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Abstract

Translation models used for statistical ma-
chine translation are compiled from par-
allel corpora; such corpora are manually
translated, but the direction of translation is
usually unknown, and is consequently ig-
nored. However, much research in Trans-
lation Studies indicates that the direction of
translation matters, as translated language
(translationese) has many unique proper-
ties. Specifically, phrase tables constructed
from parallel corpora translated in the same
direction as the translation task perform
better than ones constructed from corpora
translated in the opposite direction.

We reconfirm that this is indeed the case,
but emphasize the importance of using also
texts translated in the ‘wrong’ direction.
We take advantage of information pertain-
ing to the direction of translation in con-
structing phrase tables, by adapting the
translation model to the special proper-
ties of translationese. We define entropy-
based measures that estimate the correspon-
dence of target-language phrases to transla-
tionese, thereby eliminating the need to an-
notate the parallel corpus with information
pertaining to the direction of translation.
We show that incorporating these measures
as features in the phrase tables of statisti-
cal machine translation systems results in
consistent, statistically significant improve-
ment in the quality of the translation.

1 Introduction

Much research in Translation Studies indicates
that translated texts have unique characteristics
that set them apart from original texts (Toury,
1980; Gellerstam, 1986; Toury, 1995). Known
as translationese, translated texts (in any lan-
guage) constitute a genre, or a dialect, of the

target language, which reflects both artifacts of
the translation process and traces of the origi-
nal language from which the texts were trans-
lated. Among the better-known properties of
translationese are simplification and explicitation
(Baker, 1993, 1995, 1996): translated texts tend
to be shorter, to have lower type/token ratio, and
to use certain discourse markers more frequently
than original texts. Incidentally, translated texts
are so markedly different from original ones that
automatic classification can identify them with
very high accuracy (van Halteren, 2008; Baroni
and Bernardini, 2006; Ilisei et al., 2010; Koppel
and Ordan, 2011).

Contemporary Statistical Machine Translation
(SMT) systems use parallel corpora to train trans-
lation models that reflect source- and target-
language phrase correspondences. Typically,
SMT systems ignore the direction of translation
used to produce those corpora. Given the unique
properties of translationese, however, it is reason-
able to assume that this direction may affect the
quality of the translation. Recently, Kurokawa
et al. (2009) showed that this is indeed the case.
They train a system to translate between French
and English (and vice versa) using a French-
translated-to-English parallel corpus, and then an
English-translated-to-French one. They find that
in translating into French the latter parallel cor-
pus yields better results, whereas for translating
into English it is better to use the former.

Usually, of course, the translation direction of a
parallel corpus is unknown. Therefore, Kurokawa
et al. (2009) train an SVM-based classifier to pre-
dict which side of a bi-text is the origin and which
one is the translation, and only use the subset
of the corpus that corresponds to the translation
direction of the task in training their translation
model.
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We use these results as our departure point,
but improve them in two major ways. First,
we demonstrate that the other subset of the cor-
pus, reflecting translation in the ‘wrong’ direc-
tion, is also important for the translation task, and
must not be ignored; second, we show that ex-
plicit information on the direction of translation of
the parallel corpus, whether manually-annotated
or machine-learned, is not mandatory. This is
achieved by casting the problem in the framework
of domain adaptation: we use domain-adaptation
techniques to direct the SMT system toward pro-
ducing output that better reflects the properties
of translationese. We show that SMT systems
adapted to translationese produce better transla-
tions than vanilla systems trained on exactly the
same resources. We confirm these findings using
an automatic evaluation metric, BLEU (Papineni
et al., 2002), as well as through a qualitative anal-
ysis of the results.

Our departure point is the results of Kurokawa
et al. (2009), which we successfully replicate in
Section 3. First (Section 4), we explain why trans-
lation quality improves when the parallel corpus
is translated in the ‘right’ direction. We do so
by showing that the subset of the corpus that was
translated in the direction of the translation task
(the ‘right’ direction, henceforth source-to-target,
or S → T ) yields phrase tables that are better
suited for translation of the original language than
the subset translated in the reverse direction (the
‘wrong’ direction, henceforth target-to-source, or
T → S). We use several statistical measures that
indicate the better quality of the phrase tables in
the former case.

