass the threshold, then we slide
ent mentions in the same document likely fill thethe threshold down in decrements of 0.1 until we
same event role since they are referring to thebtain at leask labeled instances or the thresh-
same real world entity. old drops below 0, in which case bootstrapping
To |everage these coreferential contexts, W@nds. We used=10 for both sentence classifiers

employ a simple head noun matching heuristic t§ndk=30 for the noun phrase classifiers.

identify coreferent noun phrases. This heuristic The following sections present the details of the
assumes that two noun phrases that have the saRfotstrapped training process for each of TIER’s
head noun are coreferential. We considered u§omponents.

ing an off-the-shelf coreference resolver, but de- P
cided that the head noun matching heuristic would
likely produce higher precision results, which is
important to produce high-quality labeled data.

Irrelevant
Documents

Negative
Instances

Positive
Instances

Unlabelled
4.1.4 Examples of Training Instance Instances

Creation

(1

—>

SVM Classifier
Bootstrapper

Figure 3 illustrates how we label training in-
stances automatically. The text example shows
three noun phrases that are automatically labeled
as perpetrators. Noun phrases #1 and #2 oc-
cur in role-identifying pattern contexta/és killed
by <np> and <subject- attacked and satisfy 4.2.1 Noun Phrase Classifiers
the semantic constraints for perpetrators becauseThe mission of the noun phrase classifiers is to
“‘men” has a compatible semantic type and “assastetermine whether a noun phrase is a plausible
sins” is a role-identifying noun for perpetrators. event role filler based on the local features sur-

Noun phrase #3 (“the unidentified men”) doegounding the noun phrase (NP). A set of classifiers
not occur in a pattern context, but it is deemeds needed, one for each event role.
to be coreferent with “two armed men” because As shown in Figure 4, to seed the classifier
they have the same head noun. Consequently, raining, the positive noun phrase instances are

Figure 4: The Bootstrapping Process
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generated from the relevant documents followto maintain the negative:positive ratio of 10:1.
ing Section 4.1. The negative noun phrase infhe bootstrapping process and feature set are the
stances are drawn randomly from the irrelevantame as for the event sentence classifier.
documents. Considering the sparsity of role fillers The difference between the two types of sen-
in texts, we set the negative:positive ratio to beence classifiers is that the event sentence classi-
10:1. Once the classifier is trained, it is applied tdier uses positive instances from aWent roles,
the unlabeled noun phrases in the relevant docwhile each role-specific sentence classifiers only
ments. Noun phrases that are assigned role filleises the positive instances for one particular event
labels by the classifier with high confidence (usfole. The rationale is similar as in the super-
ing the sliding threshold) are added to the set ofised setting (Huang and Riloff, 2011); the event
positive instances. New negative instances asentence classifier is expected to generalize over
drawn randomly from the irrelevant documents tall event roles to identify event mention contexts,
maintain the 10:1 (negative:positive) ratio. while the role-specific sentence classifiers are ex-
We extract features from each noun phraspected to learn to identify contexts specific to in-
(NP) and its surrounding context. The featureslividual roles.
include the NP head noun and its premodifiers
We also use the Stanford NER tagger (Finkel e
al., 2005) to identify Named Entities within the TIER also uses an event narrative document
NP. The context features include four words to th&lassifier and only extracts information from role-
left of the NP, four words to the right of the NP, specific sentences within event narrative docu-
and the lexico-syntactic patterns generated by AdDents. In the supervised setting, TIER uses
toSlog to capture expressions around the NP (Sé@uristic rules derived from answer key templates

.2.4 Event Narrative Document Classifier

(Riloff, 1993) for detalils). to identify the event narrative documents in the
training set, which are used to train an event nar-
4.2.2 Event Sentence Classifier rative document classifier. The heuristic rules re-

The event sentence classifier is responsibl%u"e that an event narrative should have a high

for identifying sentences that describe a relevarf{ensity of relevant information and tend to men-

event. Similar to the noun phrase classifier traintion the relevant information within the first sev-

ing, positive training instances are selected frorfiT@! Sentences. _ _
the relevant documents and negative instances a_treIn our weakly ?UperVISeq setting, we use the
information density heuristic directly instead of

drawn from the irrelevant documents. All sen-""*"' : © !
tences in the relevant documents that contain orf2ining an event narrative classifier. We approxi-

or more labeled noun phrases (belonging to anrg,]ate the relevant information density heuristic by
event role) are labeled as positive training incomputing the ratio of relevant sentences (both
stances. We randomly sample sentences from tgyent sentences and role-specific sentences) out of

irrelevant documents to obtain a negative:positiv@!l e sentences in a document. Thus, the event
arrative labeller only relies on the output of the

training instance ratio of 10:1. The bootstrappini\/ I U
process is then identical to that of the noun phras¥/0 sentence classifiers. Specifically, we label a
ument as an event narrative>if 50% of the

classifiers. The feature set for this classifier cordoC _ _
sists of unigrams, bigrams and AutoSlog's lexicoS€Ntences in the document are relevant (i.e., la-
syntactic patterns surrounding athun phrases in beled positively by either sentence classifier).

