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Abstract

We introduce two Bayesian models for un-
supervised semantic role labeling (SRL)
task. The models treat SRL as clustering
of syntactic signatures of arguments with
clusters corresponding to semantic roles.
The first model induces these clusterings
independently for each predicate, exploit-
ing the Chinese Restaurant Process (CRP)
as a prior. In a more refined hierarchical
model, we inject the intuition that the clus-
terings are similar across different predi-
cates, even though they are not necessar-
ily identical. This intuition is encoded as
a distance-dependent CRP with a distance
between two syntactic signatures indicating
how likely they are to correspond to a single
semantic role. These distances are automat-
ically induced within the model and shared
across predicates. Both models achieve
state-of-the-art results when evaluated on
PropBank, with the coupled model consis-
tently outperforming the factored counter-
part in all experimental set-ups.

1 Introduction

Semantic role labeling (SRL) (Gildea and Juraf-
sky, 2002), a shallow semantic parsing task, has
recently attracted a lot of attention in the com-
putational linguistic community (Carreras and
Màrquez, 2005; Surdeanu et al., 2008; Hajič et
al., 2009). The task involves prediction of predi-
cate argument structure, i.e. both identification of
arguments as well as assignment of labels accord-
ing to their underlying semantic role. For exam-
ple, in the following sentences:

(a) [A0 Mary] opened [A1 the door].

(b) [A0 Mary] is expected to open [A1 the door].

(c) [A1 The door] opened.

(d) [A1 The door] was opened [A0 by Mary].

Mary always takes an agent role (A0) for the pred-
icate open, and door is always a patient (A1).
SRL representations have many potential appli-
cations in natural language processing and have
recently been shown to be beneficial in question
answering (Shen and Lapata, 2007; Kaisser and
Webber, 2007), textual entailment (Sammons et
al., 2009), machine translation (Wu and Fung,
2009; Liu and Gildea, 2010; Wu et al., 2011; Gao
and Vogel, 2011), and dialogue systems (Basili et
al., 2009; van der Plas et al., 2011), among others.
Though syntactic representations are often predic-
tive of semantic roles (Levin, 1993), the interface
between syntactic and semantic representations is
far from trivial. The lack of simple determinis-
tic rules for mapping syntax to shallow semantics
motivates the use of statistical methods.

Although current statistical approaches have
been successful in predicting shallow seman-
tic representations, they typically require large
amounts of annotated data to estimate model pa-
rameters. These resources are scarce and ex-
pensive to create, and even the largest of them
have low coverage (Palmer and Sporleder, 2010).
Moreover, these models are domain-specific, and
their performance drops substantially when they
are used in a new domain (Pradhan et al., 2008).
Such domain specificity is arguably unavoidable
for a semantic analyzer, as even the definitions
of semantic roles are typically predicate specific,
and different domains can have radically different
distributions of predicates (and their senses). The
necessity for a large amounts of human-annotated
data for every language and domain is one of the
major obstacles to the wide-spread adoption of se-
mantic role representations.

These challenges motivate the need for unsu-
pervised methods which, instead of relying on la-
beled data, can exploit large amounts of unlabeled
texts. In this paper, we propose simple and effi-

12



cient hierarchical Bayesian models for this task.
It is natural to split the SRL task into two

stages: the identification of arguments (the iden-
tification stage) and the assignment of semantic
roles (the labeling stage). In this and in much
of the previous work on unsupervised techniques,
the focus is on the labeling stage. Identification,
though an important problem, can be tackled with
heuristics (Lang and Lapata, 2011a; Grenager and
Manning, 2006) or, potentially, by using a super-
vised classifier trained on a small amount of data.
We follow (Lang and Lapata, 2011a), and regard
the labeling stage as clustering of syntactic sig-
natures of argument realizations for every predi-
cate. In our first model, as in most of the previous
work on unsupervised SRL, we define an indepen-
dent model for each predicate. We use the Chi-
nese Restaurant Process (CRP) (Ferguson, 1973)
as a prior for the clustering of syntactic signatures.
The resulting model achieves state-of-the-art re-
sults, substantially outperforming previous meth-
ods evaluated in the same setting.

In the first model, for each predicate we inde-
pendently induce a linking between syntax and se-
mantics, encoded as a clustering of syntactic sig-
natures. The clustering implicitly defines the set
of permissible alternations, or changes in the syn-
tactic realization of the argument structure of the
verb. Though different verbs admit different alter-
nations, some alternations are shared across mul-
tiple verbs and are very frequent (e.g., passiviza-
tion, example sentences (a) vs. (d), or dativiza-
tion: John gave a book to Mary vs. John gave
Mary a book) (Levin, 1993). Therefore, it is nat-
ural to assume that the clusterings should be sim-
ilar, though not identical, across verbs.