Then (Section 5), we explore ways to build a
translation model that is adapted to the unique
properties of translationese. We first show that
using the entire parallel corpus, including texts
that are translated both in the ‘right’ and in the
‘wrong’ direction, improves the quality of the re-
sults. Furthermore, we show that the direction of
translation used for producing the parallel corpus
can be approximated by defining several entropy-
based measures that correlate well with transla-
tionese, and, consequently, with the quality of the
translation.

Specifically, we use the entire corpus, create a
single, unified phrase table and then use the statis-
tical measures mentioned above, and in particular
cross-entropy, as a clue for selecting phrase pairs

from this table. The benefit of this method is that
not only does it yield the best results, but it also
eliminates the need to directly predict the direc-
tion of translation of the parallel corpus. The main
contribution of this work, therefore, is a method-
ology that improves the quality of SMT by build-
ing translation models that are adapted to the na-
ture of translationese.

2 Related Work

Kurokawa et al. (2009) are the first to address
the direction of translation in the context of SMT.
Their main finding is that using the S → T por-
tion of the parallel corpus results in mucqqh better
translation quality than when the T → S portion
is used for training the translation model. We in-
deed replicate these results here (Section 3), and
view them as a baseline. Additionally, we show
that the T → S portion is also important for ma-
chine translation and thus should not be discarded.
Using information-theory measures, and in par-
ticular cross-entropy, we gain statistically signif-
icant improvements in translation quality beyond
the results of Kurokawa et al. (2009). Further-
more, we eliminate the need to (manually or au-
tomatically) detect the direction of translation of
the parallel corpus.

Lembersky et al. (2011) also investigate the re-
lations between translationese and machine trans-
lation. Focusing on the language model (LM),
they show that LMs trained on translated texts
yield better translation quality than LMs compiled
from original texts. They also show that perplex-
ity is a good discriminator between original and
translated texts.

Our current work is closely related to research
in domain-adaptation. In a typical domain adap-
tation scenario, a system is trained on a large cor-
pus of “general” (out-of-domain) training mate-
rial, with a small portion of in-domain training
texts. In our case, the translation model is trained
on a large parallel corpus, of which some (gener-
ally unknown) subset is “in-domain” (S → T ),
and some other subset is “out-of-domain” (T →
S). Most existing adaptation methods focus on
selecting in-domain data from a general domain
corpus. In particular, perplexity is used to score
the sentences in the general-domain corpus ac-
cording to an in-domain language model. Gao
et al. (2002) and Moore and Lewis (2010) apply
this method to language modeling, while Foster
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et al. (2010) and Axelrod et al. (2011) use it on
the translation model. Moore and Lewis (2010)
suggest a slightly different approach, using cross-
entropy difference as a ranking function.

Domain adaptation methods are usually applied
at the corpus level, while we focus on an adap-
tation of the phrase table used for SMT. In this
sense, our work follows Foster et al. (2010), who
weigh out-of-domain phrase pairs according to
their relevance to the target domain. They use
multiple features that help distinguish between
phrase pairs in the general domain and those in
the specific domain. We rely on features that are
motivated by the findings of Translation Studies,
having established their relevance through a com-
parative analysis of the phrase tables. In particu-
lar, we use measures such as translation model en-
tropy, inspired by Koehn et al. (2009). Addition-
ally, we apply the method suggested by Moore
and Lewis (2010) using perplexity ratio instead
of cross-entropy difference.

3 Experimental Setup

The tasks we focus on are translation between
French and English, in both directions. We
use the Hansard corpus, containing transcripts of
the Canadian parliament from 1996–2007, as the
source of all parallel data. The Hansard is a
bilingual French–English corpus comprising ap-
proximately 80% English-original texts and 20%
French-original texts. Crucially, each sentence
pair in the corpus is annotated with the direction
of translation. Both English and French are lower-
cased and tokenized using MOSES (Koehn et al.,
2007). Sentences longer than 80 words are dis-
carded.

