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Abstract

Generalized Vector Space Models
(GVSM) extend the standard Vector
Space Model (VSM) by embedding addi-
tional types of information, besides terms,
in the representation of documents. An
interesting type of information that can

be used in such models is semantic infor-
mation from word thesauri like WordNet.

Previous attempts to construct GVSM
reported contradicting results. The most
challenging problem is to incorporate the
semantic information in a theoretically

sound and rigorous manner and to modify
the standard interpretation of the VSM.
In this paper we present a new GVSM
model that exploits WordNet's semantic
information. The model is based on a new

measure of semantic relatedness between

terms. Experimental study conducted
in three TREC collections reveals that
semantic information can boost text
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et al. (2003) improved performance, while sev-
eral years before, Krovetz and Croft (1992) had
already pointed out that resolving word senses can
improve searches requiring high levels of recall.

In this work, we argue that the incorporation
of semantic information into a GVSM retrieval
model can improve performance by considering
the semantic relatedness between the query and
document terms. The proposed model extends
the traditional VSM with term to term relatedness
measured with the use of WordNet. The success of
the method lies in three important factors, which
also constitute the points of our contribution: 1) a
new measure for computing semantic relatedness
between terms which takes into account relation
weights, and senses’ depth; 2) a new GVSM re-
trieval model, which incorporates the aforemen-
tioned semantic relatedness measure; 3) exploita-
tion of all the semantic information a thesaurus
can offer, including semantic relations crossing
parts of speech (POS). Experimental evaluation
in three TREC collections shows that the pro-

posed model can improve in certain cases the
performance of the standard TF-IDF VSM. The

rest of the paper is organized as follows: Section
2 presents preliminary concepts, regarding VSM

The use of semantic information into text retrievaland GVSM. Section 3 presents the term seman-
or text classification has been controversial. FofiC relatedness measure and the proposed GVSM.
example in Mavroeidis et al. (2005) it was shownSection 4 analyzes the experimental results, and
that a GVSM using WordNet (Fellbaum, 1998) Section 5 concludes and gives pointers to future
senses and their hypernyms, improves text clagvork.

sification performance, especially for small train-

ing sets. In contrast, Sanderson (1994) reported Background

that even90% accurate WSD cannot guarantee
retrieval improvement, though their experimental
methodology was based only on randomly genThe VSM has been a standard model of represent-
erated pseudowords of varying sizes. Similarlyjng documents in information retrieval for almost
Voorhees (1993) reported a drop in retrieval perthree decades (Salton and McGill, 1983; Baeza-
formance when the retrieval model was based ofvates and Ribeiro-Neto, 1999). Lét be a docu-
WSD information. On the contrary, the construc-ment collection and) the set of queries represent-
tion of a sense-based retrieval model by Stokodng users’ information needs. Let alspsymbol-

retrieval performance with the use of the
proposed GVSM.

1 Introduction

2.1 Vector Space Model
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ize terms: used to index the documents in the col-vectors, respectively, as beforg,, ¢; are the new
lection, withi = 1,..,n. The VSM assumes that weights, and: the new space dimensions.
for each ternt; there exists a vectar in the vector i P
space that represents it. Itthen considers the setof - & _ 2 j—1 2i—1 Ghidjtits )
all term vectorgt; } to be the generating set of the \/Z?_l i S g2
vector space, thus the space basis. If ejglfor B =
k = 1,..,p) denotes a document of the collection,From equation 2 it follows that the term vectors
then there exists a linear combination of the terni; and¢; need not be known, as long as the cor-
vectors{t; } which represents each in the vector  relations between terms and¢; are known. If
space. Similarly, any query can be modelled as one assumes pairwise orthogonality, the similarity
a vectorg'that is a linear combination of the term measure is reduced to that of equation 1.
vectors. _ _