Our second model encodes this intuition by re-
placing the CRP prior for each predicate with
a distance-dependent CRP (dd-CRP) prior (Blei
and Frazier, 2011) shared across predicates. The
distance between two syntactic signatures en-
codes how likely they are to correspond to a sin-
gle semantic role. Unlike most of the previous
work exploiting distance-dependent CRPs (Blei
and Frazier, 2011; Socher et al., 2011; Duan et al.,
2007), we do not encode prior or external knowl-
edge in the distance function but rather induce it
automatically within our Bayesian model. The
coupled dd-CRP model consistently outperforms
the factored CRP counterpart across all the experi-
mental settings (with gold and predicted syntactic

parses, and with gold and automatically identified
arguments).

Both models admit efficient inference: the es-
timation time on the Penn Treebank WSJ corpus
does not exceed 30 minutes on a single proces-
sor and the inference algorithm is highly paral-
lelizable, reducing inference time down to sev-
eral minutes on multiple processors. This sug-
gests that the models scale to much larger corpora,
which is an important property for a successful
unsupervised learning method, as unlabeled data
is abundant.

The rest of the paper is structured as follows.
Section 2 begins with a definition of the seman-
tic role labeling task and discuss some specifics
of the unsupervised setting. In Section 3, we de-
scribe CRPs and dd-CRPs, the key components
of our models. In Sections 4 – 6, we describe
our factored and coupled models and the infer-
ence method. Section 7 provides both evaluation
and analysis. Finally, additional related work is
presented in Section 8.

2 Task Definition

In this work, instead of assuming the availabil-
ity of role annotated data, we rely only on auto-
matically generated syntactic dependency graphs.
While we cannot expect that syntactic structure
can trivially map to a semantic representation
(Palmer et al., 2005)1, we can use syntactic cues
to help us in both stages of unsupervised SRL.
Before defining our task, let us consider the two
stages separately.

In the argument identification stage, we imple-
ment a heuristic proposed in (Lang and Lapata,
2011a) comprised of a list of 8 rules, which use
nonlexicalized properties of syntactic paths be-
tween a predicate and a candidate argument to it-
eratively discard non-arguments from the list of
all words in a sentence. Note that inducing these
rules for a new language would require some lin-
guistic expertise. One alternative may be to an-
notate a small number of arguments and train a
classifier with nonlexicalized features instead.

In the argument labeling stage, semantic roles
are represented by clusters of arguments, and la-
beling a particular argument corresponds to decid-
ing on its role cluster. However, instead of deal-

1Although it provides a strong baseline which is diffi-
cult to beat (Grenager and Manning, 2006; Lang and Lapata,
2010; Lang and Lapata, 2011a).
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ing with argument occurrences directly, we rep-
resent them as predicate specific syntactic signa-
tures, and refer to them as argument keys. This
representation aids our models in inducing high
purity clusters (of argument keys) while reducing
their granularity. We follow (Lang and Lapata,
2011a) and use the following syntactic features to
form the argument key representation:

• Active or passive verb voice (ACT/PASS).
• Argument position relative to predicate

(LEFT/RIGHT).
• Syntactic relation to its governor.
• Preposition used for argument realization.

In the example sentences in Section 1, the argu-
ment keys for candidate arguments Mary for sen-
tences (a) and (d) would be ACT:LEFT:SBJ and
PASS:RIGHT:LGS->by,2 respectively. While
aiming to increase the purity of argument key
clusters, this particular representation will not al-
ways produce a good match: e.g. the door in
sentence (c) will have the same key as Mary in
sentence (a). Increasing the expressiveness of the
argument key representation by flagging intransi-
tive constructions would distinguish that pair of
arguments. However, we keep this particular rep-
resentation, in part to compare with the previous
work.

In this work, we treat the unsupervised seman-
tic role labeling task as clustering of argument
keys. Thus, argument occurrences in the corpus
whose keys are clustered together are assigned the
same semantic role. Note that some adjunct-like
modifier arguments are already explicitly repre-
sented in syntax and thus do not need to be clus-
tered (modifiers AM-TMP, AM-MNR, AM-LOC, and
AM-DIR are encoded as ‘syntactic’ relations TMP,
MNR, LOC, and DIR, respectively (Surdeanu et al.,
2008)); instead we directly use the syntactic labels
as semantic roles.