To address the effect of the corpus size, we
compile six subsets of different sizes (250K,
500K, 750K, 1M, 1.25M and 1.5M parallel
sentences) from each portion (English-original
and French-original) of the corpus. Addition-
ally, we use the devtest section of the Hansard
corpus to randomly select French-original and
English-original sentences that are used for tun-
ing (1,000 sentences each) and evaluation (5,000
sentences each). French-to-English MT sys-
tems are tuned and tested on French-original sen-
tences and English-to-French systems on English-
original ones.

To replicate the results of Kurokawa et al.
(2009) and set up a baseline, we train twelve

French-to-English and twelve English-to-French
phrase-based (PB-) SMT systems using the
MOSES toolkit (Koehn et al., 2007), each trained
on a different subset of the corpus. We use
GIZA++ (Och and Ney, 2000) with grow-diag-
final alignment, and extract phrases of length up
to 10 words. We prune the resulting phrase tables
as in Johnson et al. (2007), using at most 30 trans-
lations per source phrase and discarding singleton
phrase pairs.

We construct English and French 5-gram lan-
guage models from the English and French
subsections of the Europarl-V6 corpus (Koehn,
2005), using interpolated modified Kneser-Ney
discounting (Chen, 1998) and no cut-off on all
n-grams. Europarl consists of a large number
of subsets translated from various languages, and
is therefore unlikely to be biased towards a spe-
cific source language. The reordering model used
in all MT systems is trained on the union of
the 1.5M French-original and the 1.5M English-
original subsets, using msd-bidirectional-fe re-
ordering. We use the MERT algorithm (Och,
2003) for tuning and BLEU (Papineni et al., 2002)
as our evaluation metric. We test the statistical
significance of the differences between the results
using the bootstrap resampling method (Koehn,
2004).

A word on notation: We use ‘English-original’
(EO) and ‘French-original’ (FO) to refer to the
subsets of the corpus that are translated from En-
glish to French and from French to English, re-
spectively. The translation tasks are English-to-
French (E2F) and French-to-English (F2E). We
thus use ‘S → T ’ when the FO corpus is used for
the F2E task or when the EO corpus is used for
the E2F task; and ‘T → S’ when the FO corpus
is used for the E2F task or when the EO corpus is
used for the F2E task.

Table 1 depicts the BLEU scores of the baseline
systems. The data are consistent with the findings
of Kurokawa et al. (2009): systems trained on
S → T parallel texts outperform systems trained
on T → S texts, even when the latter are much
larger. The difference in BLEU score can be as
high as 3 points.

4 Analysis of the Phrase Tables

The baseline results suggest that S → T and
T → S phrase tables differ substantially, presum-
ably due to the different characteristics of original
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Task: French-to-English
Corpus subset S → T T → S

250K 34.35 31.33
500K 35.21 32.38
750K 36.12 32.90

1M 35.73 33.07
1.25M 36.24 33.23
1.5M 36.43 33.73

Task: English-to-French
Corpus subset S → T T → S

250K 27.74 26.58
500K 29.15 27.19
750K 29.43 27.63

1M 29.94 27.88
1.25M 30.63 27.84
1.5M 29.89 27.83

Table 1: BLEU scores of baseline systems

and translated texts. In this section we explain
the better translation quality in terms of the bet-
ter quality of the respective phrase tables, as de-
fined by a number of statistical measures. We first
relate these measures to the unique properties of
translationese.