In the standard VSM, the term vectors are con—2 3 Semantic Information and GVSM
sidered pairwise orthogonal, meaning that they ar&ince the introduction of the first GVSM model,
linearly independent. But this assumption is unthere are at least two basic directions for em-
realistic, since it enforces lack of relatedness bebedding term to term relatedness, other than ex-
tween any pair of terms, whereas the terms in @&ct keyword matching, into a retrieval model:
language often relate to each other. Provided thd®) compute semantic correlations between terms,
the orthogonality assumption holds, the similarityor (b) compute frequency co-occurrence statistics
between a document vectdf, and a query vec- from large corpora. In this paper we focus on the
tor 7 in the VSM can be expressed by the cosindirstdirection. In the past, the effect of WSD infor-

measure given in equation 1. mation in text retrieval was studied (Krovetz and
Croft, 1992; Sanderson, 1994), with the results re-
. > =1 ki vealing that under circumstances, senses informa-
cos(dy, @) = (1) tion may improve IR. More specifically, Krovetz
NOR Y y imp ' pectca’y,
i=1 ki Laj=11j and Croft (1992) performed a series of three exper-

) iments in two document collections, CACM and
where ay;, ¢; are real numbers standing for the 1 \\es The results of their experiments showed

weights of termjlln the documentlkl_and the Ithat word senses provide a clear distinction be-
queryq respectively. A standard baseline retrievaly oo, relevant and nonrelevant documents, reject-

strategy is to rank the documents according to the'irng the null hypothesis that the meaning of a word

cosine similarity to the query. is not related to judgments of relevance. Also, they
reached the conclusion that words being worth
of disambiguation are either the words with uni-
Wong et al. (1987) presented an analysis of thgorm distribution of senses, or the words that in
problems that the pairwise orthogonality assumpthe query have a different sense from the most
tion of the VSM creates. They were the first to popu|ar one. Sanderson (1994) studied the in-
address these problems by expanding the VSMjuence of disambiguation in IR with the use of
They introduced term to term correlations, WhiChpseudowordS and he concluded that sense ambi-
deprecated the pairwise orthogonality assumptionyuity is problematic for IR only in the cases of
but they kept the assumption that the term vectorsgetrieving from short queries. Furthermore, his
are linearly independehtcreating the first GVSM  findings regarding the WSD used were that such
model. More specifically, they considered a newa WSD system would help IR if it could perform
space, where each term vectpwas expressed as with very high accuracy, although his experiments
a linear combination of" vectorsm,., r = 1..2".  \were conducted in the Reuters collection, where
The similarity measure between a document and gtandard queries with corresponding relevant doc-
query Ehen became as shown in equation 2, whergments (grels) are not provided.
ti andt; are now term vectors in2' dimensional  Since then, several recent approaches have
vector spacejy, ¢ are the document and the queryincorporated semantic information in VSM.
S E——— _ _ _ Mavroeidis et al. (2005) created a GVSM ker-
Itis known from Linear Algebra that if every pair of vec- .
tors in a set of vectors is orthogonal, then this set of vector@eI based on the use of noun senses, and their
is linearly independent, but not the inverse. hypernyms from WordNet. They experimentally

2.2 Generalized Vector Space Model
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showed that this can improve text categorizationstronger edge types. The intuition behind the as-
Stokoe et al. (Stokoe et al., 2003) reported an imsumption of edges’ weighting is the fact that some
provement in retrieval performance using a fullyedges provide stronger semantic connections than
sense-based system. Our approach differs fromthers. In the next subsection we propose a can-
the aforementioned ones in that it expands thelidate method of computing weights. Them-
VSM model using the semantic information of a pactnes®of two senses; ands,, can take differ-
word thesaurus to interpret the orthogonality ofent values for all the different paths that connect
terms and to measure semantic relatedness, ithe two senses. All these paths are examined, as
stead of directly replacing terms with senses, oexplained later, and the path with the maximum

adding senses to the model. weight is eventually selected (definition 3). An-
other parameter that affects term relatedness is the
3 A GVSM Model based on Semantic depth of the sense nodes comprising the path. A
Relatedness of Terms standard means of measuring depth in a word the-

saurus is the hypernym/hyponym hierarchical re-
Synonymy (many words per sense) and polyseMyyion for the noun and adjective POS and hyper-