3 Traditional and Distance-dependent
CRPs

The central components of our non-parametric
Bayesian models are the Chinese Restaurant Pro-
cesses (CRPs) and the closely related Dirichlet
Processes (DPs) (Ferguson, 1973).

CRPs define probability distributions over par-
titions of a set of objects. An intuitive metaphor

2LGS denotes a logical subject in a passive construction
(Surdeanu et al., 2008).

for describing CRPs is assignment of tables to
restaurant customers. Assume a restaurant with a
sequence of tables, and customers who walk into
the restaurant one at a time and choose a table to
join. The first customer to enter is assigned the
first table. Suppose that when a client number i
enters the restaurant, i − 1 customers are sitting
at each of the k ∈ (1, . . . ,K) tables occupied so
far. The new customer is then either seated at one
of theK tables with probability Nk

i−1+α , whereNk

is the number customers already sitting at table
k, or assigned to a new table with the probability

α
i−1+α . The concentration parameter α encodes
the granularity of the drawn partitions: the larger
α, the larger the expected number of occupied ta-
bles. Though it is convenient to describe CRP in a
sequential manner, the probability of a seating ar-
rangement is invariant of the order of customers’
arrival, i.e. the process is exchangeable. In our
factored model, we use CRPs as a prior for clus-
tering argument keys, as we explain in Section 4.

Often CRP is used as a part of the Dirich-
let Process mixture model where each subset in
the partition (each table) selects a parameter (a
meal) from some base distribution over parame-
ters. This parameter is then used to generate all
data points corresponding to customers assigned
to the table. The Dirichlet processes (DP) are
closely connected to CRPs: instead of choosing
meals for customers through the described gener-
ative story, one can equivalently draw a distribu-
tion G over meals from DP and then draw a meal
for every customer from G. We refer the reader
to Teh (2010) for details on CRPs and DPs. In
our method, we use DPs to model distributions of
arguments for every role.

In order to clarify how similarities between
customers can be integrated in the generative pro-
cess, we start by reformulating the traditional
CRP in an equivalent form so that distance-
dependent CRP (dd-CRP) can be seen as its gen-
eralization. Instead of selecting a table for each
customer as described above, one can equiva-
lently assume that a customer i chooses one of
the previous customers ci as a partner with prob-
ability 1

i−1+α and sits at the same table, or occu-
pies a new table with the probability α

i−1+α . The
transitive closure of this seating-with relation de-
termines the partition.

A generalization of this view leads to the defini-
tion of the distance-dependent CRP. In dd-CRPs,
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a customer i chooses a partner ci = j with
the probability proportional to some non-negative
score di,j (di,j = dj,i) which encodes a similarity
between the two customers.3 More formally,

p(ci = j|D,α) ∝
{
di,j , i 6= j
α, i = j

(1)

where D is the entire similarity graph. This pro-
cess lacks the exchangeability property of the tra-
ditional CRP but efficient approximate inference
with dd-CRP is possible with Gibbs sampling.
For more details on inference with dd-CRPs, we
refer the reader to Blei and Frazier (2011).

Though in previous work dd-CRP was used ei-
ther to encode prior knowledge (Blei and Fra-
zier, 2011) or other external information (Socher
et al., 2011), we treat D as a latent variable
drawn from some prior distribution over weighted
graphs. This view provides a powerful approach
for coupling a family of distinct but similar clus-
terings: the family of clusterings can be drawn by
first choosing a similarity graph D for the entire
family and then re-usingD to generate each of the
clusterings independently of each other as defined
by equation (1). In Section 5, we explain how we
use this formalism to encode relatedness between
argument key clusterings for different predicates.

4 Factored Model

In this section we describe the factored method
which models each predicate independently. In
Section 2 we defined our task as clustering of ar-
gument keys, where each cluster corresponds to a
semantic role. If an argument key k is assigned
to a role r (k ∈ r), all of its occurrences are la-
beled r.

Our Bayesian model encodes two common as-
sumptions about semantic roles. First, we enforce
the selectional restriction assumption: we assume
that the distribution over potential argument fillers
is sparse for every role, implying that ‘peaky’ dis-
tributions of arguments for each role r are pre-
ferred to flat distributions. Second, each role nor-
mally appears at most once per predicate occur-
rence. Our inference will search for a clustering
which meets the above requirements to the maxi-
mal extent.

3It may be more standard to use a decay function f :
R → R and choose a partner with the probability propor-
tional to f(−di,j). However, the two forms are equivalent
and using scores di,j directly is more convenient for our in-
duction purposes.