Translated texts tend to be simpler than original
ones along a number of criteria. Generally, trans-
lated texts are not as rich and variable as origi-
nal ones, and in particular, their type/token ratio
is lower. Consequently, we expect S → T phrase
tables (which are based on a parallel corpus whose
source is original texts, and whose target is trans-
lationese) to have more unique source phrases and
a lower number of translations per source phrase.
A large number of unique source phrases suggests
better coverage of the source text, while a small
number of translations per source phrase means a
lower phrase table entropy. Entropy-based mea-
sures are well-established tools to assess the qual-
ity of a phrase table. Phrase table entropy captures
the amount of uncertainty involved in choosing
candidate translation phrases (Koehn et al., 2009).

Given a source phrase s and a phrase table T
with translations t of s whose probabilities are
p(t|s), the entropy H of s is:

H(s) = −
∑
t∈T

p(t|s)× log2p(t|s) (1)

There are two major flavors of the phrase table
entropy metric: Lambert et al. (2011) calculate

the average entropy over all translation options
for each source phrase (henceforth, phrase table
entropy or PtEnt), whereas Koehn et al. (2009)
search through all possible segmentations of the
source sentence to find the optimal covering set of
test sentences that minimizes the average entropy
of the source phrases in the covering set (hence-
forth, covering set entropy or CovEnt).

We also propose a metric that assesses the qual-
ity of the source side of a phrase table. The met-
ric finds the minimal covering set of a given text
in the source language using source phrases from
a particular phrase table, and outputs the average
length of a phrase in the covering set (henceforth,
covering set average length or CovLen).

Lembersky et al. (2011) show that perplexity
distinguishes well between translated and origi-
nal texts. Moreover, perplexity reflects the de-
gree of ‘relatedness’ of a given phrase to original
language or to translationese. Motivated by this
observation, we design two cross-entropy-based
measures to assess how well each phrase table fits
the genre of translationese. Since MT systems are
evaluated against human translations, we believe
that this factor may have a significant impact on
translation performance. The cross-entropy of a
text T = w1, w2, · · ·wN according to a language
model L is:

H(T, L) = − 1

N

N∑
i=1

log2L(wi) (2)

We build language models of translated texts
as follows. For English translationese, we
extract 170,000 French-original sentences from
the English portion of Europarl, and 3,000
English-translated-from-French sentences from
the Hansard corpus (disjoint from the training,
development and test sets, of course). We use
each corpus to train a trigram language model
with interpolated modified Kneser-Ney discount-
ing and no cut-off. All out-of-vocabulary words
are mapped to a special token, 〈unk〉. Then,
we interpolate the Hansard and Europarl language
models to minimize the perplexity of the target
side of the development set (λ = 0.58). For
French translationese, we use 270,000 sentences
from Europarl and 3,000 sentences from Hansard,
λ = 0.81. Finally, we compute the cross-entropy
of each target phrase in the phrase tables accord-
ing to these language models.
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As with the entropy-based measures, we define
two cross-entropy metrics: phrase table cross-
entropy or PtCrEnt calculates the average cross-
entropy over weighted cross-entropies of all trans-
lation options for each source phrase, and cover-
ing set cross-entropy or CovCrEnt finds the opti-
mal covering set of test sentences that minimizes
the weighted cross-entropy of the source phrase
in the covering set. Given a phrase table T and a
language model L, the weighted cross-entropyW
for a source phrase s is:

W (s, L) = −
∑
t∈T

H(t, L)× p(t|s) (3)

where H(t, L) is the cross-entropy of t according
to a language model L.

Table 2 depicts various statistical measures
computed on the phrase tables corresponding to
our 24 SMT systems.1 The data meet our pre-
liminary expectations: S → T phrase tables have
more unique source phrases, but fewer translation
options per source phrase. They have lower en-
tropy and cross-entropy, but higher covering set
length.