h ntence. i
the sentence 5 Evaluation

4.2.3 Role-Specific Sentence Classifiers In this section, we evaluate our bootstrapped sys-

The role-specific sentence classifiers artem, TIER;., on the MUC-4 event extraction
trained to identify the contexts specific to eacldata set. First, we describe the IE task, the data
event role. All sentences in the relevant docset, and the weakly supervised baseline systems
uments that contain at least one labeled noutmat we use for comparison. Then we present the
phrase for the appropriate event role are usewsults of our fully bootstrapped system TIER
as positive instances. Negative instances athe weakly supervised baseline systems, and two
randomly sampled from the irrelevant documentfully supervised event extraction systems, TIER
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and GLACIER. In addition, we analyze the per-manually selects the best patterns for each event
formance of TIER;. using different configura- role. During testing, the patterns are matched
tions to assess the impact of its components.  against unseen texts to extract event role fillers.
PIPER (Patwardhan and Riloff, 2007; Patward-
5.1 IE Task and Data han, 2010) learns extraction patterns using a se-
We evaluated the performance of our systems amantic affinity measure, and it distinguishes be-
the MUC-4 terrorism IE task (MUC-4 Proceed-tween primary and secondary patterns and ap-
ings, 1992) about Latin American terrorist eventsplies them selectively. (Chambers and Jurafsky,
We used 1,300 texts (DEV) as our training set and011) (C+J) created an event extraction system
200 texts (TST3+TST4) as the test set. All théoy acquiring event words from WordNet (Miller,
documents have answer key templates. For tHE990), clustering the event words into different
training set, we used the answer keys to separadgent scenarios, and grouping extraction patterns
the documents into relevant and irrelevant sulfor different event roles.
sets. Any document containing at least one rel-
evant event was considered to be relevant. 5.3 Performance of TIER;z.
Perpind | PerpOrg | Target | Victm | Weapon Table'2 shows the seed nouns that we useql in our
129 ) 126 501 tg experiments, which were generated by sorting the
nouns in the corpus by frequency and manually
Table 1: # of Role Fillers in the MUC-4 Test Set  identifying the first 10 role-identifying nouns for
each event rolé. Table 3 shows the number of
Following previous studies, we evaluate OUkrajining instances (noun phrases) that were auto-
system on five MUC-4 string event roleperpe-  matically labeled for each event role using our

trator individuals (Perpind), perpetrator organi-  trajning data creation approach (Section 4.1).

zations(PerpOrg),physical targetsvictims and

weapons Table 1 shows the distribution of role| EventRole | Seed Nouns

fillers in the MUC-4 test set. The complete IE task Perpetrator | terrorists assassins criminals rebels

involves the creation of answer kev templates OneIndividual murderers deatkquads guerrillas
olves the crealio y P ! member members individuals

template per eveht Our work focuses on extract- Perpetrator | FMLN ELN FARC MRTA M-19 Front

ing individual role fillers and not template generat Organization| ShiningPath MedellinCartel

tion, so we evaluate the accuracy of the role fillers The Extraditables

irrespective of which template they occur in. Army_of NationalLiberation

. Target houses residence building home home
We used the samkead nounscoring scheme offices pipeline hotel car vehicles

2

as previous systems, where an extraction is carvictim victims civilians children jesuits Galan
rect if its head noun matches the head noun in the priests students women peasants Romero
answer ke¥. Pronouns were discarded from both Weapon weapons bomb bombs explosives rifles

. dynamite grenades device daomb
the system responses and the answer keys since y 9

no coreference resolution is done. Duplicate ex- Table 2: Role-ldentifying Seed Nouns
tractions were conflated before being scored, so
they count as just one hit or one miss.