Our model associates two distributions with
each predicate: one governs the selection of argu-
ment fillers for each semantic role, and the other
models (and penalizes) duplicate occurrence of
roles. Each predicate occurrence is generated in-
dependently given these distributions. Let us de-
scribe the model by first defining how the set of
model parameters and an argument key clustering
are drawn, and then explaining the generation of
individual predicate and argument instances. The
generative story is formally presented in Figure 1.

We start by generating a partition of argument
keys Bp with each subset r ∈ Bp representing
a single semantic role. The partitions are drawn
from CRP(α) (see the Factored model section of
Figure 1) independently for each predicate. The
crucial part of the model is the set of selectional
preference parameters θp,r, the distributions of ar-
guments x for each role r of predicate p. We
represent arguments by their syntactic heads,4 or
more specifically, by either their lemmas or word
clusters assigned to the head by an external clus-
tering algorithm, as we will discuss in more detail
in Section 7.5 For the agent role A0 of the pred-
icate open, for example, this distribution would
assign most of the probability mass to arguments
denoting sentient beings, whereas the distribution
for the patient role A1 would concentrate on ar-
guments representing “openable” things (doors,
boxes, books, etc).

In order to encode the assumption about sparse-
ness of the distributions θp,r, we draw them from
the DP prior DP (β,H(A)) with a small concen-
tration parameter β, the base probability distribu-
tionH(A) is just the normalized frequencies of ar-
guments in the corpus. The geometric distribution
ψp,r is used to model the number of times a role
r appears with a given predicate occurrence. The
decision whether to generate at least one role r is
drawn from the uniform Bernoulli distribution. If
0 is drawn then the semantic role is not realized
for the given occurrence, otherwise the number
of additional roles r is drawn from the geometric
distribution Geom(ψp,r). The Beta priors over ψ

4For prepositional phrases, we take as head the head noun
of the object noun phrase as it encodes crucial lexical infor-
mation. However, the preposition is not ignored but rather
encoded in the corresponding argument key, as explained
in Section 2.

5Alternatively, the clustering of arguments could be in-
duced within the model, as done in (Titov and Klementiev,
2011).
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Clustering of argument keys:

Factored model:
for each predicate p = 1, 2, . . . :
Bp ∼ CRP (α) [partition of arg keys]

Coupled model:
D ∼ NonInform [similarity graph]
for each predicate p = 1, 2, . . . :
Bp ∼ dd-CRP (α,D) [partition of arg keys]

Parameters:

for each predicate p = 1, 2, . . . :
for each role r ∈ Bp:
θp,r ∼ DP (β,H(A)) [distrib of arg fillers]
ψp,r ∼ Beta(η0, η1) [geom distr for dup roles]

Data Generation:

for each predicate p = 1, 2, . . . :
for each occurrence l of p:

for every role r ∈ Bp:
if [n ∼ Unif(0, 1)] = 1: [role appears at least once]
GenArgument(p, r) [draw one arg]
while [n ∼ ψp,r] = 1: [continue generation]

GenArgument(p, r) [draw more args]

GenArgument(p, r):
kp,r ∼ Unif(1, . . . , |r|) [draw arg key]
xp,r ∼ θp,r [draw arg filler]

Figure 1: Generative stories for the factored and cou-
pled models.

can indicate the preference towards generating at
most one argument for each role. For example,
it would express the preference that a predicate
open typically appears with a single agent and a
single patient arguments.

Now, when parameters and argument key clus-
terings are chosen, we can summarize the re-
mainder of the generative story as follows. We
begin by independently drawing occurrences for
each predicate. For each predicate role we in-
dependently decide on the number of role occur-
rences. Then we generate each of the arguments
(see GenArgument) by generating an argument
key kp,r uniformly from the set of argument keys
assigned to the cluster r, and finally choosing its
filler xp,r, where the filler is either a lemma or a
word cluster corresponding to the syntactic head
of the argument.