In order to asses the correspondence of each
measure to translation quality, we compute the
correlation of BLEU scores from Table 1 with
each of the measures specified in Table 2; we
compute the correlation coefficientR2 (the square
of Pearson’s product-moment correlation coeffi-
cient) by fitting a simple linear regression model.
Table 3 lists the results. Only the covering set
cross-entropy measure shows stability over the
French-to-English and English-to-French transla-
tion tasks, with R2 equals to 0.56 and 0.54, re-
spectively. Other measures are sensitive to the
translation task: covering set entropy has the
highest correlation with BLEU (R2 = 0.94) when
translating French-to-English, but it drops to 0.46
for the reverse task. The covering set average
length measure shows similar behavior: R2 drops
from 0.75 in French-to-English to 0.56 in English-
to-French. Still, the correlation of these measures
with BLEU is high.

Consequently, we use the three best measures,
namely covering set entropy, cross-entropy and
average length, as indicators of better transla-
tions, more similar to translationese. Crucially,

1The phrase tables were pruned, retaining only phrases
that are included in the evaluation set.

Measure R2 (FR–EN) R2 (EN-FR)
AvgTran 0.06 0.22
PtEnt 0.03 0.19
CovEnt 0.94 0.46
PtCrEnt 0.33 0.44
CovCrEnt 0.56 0.54
CovLen 0.75 0.56

Table 3: Correlation of BLEU scores with phrase table
statistical measures

these measures are computed directly on the
phrase table, and do not require reference trans-
lations or meta-information pertaining to the di-
rection of translation of the parallel phrase.

5 Translation Model Adaptation

We have thus established the fact that S → T
phrase tables have an advantage over T → S ones
that stems directly from the different characteris-
tics of original and translated texts. We have also
identified three statistical measures that explain
most of the variability in translation quality. We
now explore ways for taking advantage of the en-
tire parallel corpus, including translations in both
directions, in light of the above findings. Our goal
is to establish the best method to address the is-
sue of different translation direction components
in the parallel corpus.

First, we simply take the union of the two sub-
sets of the parallel corpus. We create three dif-
ferent mixtures of FO and EO: 500K sentences
each of FO and EO (‘MIX1’), 500K sentences
of FO and 1M sentences of EO (‘MIX2’), and
1M sentences of FO and 500K sentences of EO
(‘MIX3’). We use these corpora to train French-
to-English and English-to-French MT systems,
evaluating their quality on the evaluation sets de-
scribed in Section 3. We use the same Moses con-
figuration as well as the same language and re-
ordering models as in Section 3.

Table 4 reports the results, comparing them
to the results obtained for the baseline MT sys-
tems trained on individual French-original and
English-original bi-texts (see Section 3).2 Note
that the mixed corpus includes many more sen-
tences than each of the baseline models; this is a

2Recall that when translating from French to English,
S → T means that the bi-text is French-original; when trans-
lating from English to French, S → T means it is English-
original.
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Task: French-to-English
Set Total Source AvgTran PtEnt CovEnt PtCrEnt CovCrEnt CovLen

S → T
250K 231K 69K 3.35 0.86 0.36 3.94 1.64 2.44
500K 360K 86K 4.21 0.98 0.35 3.52 1.30 2.64
750K 461K 96K 4.81 1.05 0.35 3.24 1.10 2.77

1M 544K 103K 5.27 1.10 0.34 3.09 0.99 2.85
1.25M 619K 109K 5.66 1.14 0.34 2.98 0.91 2.92

1.5M 684K 114K 6.01 1.18 0.33 2.90 0.85 2.97
T → S
250K 199K 55K 3.65 0.92 0.45 4.00 1.87 2.25
500K 317K 69K 4.56 1.05 0.43 3.57 1.52 2.42
750K 405K 78K 5.19 1.12 0.43 3.39 1.35 2.53

1M 479K 85K 5.66 1.16 0.42 3.21 1.21 2.61
1.25M 545K 90K 6.07 1.20 0.41 3.11 1.12 2.67

1.5M 602K 94K 6.43 1.24 0.41 3.04 1.07 2.71
Task: English-to-French

Set Total Source AvgTran PtEnt CovEnt PtCrEnt CovCrEnt CovLen
S → T
250K 224K 49K 4.52 1.07 0.63 3.48 1.88 2.08
500K 346K 61K 5.64 1.21 0.59 3.08 1.49 2.25
750K 437K 68K 6.39 1.29 0.57 2.91 1.33 2.33