(many senses per word) are two fundamental proljy mtroponym for the verb POS. A path with shal-

lems in text retrieval. Synonymy is related with |5\, sense nodes is more general compared to a
recall, while polysemy with precision. One stan-p4ih with deep nodes. This parameter of seman-
dard method to tackle synonymy is the expansioljc re|atedness between terms is captured by the

of the query terms with their synonyms. This in- easyre osemantic path elaboratiomtroduced
creases recall, but it can reduce precision dramajf, the following definition.

ically. Both polysemy and synonymy can be cap- _
tured on the GVSM model in the computation of Definition 2 Given a word thesauru®) and a
the inner product betwee andz; in equation 2, Pair of sensesS = (s, s2), wheresy,s; € O

as will be explained below. andsl # s2, and a path between the two senses
of lengthl, the semantic path elaboration of the
3.1 Semantic Relatedness path (SPE(S,0)) is defined BE,_, jdffzi o

. whered; is the depth of sensg according toO,
In our model, we measure semantic relatedness us- .
and d,nq. the maximum depth @. If s; = s,

ing WordNet. It considers the path length, Cap'andd — d = ds, SPE(S,0) = %_ If there is

tured bycompactneséSCM), and the path depth, maz
captured bysemantic path elaboratiofSPE), ° path froms, 10 55, SPE(S, 0) = 0.

which are defined in the following. The two mea- Essentially, SPE is the harmonic mean of the
sures are combined to f@emantic relatedness two depths normalized to the maximum thesaurus
(SR) beetween two terms. SR, presented in definidepth. The harmonic mean offers a lower upper
tion 3, is the basic module of the proposed GVSMbound than the average of depths and we think
model. The adopted method of building semanis a more realistic estimation of the path’s depth.
tic networks and measuring semantic relatednessCM and SPE capture the two most important

from a word thesaurus is explained in the next subparameters of measuring semantic relatedness be-
section. tween terms (Budanitsky and Hirst, 2006), namely

path length and senses depth in the used thesaurus.
We combine these two measures naturally towards
defining theSemantic Relatednesetween two
terms.

Definition 1 Given a word thesauru9, a weight-
ing scheme for the edges that assigns a weight
(0, 1) for each edge, a pair of sensfs= (s, s2),
and a path of lengthi connecting the two senses,
the semantic compactness @f(SCM(S7 O)) is Definition 3 Given a word thesauru®, a pair of
defined as[]'_, e;, where ey, es,...,¢; are the termsT = (i1,t;), and all pairs of senses =
path’s edges. I§; = s, SCM(S,0) = 1. Ifthere  (s1i, 2j), Wheresy;, sy; senses ofy,t; respec-
is no path betweers, ands, SCM (S, 0) = 0. tively. The semantic relatednessio{SR(T,S,0))
is defined asnax{SCM(S,0)-SPE(S,0)}. SR

Note thatcompactnessonsiders the path length between two terms, t; wheret; = t; = ¢ and

and has values in the set [0, 1]. Higheom- "o is jefined ag. If t; € O buti; ¢ O, or
pactnesshetween senses declares higher seman- ¢ Obutt; € O, SR is defined a&
2 7 ’

tic relatedness and larger weight are assigned to
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. Net 2.0. Then,SR((t;,t;), (5.i.2,5.5.1),0) =
R (— 0.5% - 0.4615 - 0.52 = 0.01442. Example 3 of