5 Coupled Model

As we argued in Section 1, clusterings of argu-
ment keys implicitly encode the pattern of alter-

nations for a predicate. E.g., passivization can be
roughly represented with the clustering of the key
ACT:LEFT:SBJ with PASS:RIGHT:LGS->by

and ACT:RIGHT:OBJ with PASS:LEFT:SBJ.
The set of permissible alternations is predicate-
specific,6 but nevertheless they arguably repre-
sent a small subset of all clusterings of argu-
ment keys. Also, some alternations are more
likely to be applicable to a verb than others: for
example, passivization and dativization alterna-
tions are both fairly frequent, whereas, locative-
preposition-drop alternation (Mary climbed up the
mountain vs. Mary climbed the mountain) is less
common and applicable only to several classes
of predicates representing motion (Levin, 1993).
We represent this observation by quantifying how
likely a pair of keys is to be clustered. These
scores (di,j for every pair of argument keys i and
j) are induced automatically within the model,
and treated as latent variables shared across pred-
icates. Intuitively, if data for several predicates
strongly suggests that two argument keys should
be clustered (e.g., there is a large overlap be-
tween argument fillers for the two keys) then the
posterior will indicate that di,j is expected to be
greater for the pair {i, j} than for some other pair
{i′, j′} for which the evidence is less clear. Con-
sequently, argument keys i and j will be clustered
even for predicates without strong evidence for
such a clustering, whereas i′ and j′ will not.

One argument against coupling predicates may
stem from the fact that we are using unlabeled
data and may be able to obtain sufficient amount
of learning material even for less frequent pred-
icates. This may be a valid observation, but an-
other rationale for sharing this similarity structure
is the hypothesis that alternations may be easier
to detect for some predicates than for others. For
example, argument key clustering of predicates
with very restrictive selectional restrictions on ar-
gument fillers is presumably easier than clustering
for predicates with less restrictive and overlap-
ping selectional restriction, as compactness of se-
lectional preferences is a central assumption driv-
ing unsupervised learning of semantic roles. E.g.,
predicates change and defrost belong to the same
Levin class (change-of-state verbs) and therefore
admit similar alternations. However, the set of po-
tential patients of defrost is sufficiently restricted,

6Or, at least specific to a class of predicates (Levin,
1993).
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whereas the selectional restrictions for the patient
of change are far less specific and they overlap
with selectional restrictions for the agent role, fur-
ther complicating the clustering induction task.
This observation suggests that sharing clustering
preferences across verbs is likely to help even if
the unlabeled data is plentiful for every predicate.

More formally, we generate scores di,j , or
equivalently, the full labeled graph D with ver-
tices corresponding to argument keys and edges
weighted with the similarity scores, from a prior.
In our experiments we use a non-informative prior
which factorizes over pairs (i.e. edges of the
graph D), though more powerful alternatives can
be considered. Then we use it, in a dd-CRP(α,
D), to generate clusterings of argument keys for
every predicate. The rest of the generative story is
the same as for the factored model. The part rele-
vant to this model is shown in the Coupled model
section of Figure 1.

Note that this approach does not assume that
the frequencies of syntactic patterns correspond-
ing to alternations are similar, and a large value
for di,j does not necessarily mean that the corre-
sponding syntactic frames i and j are very fre-
quent in a corpus. What it indicates is that a large
number of different predicates undergo the corre-
sponding alternation; the frequency of the alterna-
tion is a different matter. We believe that this is an
important point, as we do not make a restricting
assumption that an alternation has the same dis-
tributional properties for all verbs which undergo
this alternation.

6 Inference

An inference algorithm for an unsupervised
model should be efficient enough to handle vast
amounts of unlabeled data, as it can easily be ob-
tained and is likely to improve results. We use
a simple approximate inference algorithm based
on greedy MAP search. We start by discussing
MAP search for argument key clustering with the
factored model and then discuss its extension ap-
plicable to the coupled model.

6.1 Role Induction

For the factored model, semantic roles for every
predicate are induced independently. Neverthe-
less, search for a MAP clustering can be expen-
sive, as even a move involving a single argument

key implies some computations for all its occur-
rences in the corpus. Instead of more complex
MAP search algorithms (see, e.g., (Daume III,
2007)), we use a greedy procedure where we start
with each argument key assigned to an individual
cluster, and then iteratively try to merge clusters.
Each move involves (1) choosing an argument key
and (2) deciding on a cluster to reassign it to. This
is done by considering all clusters (including cre-
ating a new one) and choosing the most probable
one.

Instead of choosing argument keys randomly at
the first stage, we order them by corpus frequency.
This ordering is beneficial as getting clustering
right for frequent argument keys is more impor-
tant and the corresponding decisions should be
made earlier.7 We used a single iteration in our
experiments, as we have not noticed any benefit
from using multiple iterations.

6.2 Similarity Graph Induction
In the coupled model, clusterings for different
predicates are statistically dependent, as the simi-
larity structureD is latent and shared across pred-
icates. Consequently, a more complex inference
procedure is needed. For simplicity here and in
our experiments, we use the non-informative prior
distribution over D which assigns the same prior
probability to every possible weight di,j for every
pair {i, j}.