1M 513K 74K 6.95 1.34 0.55 2.75 1.18 2.41
1.25M 579K 78K 7.42 1.38 0.54 2.63 1.09 2.46

1.5M 635K 81K 7.83 1.41 0.53 2.58 1.03 2.50
T → S
250K 220K 46K 4.75 1.12 0.63 3.62 2.09 2.02
500K 334K 57K 5.82 1.24 0.60 3.24 1.70 2.16
750K 421K 64K 6.54 1.31 0.58 2.97 1.48 2.25

1M 489K 69K 7.10 1.36 0.57 2.84 1.35 2.32
1.25M 550K 73K 7.56 1.40 0.55 2.74 1.25 2.37

1.5M 603K 76K 7.92 1.43 0.55 2.66 1.17 2.41

Table 2: Statistic measures computed on the phrase tables: total size, in tokens (‘Total’); the number of unique
source phrases (‘Source’); the average number of translations per source phrase (‘AvgTran’); phrase table entropy
(‘PtEnt’) and covering set entropy (‘CovEnt’); phrase table cross-entropy (‘PtCrEnt’) and covering set cross-
entropy (‘CovCrEnt’); and the covering set average length (‘CovLen’)

realistic scenario, in which one can opt either to
use the entire parallel corpus, or only its S → T
subset. Even with a corpus several times as large,
however, the ‘mixed’ MT systems perform only
slightly better than the S → T ones. On one
hand, this means that one can train MT systems
on S → T data only, at the expense of only a mi-
nor loss in quality. On the other hand, it is obvi-
ous that the T → S component also contributes to
translation quality. We now look at ways to better
utilize this portion.

We compute the measures established in the

previous section on phrase tables trained on the
MIX corpora, and compare them with the same
measures computed for phrase tables trained on
the relevant S → T corpus for both translation
tasks. Table 5 displays the figures for the MIX1
corpus: Phrase tables trained on mixed corpora
have higher covering set average length, similar
covering set entropy, but significantly worse cov-
ering set cross-entropy. Consequently, improving
covering set cross-entropy has the greatest poten-
tial for improving translation quality. We there-
fore use this feature to ‘encourage’ the decoder to
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Task: French-to-English
System MIX1 MIX2 MIX3
Union 35.27 35.36 35.94
S → T 35.21 35.21 35.73
T → S 32.38 33.07 32.38

Task: English-to-French
System MIX1 MIX2 MIX3
Union 29.27 30.01 29.44
S → T 29.15 29.94 29.15
T → S 27.19 27.19 27.88

Table 4: Evaluation of the MIX systems

select translation options that are more related to
the genre of translated texts.

French-to-English
Measure MIX1 S → T

CovLen 2.78 2.64
CovEnt 0.37 0.35
CovCrEnt 1.58 1.10

English-to-French
Measure MIX1 S → T

CovLen 2.40 2.25
CovEnt 0.55 0.58
CovCrEnt 2.09 1.48

Table 5: Statistical measures computed for mixed vs.
source-to-target phrase tables

We do so by adding to each phrase pair in the
phrase tables an additional factor, as a measure of
its fitness to the genre of translationese. We ex-
periment with two such factors. First, we use the
language models described in Section 4 to com-
pute the cross-entropy of each translation option
according to this model. We add cross-entropy
as an additional score of a translation pair that
can be tuned by MERT (we refer to this system
as CrEnt). Since cross-entropy is ‘the lower the
better’ metric, we adjust the range of values used
by MERT for this score to be negative. Sec-
ond, following Moore and Lewis (2010), we de-
fine an adapting feature that not only measures
how close phrases are to translated language, but
also how far they are from original language, and
use it as a factor in a phrase table (this system
is referred to as PplRatio). We build two addi-
tional language models of original texts as fol-
lows. For original English, we extract 135,000
English-original sentences from the English por-