Perpind | PerpOrg| Target| Victim | Weapon
5.2 Weakly Supervised Baselines 296 157 522 798 248

We compared the performance of our system with Table 3: # of Automatically Labeled NPs

three previous weakly supervised event extraction

systems. Table 4 shows how our bootstrapped system
AutoSlog-TS (Riloff, 1996) generates lexico-TIER;;;. compares with previous weakly super-

syntactic patterns exhaustively from unannotatedised systems and two supervised systems, its su-

texts and ranks them based on their frequency amervised counterpart TIER (Huang and Riloff,

probability of occurring in relevant documents.2011) and a model that jointly considers local

A human expert then examines the patterns arghd sentential contexts, LGCIER (Patwardhan

'Documents may contain multiple events per article. SWe only found 9 weapon terms among the high-
2For example, “armed men” will match “5 armed men”. frequency terms.
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Weakly Supervised Baselines
Perpind | PerpOrg| Target Victim Weapon | Average
AUTOSLOG-TS (1996) | 33/49/40 | 52/33/41| 54/59/56 | 49/54/51 | 38/44/41 | 45/48/46
PIPERBes: (2007) 39/48/43 | 55/31/40 | 37/60/46 | 44/46/45 | A7/A7/47 | 44/46/45
C+J (2011) - - - - - 44/36/40
Supervised Models
GLACIER (2009) 51/58/54 | 34/45/38 | 43/72/53 | 55/58/56 | 57/53/55 | 48/57/52
TIER (2011) 48/57/52 | 46/53/50| 51/73/60 | 56/60/58 | 53/64/58 | 51/62/56
Weakly Supervised Models
TIER;te | 47/51/49] 60/39/47 | 37/65/47 | 39/53/45| 53/55/54 | 47/53/50

Table 4: Performance of the Bootstrapped Event Extractiate®n (Precision/Recall/F-score)

60 5.4 Analysis
e Table 6 shows the effect of the coreference prop-
g agation step described in Section 4.1.3 as part of
§ sor training data creation. Without this step, the per-
g 5 formance of the bootstrapped system yields an F
% score of 41. With the benefit of the additional
o training instances produced by coreference prop-
T ast agation, the system yields an F score of 53. The
| | | | | | new instances produced by coreference propaga-
*o 200 # OF traiming decuments > 1 tion seem to sub;tantially enrich the diversity of
the set of labeled instances.
Figure 5: The Learning Curve of Supervised TIER Seeding P/RIE

wo/Coref | 45/38/41
w/Coref | 47/53/50

Table 6: Effects of Coreference Propagation
and Riloff, 2009). We see that TIER outper-
forms all three weakly supervised systems, with In the evaluation section, we saw that the su-
slightly higher precision and substantially morepervised event extraction systems achieve higher
recall. When compared to the supervised sygecall than the weakly supervised systems. Al-
tems, the performance of TIER is similar to though our bootstrapped event extraction sys-
GLACIER, with comparable precision but slightly tem TIER;,. produces higher recall than previ-
lower recall. But the supervised TIER systempus weakly supervised systems, a substantial re-
which was trained with 1,300 annotated docueall gap still exists.
ments, is still superior, especially in recall. Considering the pipeline structure of the event
extraction system, as shown in Figure 1, the noun

Figure 5 shows the learning curve for TIERphrase extractors are responsible for identifying
when it is trained with fewer documents, rang-all candidate role fillers. The sentential classifiers
ing from 100 to 1,300 in increments of 100. Eacland the document classifier effectively serve as
data point represents five experiments where widters to rule out candidates from irrelevant con-
randomly selected: documents from the train- texts. Consequently, there is no way to recover
ing set and averaged the results. The bars shawissing recall (role fillers) if the noun phrase ex-
the range of results across the five runs. Figure tbactors fail to identify them.
shows that TIER’s performance increases from an Since the noun phrase classifiers are so central
F score of 34 when trained on just 100 document® the performance of the system, we compared
up to an F score of 56 when training on 1,300 docthe performance of the bootstrapped noun phrase
uments. The circle shows the performance of ourlassifiers directly with their supervised conter-
bootstrapped system, TIER, which achieves an parts. The results are shown in Table 5. Both sets
F score comparable to supervised training witlof classifiers produce low precision when used in
about 700 manually annotated documents. isolation, but their precision levels are compara-
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Perpind | PerpOrg| Target Victim Weapon | Average
Supervised Classifier | 25/67/36 | 26/78/39 | 34/83/49 | 32/72/45| 30/75/43 | 30/75/42
Bootstrapped Classifier 30/54/39 | 37/53/44 | 30/71/42 | 28/63/39 | 36/57/44 | 32/60/42

Table 5: Evaluation of Bootstrapped Noun Phrase Classffitnexcision/Recall/F-score)
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