Recall that the dd-CRP prior is defined in terms
of customers choosing other customers to sit with.
For the moment, let us assume that this relation
among argument keys is known, that is, every ar-
gument key k for predicate p has chosen an argu-
ment key cp,k to ‘sit’ with. We can compute the
MAP estimate for all di,j by maximizing the ob-
jective:

arg max
di,j , i 6=j

∑
p

∑
k∈Kp

log
dk,cp,k∑
k′∈Kp

dk,k′
,

where Kp is the set of all argument keys for the
predicate p. We slightly abuse the notation by us-
ing di,i to denote the concentration parameter α
in the previous expression. Note that we also as-
sume that similarities are symmetric, di,j = dj,i.
If the set of argument keys Kp would be the same
for every predicate, then the optimal di,j would

7This idea has been explored before for shallow semantic
representations (Lang and Lapata, 2011a; Titov and Klemen-
tiev, 2011).
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be proportional to the number of times either i se-
lects j as a partner, or j chooses i as a partner.8

This no longer holds if the sets are different, but
the solution can be found efficiently using a nu-
meric optimization strategy; we use the gradient
descent algorithm.

We do not learn the concentration parameter
α, as it is used in our model to indicate the de-
sired granularity of semantic roles, but instead
only learn di,j (i 6= j). However, just learning
the concentration parameter would not be suffi-
cient as the effective concentration can be reduced
or increased arbitrarily by scaling all the similar-
ities di,j (i 6= j) at once, as follows from expres-
sion (1). Instead, we enforce the normalization
constraint on the similarities di,j . We ensure that
the prior probability of choosing itself as a part-
ner, averaged over predicates, is the same as it
would be with uniform di,j (di,j = 1 for every
key pair {i, j}, i 6= j). This roughly says that
we want to preserve the same granularity of clus-
tering as it was with the uniform similarities. We
accomplish this normalization in a post-hoc fash-
ion by dividing the weights after optimization by∑

p

∑
k,k′∈Kp, k′ 6=k dk,k′/

∑
p |Kp|(|Kp| − 1).

If D is fixed, partners for every predicate p and
every k can be found using virtually the same al-
gorithm as in Section 6.1: the only difference is
that, instead of a cluster, each argument key itera-
tively chooses a partner.

Though, in practice, both the choice of partners
and the similarity graphs are latent, we can use an
iterative approach to obtain a joint MAP estimate
of ck (for every k) and the similarity graph D by
alternating the two steps.9

Notice that the resulting algorithm is again
highly parallelizable: the graph induction stage
is fast, and induction of the seat-with relation
(i.e. clustering argument keys) is factorizable over
predicates.

One shortcoming of this approach is typical
for generative models with multiple ‘features’:
when such a model predicts a latent variable, it
tends to ignore the prior class distribution and re-
lies solely on features. This behavior is due to
the over-simplifying independence assumptions.
It is well known, for instance, that the poste-

8Note that weights di,j are invariant under rescaling
when the rescaling is also applied to the concentration pa-
rameter α.

9In practice, two iterations were sufficient.

rior with Naive Bayes tends to be overconfident
due to violated conditional independence assump-
tions (Rennie, 2001). The same behavior is ob-
served here: the shared prior does not have suf-
ficient effect on frequent predicates.10 Though
different techniques have been developed to dis-
count the over-confidence (Kolcz and Chowdhury,
2005), we use the most basic one: we raise the
likelihood term in power 1

T , where the parameter
T is chosen empirically.

7 Empirical Evaluation

7.1 Data and Evaluation
We keep the general setup of (Lang and Lapata,
2011a), to evaluate our models and compare them
to the current state of the art. We run all of our
experiments on the standard CoNLL 2008 shared
task (Surdeanu et al., 2008) version of Penn Tree-
bank WSJ and PropBank. In addition to gold
dependency analyses and gold PropBank annota-
tions, it has dependency structures generated au-
tomatically by the MaltParser (Nivre et al., 2007).
We vary our experimental setup as follows:

• We evaluate our models on gold and auto-
matically generated parses, and use either
gold PropBank annotations or the heuristic
from Section 2 to identify arguments, result-
ing in four experimental regimes.