tion of Europarl, and 2,700 English-original sen-
tences from the Hansard corpus. We train a tri-
gram language model with interpolated modified
Kneser-Ney discounting on each corpus and we
interpolate both models to minimize the perplex-
ity of the source side of the development set for
the English-to-French translation task (λ = 0.49).
For original French, we use 110,000 sentences
from Europarl and 2,900 sentences from Hansard,
λ = 0.61. Finally, for each target phrase t in the
phrase table we compute the ratio of the perplex-
ity of t according to the original language model
Lo and the perplexity of twith respect to the trans-
lated modelLt (see Section 4). In other words, the
factor F is computed as follows:

F (t) =
H(t, Lo)

H(t, Lt)
(4)

We apply these techniques to the French-to-
English and English-to-French phrase tables built
from the mixed corpora and use each phrase ta-
ble to train an SMT system. Table 6 summa-
rizes the performance of these systems. All sys-
tems outperform the corresponding Union sys-
tems. ‘CrEnt’ systems show significant improve-
ments (p < 0.05) on balanced scenarios (‘MIX1’)
and on scenarios biased towards the S → T com-
ponent (‘MIX2’ in the French-to-English task,
‘MIX3’ in English-to-French). ‘PplRatio’ sys-
tems exhibit more consistent behavior, showing
small, but statistically significant improvement
(p < 0.05) in all scenarios.

Task: French-to-English
System MIX1 MIX2 MIX3
Union 35.27 35.36 35.94
CrEnt 35.54 35.45 36.75
PplRatio 35.59 35.78 36.22

Task: English-to-French
System MIX1 MIX2 MIX3
Union 29.27 30.01 29.44
CrEnt 29.47 30.44 29.45
PplRatio 29.65 30.34 29.62

Table 6: Evaluation of MT Systems

Note again that all systems in the same column
are trained on exactly the same corpus and have
exactly the same phrase tables. The only differ-
ence is an additional factor in the phrase table that
“encourages” the decoder to select translation op-
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tions that are closer to translated texts than to orig-
inal ones.

6 Analysis

In order to study the effect of the adaptation qual-
itatively, rather than quantitatively, we focus on
several concrete examples. We compare transla-
tions produced by the ‘Union’ (henceforth base-
line) and by the ‘PplRatio’ (henceforth adapted)
French-English SMT systems. We manually in-
spect 200 sentences of length between 15 and 25
from the French-English evaluation set.

In many cases, the adapted system produces
more fluent and accurate translations. In the fol-
lowing examples, the baseline system generates
common translations of French words that are ad-
equate for a wider context, whereas the adapted
system chooses less common, but more suitable
translations:
Source J’ai eu cette perception et j’étais assez

certain que ça allait se faire.
Baseline I had that perception and I was enough

certain it was going do.
Adapted I had that perception and I was quite

certain it was going do.
Source J’attends donc que vous en demandiez la

permission, monsieur le Président.
Baseline I look so that you seek permission, mr.

chairman.
Adapted I await, then, that you seek permission,

mr. chairman.
In quite a few cases, the baseline system leaves

out important words from the source sentence,
producing ungrammatical, even illegible transla-
tions, whereas the adapted system generates good
translations. Careful traceback reveals that the
baseline system ‘splits’ the source sentence into
phrases differently (and less optimally) than the
adapted system. Apparently, when the decoder is
coerced to select translation options that are more
adapted to translationese, it tends to select source
phrases that are more related to original texts, re-
sulting in more successful coverage of the source
sentence:
Source Pourtant, lorsqu’ on les avait présentés,

c’était pour corriger les problèmes liés au
PCSRA.

Baseline Yet when they had presented, it was to
correct the problems the CAIS program.

Adapted Yet when they had presented, it was to
correct the problems associated with CAIS.

Source Cependant, je pense qu’il est prématuré
de le faire actuellement, étant donné que le
ministre a lancé cette tournée.

Baseline However, I think it is premature to the
right now, since the minister launched this
tour.