• In order to reduce the sparsity of predicate
argument fillers we consider replacing lem-
mas of their syntactic heads with word clus-
ters induced by a clustering algorithm as a
preprocessing step. In particular, we use
Brown (Br) clustering (Brown et al., 1992)
induced over RCV1 corpus (Turian et al.,
2010). Although the clustering is hierarchi-
cal, we only use a cluster at the lowest level
of the hierarchy for each word.

We use the purity (PU) and collocation (CO) met-
rics as well as their harmonic mean (F1) to mea-
sure the quality of the resulting clusters. Purity
measures the degree to which each cluster con-
tains arguments sharing the same gold role:

PU =
1
N

∑
i

max
j
|Gj ∩ Ci|

where if Ci is the set of arguments in the i-th in-
duced cluster,Gj is the set of arguments in the jth

10The coupled model without discounting still outper-
forms the factored counterpart in our experiments.
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gold cluster, and N is the total number of argu-
ments. Collocation evaluates the degree to which
arguments with the same gold roles are assigned
to a single cluster. It is computed as follows:

CO =
1
N

∑
j

max
i
|Gj ∩ Ci|

We compute the aggregate PU, CO, and F1
scores over all predicates in the same way as
(Lang and Lapata, 2011a) by weighting the scores
of each predicate by the number of its argument
occurrences. Note that since our goal is to evalu-
ate the clustering algorithms, we do not include
incorrectly identified arguments (i.e. mistakes
made by the heuristic defined in Section 2) when
computing these metrics.

We evaluate both factored and coupled models
proposed in this work with and without Brown
word clustering of argument fillers (Factored,
Coupled, Factored+Br, Coupled+Br). Our mod-
els are robust to parameter settings, they were
tuned (to an order of magnitude) on the develop-
ment set and were the same for all model variants:
α = 1.e-3, β = 1.e-3, η0 = 1.e-3, η1 = 1.e-10,
T = 5. Although they can be induced within the
model, we set them by hand to indicate granular-
ity preferences. We compare our results with the
following alternative approaches. The syntactic
function baseline (SyntF) simply clusters predi-
cate arguments according to the dependency re-
lation to their head. Following (Lang and Lapata,
2010), we allocate a cluster for each of 20 most
frequent relations in the CoNLL dataset and one
cluster for all other relations. We also compare
our performance with the Latent Logistic classifi-
cation (Lang and Lapata, 2010), Split-Merge clus-
tering (Lang and Lapata, 2011a), and Graph Parti-
tioning (Lang and Lapata, 2011b) approaches (la-
beled LLogistic, SplitMerge, and GraphPart, re-
spectively) which achieve the current best unsu-
pervised SRL results in this setting.

7.2 Results

7.2.1 Gold Arguments
Experimental results are summarized in Ta-

ble 1. We begin by comparing our models to the
three existing clustering approaches on gold syn-
tactic parses, and using gold PropBank annota-
tions to identify predicate arguments. In this set of
experiments we measure the relative performance
of argument clustering, removing the identifica-

gold parses auto parses
PU CO F1 PU CO F1

LLogistic 79.5 76.5 78.0 77.9 74.4 76.2
SplitMerge 88.7 73.0 80.1 86.5 69.8 77.3
GraphPart 88.6 70.7 78.6 87.4 65.9 75.2
Factored 88.1 77.1 82.2 85.1 71.8 77.9
Coupled 89.3 76.6 82.5 86.7 71.2 78.2
Factored+Br 86.8 78.8 82.6 83.8 74.1 78.6
Coupled+Br 88.7 78.1 83.0 86.2 72.7 78.8
SyntF 81.6 77.5 79.5 77.1 70.9 73.9

Table 1: Argument clustering performance with gold
argument identification. Bold-face is used to highlight
the best F1 scores.

tion stage, and minimize the noise due to auto-
matic syntactic annotations. All four variants of
the models we propose substantially outperform
other models: the coupled model with Brown
clustering of argument fillers (Coupled+Br) beats
the previous best model SplitMerge by 2.9% F1
score. As mentioned in Section 2, our approach
specifically does not cluster some of the modifier
arguments. In order to verify that this and argu-
ment filler clustering were not the only aspects
of our approach contributing to performance im-
provements, we also evaluated our coupled model
without Brown clustering and treating modifiers
as regular arguments. The model achieves 89.2%
purity, 74.0% collocation, and 80.9% F1 scores,
still substantially outperforming all of the alter-
native approaches. Replacing gold parses with
MaltParser analyses we see a similar trend, where
Coupled+Br outperforms the best alternative ap-
proach SplitMerge by 1.5%.

7.2.2 Automatic Arguments
Results are summarized in Table 2.11 The

precision and recall of our re-implementation of
the argument identification heuristic described in
Section 2 on gold parses were 87.7% and 88.0%,
respectively, and do not quite match 88.1% and
87.9% reported in (Lang and Lapata, 2011a).
Since we could not reproduce their argument
identification stage exactly, we are omitting their
results for the two regimes, instead including the
results for our two best models Factored+Br and
Coupled+Br. We see a similar trend, where the
coupled system consistently outperforms its fac-
tored counterpart, achieving 85.8% and 83.9% F1

11Note, that the scores are computed on correctly iden-
tified arguments only, and tend to be higher in these ex-
periments probably because the complex arguments get dis-
carded by the heuristic.
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gold parses auto parses
PU CO F1 PU CO F1

Factored+Br 87.8 82.9 85.3 85.8 81.1 83.4
Coupled+Br 89.2 82.6 85.8 87.4 80.7 83.9
SyntF 83.5 81.4 82.4 81.4 79.1 80.2

Table 2: Argument clustering performance with auto-
matic argument identification.

for gold and MaltParser analyses, respectively.

We observe that consistently through the four
regimes, sharing of alternations between predi-
cates captured by the coupled model outperforms
the factored version, and that reducing the argu-
ment filler sparsity with clustering also has a sub-
stantial positive effect. Due to the space con-
straints we are not able to present detailed anal-
ysis of the induced similarity graph D, however,
argument-key pairs with the highest induced sim-
ilarity encode, among other things, passivization,
benefactive alternations, near-interchangeability
of some subordinating conjunctions and preposi-
tions (e.g., if and whether), as well as, restoring
some of the unnecessary splits introduced by the
argument key definition (e.g., semantic roles for
adverbials do not normally depend on whether the
construction is passive or active).

8 Related Work

Most of SRL research has focused on the super-
vised setting (Carreras and Màrquez, 2005; Sur-
deanu et al., 2008), however, lack of annotated re-
sources for most languages and insufficient cover-
age provided by the existing resources motivates
the need for using unlabeled data or other forms
of weak supervision. This work includes methods
based on graph alignment between labeled and
unlabeled data (Fürstenau and Lapata, 2009), us-
ing unlabeled data to improve lexical generaliza-
tion (Deschacht and Moens, 2009), and projection
of annotation across languages (Pado and Lapata,
2009; van der Plas et al., 2011). Semi-supervised
and weakly-supervised techniques have also been
explored for other types of semantic representa-
tions but these studies have mostly focused on re-
stricted domains (Kate and Mooney, 2007; Liang
et al., 2009; Titov and Kozhevnikov, 2010; Gold-
wasser et al., 2011; Liang et al., 2011).

Unsupervised learning has been one of the cen-
tral paradigms for the closely-related area of re-
lation extraction, where several techniques have
been proposed to cluster semantically similar ver-

balizations of relations (Lin and Pantel, 2001;
Banko et al., 2007). Early unsupervised ap-
proaches to the SRL problem include the work
by Swier and Stevenson (2004), where the Verb-
Net verb lexicon was used to guide unsupervised
learning, and a generative model of Grenager and
Manning (2006) which exploits linguistic priors
on syntactic-semantic interface.

More recently, the role induction problem has
been studied in Lang and Lapata (2010) where
it has been reformulated as a problem of detect-
ing alterations and mapping non-standard link-
ings to the canonical ones. Later, Lang and La-
pata (2011a) proposed an algorithmic approach
to clustering argument signatures which achieves
higher accuracy and outperforms the syntactic
baseline. In Lang and Lapata (2011b), the role
induction problem is formulated as a graph parti-
tioning problem: each vertex in the graph corre-
sponds to a predicate occurrence and edges repre-
sent lexical and syntactic similarities between the
occurrences. Unsupervised induction of seman-
tics has also been studied in Poon and Domin-
gos (2009) and Titov and Klementiev (2010) but
the induced representations are not entirely com-
patible with the PropBank-style annotations and
they have been evaluated only on a question an-
swering task for the biomedical domain. Also, the
related task of unsupervised argument identifica-
tion was considered in Abend et al. (2009).

9 Conclusions

In this work we introduced two Bayesian models
for unsupervised role induction. They treat the
task as a family of related clustering problems,
one for each predicate. The first factored model
induces each clustering independently, whereas
the second model couples them by exploiting a
novel technique for sharing clustering preferences
across a family of clusterings. Both methods
achieve state-of-the-art results with the coupled
model outperforming the factored counterpart in
all regimes.
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