Adapted However, I think it is premature to do
so now, given that the minister has launched
this tour.

Finally, there are often cultural differences be-
tween languages, specifically the use of a 24-hour
clock (common in French) vs. a 12-hour clock
(common in English). The adapted system is
more consistent in translating the former to the
latter:

Source On avait décidé de poursuivre la séance
jusqu’ à 18 heures, mais on n’aura pas le
temps de faire un autre tour de table.

Baseline We had decided to continue the meeting
until 18 hours, but we will not have the time
to do another round.

Adapted We had decided to continue the meeting
until 6 p.m., but we won’t have the time to do
another round.

Source Vu qu’il est 17h 20, je suis d’accord
pour qu’on ne discute pas de ma motion
immédiatement.

Baseline Seen that it is 17h 20, I agree that we are
not talking about my motion immediately.

Adapted Given that it is 5:20, I agree that we are
not talking about my motion immediately.

In (human) translation circles, translating out of
one’s mother tongue is considered unprofessional,
even unethical (Beeby, 2009). Many professional
associations in Europe urge translators to work
exclusively into their mother tongue (Pavlović,
2007). The two kinds of automatic systems built
in this paper reflect only partly the human sit-
uation, but they do so in a crucial way. The
S → T systems learn examples from many hu-
man translators who follow the decree according
to which translation should be made into one’s na-
tive tongue. The T → S systems are flipped di-
rections of humans’ input and output. The S → T
direction proved to be more fluent, accurate and
even more culturally sensitive. This has to do with
fact that the translators ‘cover’ the source texts
more fully, having a better ‘translation model’.
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7 Conclusion

Phrase tables trained on parallel corpora that were
translated in the same direction as the translation
task perform better than ones trained on corpora
translated in the opposite direction. Nonethe-
less, even ‘wrong’ phrase tables contribute to the
translation quality. We analyze both ‘correct’ and
‘wrong’ phrase tables, uncovering a great deal of
difference between them. We use insights from
Translation Studies to explain these differences;
we then adapt the translation model to the nature
of translationese.

We incorporate information-theoretic measures
that correlate well with translationese into phrase
tables as an additional score that can be tuned
by MERT, and show a statistically significant im-
provement in the translation quality over all base-
line systems. We also analyze the results qual-
itatively, showing that SMT systems adapted to
translationese tend to produce more coherent and
fluent outputs than the baseline systems. An addi-
tional advantage of our approach is that it does not
require an annotation of the translation direction
of the parallel corpus. It is completely generic
and can be applied to any language pair, domain
or corpus.

This work can be extended in various direc-
tions. We plan to further explore the use of two
phrase tables, one for each direction-determined
subset of the parallel corpus. Specifically, we will
interpolate the translation models as in Foster and
Kuhn (2007), including a maximum a posteriori
combination (Bacchiani et al., 2006). We also
plan to upweight the S → T subset of the parallel
corpus and train a single phrase table on the con-
catenated corpus. Finally, we intend to extend this
work by combining the translation-model adap-
tation we present here with the language-model
adaptation suggested by Lembersky et al. (2011)
in a unified system that is more tuned to generat-
ing translationese.
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Nataša Pavlović. Directionality in translation and in-
terpreting practice. Report on a questionnaire sur-
vey in Croatia. Forum, 5(2):79–99, 2007.

Gideon Toury. In Search of a Theory of Translation.
The Porter Institute for Poetics and Semiotics, Tel
Aviv University, Tel Aviv, 1980.

Gideon Toury. Descriptive Translation Studies and be-
yond. John Benjamins, Amsterdam / Philadelphia,
1995.

Hans van Halteren. Source language markers in EU-
ROPARL translations. In COLING ’08: Proceed-
ings of the 22nd International Conference on Com-
putational Linguistics, pages 937–944, Morristown,
NJ, USA, 2008. Association for Computational Lin-
guistics. ISBN 978-1-905593-44-6.

265