e T =2 figure 2 illustrates another possibility whefei.7
\::| :r/V:y andS.j.5 is another examined pair of senses#or
andt; respectively. In this case, the two senses co-
incide, andSR((t;,t;), (S.i.7,5.5.5),0) = 1- L,
whered the depth of the sense. When two senses
coincide,SCM = 1, as mentioned in definition 1,
a secondary criterion must be levied to distinguish
o (O)=worsode  C1=Senseode ¢ =Semanc L the relatedness of senses that match. This crite-
rion in SR is SPE, which assumes that a sense
Figure 1: Computation of semantic relatedness. js more specific as we traverse WordNet graph
downwards. In the specified exampt’M =1,
butSPE = %. This will give a final value t&6 R
that will be less thari. This constitutes an intrin-
In order to construct a semantic network for a pairsjc property ofSR, which is expressed by PE.
of termst; andt, and a combination of their re- The rationale behind the computation §PF
spective senses, i.es; and sy, we adopted the stems from the fact that word senses in WordNet
network construction method that we introducedgre organized into synonym sets, nansgdsets
in (Tsatsaronis et al., 2007). This method was preporeover, synsets belong to hierarchies (i.e., noun
ferred against other related methods, like the on@jerarchies developed by the hypernym/hyponym
introduced in (Mihalcea et al., 2004), since it em-relations). Thus, in case two words map into the
beds all the available semantic information existsgme synset (i.e., their senses belong to the same
ing in WordNet, even edges that cross POS, thugynset), the computation of their semantic related-

offering a richer semantic representation. Accordness must additionally take into account the depth
ing to the adopted semantic network constructionsf that synset in WordNet.

model, each semantic edge type is given a different
weight. The intuition behind edge types’ weight-3.3 Computing Maximum Semantic
ing is that certain types provide stronger semantic Relatedness

connections than others. The frequency of occury, he expansion of the VSM model we need to

rence of the_ different edge types in_WordnetZ.O, '%eigh the inner product between any two term
used to define the edge types’ weights (87 \ectors with their semantic relatedness. It is obvi-
for hypernym/hyponym edges, 14 for nominal- s that given a word thesaurus, there can be more
ization edges etc.). than one semantic paths that link two senses. In
Figure 1 shows the construction of a semantiGpege cases, we decide to use the path that max-
network for two terms/; and¢;. Let the high-  jmizes the semantic relatedness (the product of
lighted senses.i.2 andS.;.1 be a pair of senses gcm and SPE). This computation can be done
of ¢; andt; respectively. All the semantic links according to the following algorithm, which is a
of the highlighted senses, as found in WordNetyqgification of Dijkstra’s algorithm for finding
are added as shown in example 1 of figure 1. Thene shortest path between two nodes in a weighted

process is repeated recursively until at least ongjrected graph. The proof of the algorithm’s cor-
path betweer.i.2 andS.j.1 is found. It might be actness follows with theorem 1.

the case that there is no path fréfn.2 to S.j.1.

In that caseSR((t;, t;),(S.i.2,5.5.1),0) = 0. Theorem 1 Given a word thesauru®, a weight-
Suppose that a path is that of example 2, wher#d functionw : £ — (0, 1), where a higher value
e1, e2, e5 are the respective edge weights,is the declares a stronger edge, and a pair of senses
depth 0fS.i.2, ds the depth 065.i.2.1, ds the depth  S(ss, 5¢) declaring source {;) and destination

of 5.i.2.2 andd, the depth 0fS.5.1, andd,n., the  (s7) Vertices, then th&CM (S, O) - SPE(S, 0)
maximum thesaurus depth. For reasons of simiS maximized for the path returned by Algorithm
plicity, let e; = e = e3 = 0.5, andd; = 3. L EZ 35"19 the weighting schemegy = w;; -
Naturally,ds = 4, and letds = dy = dy = 4. Fi- m, wheree;; the new weight of the edge
nally, letd,,.. = 14, which is the case for Word- connecting senses and s;, and w;; the initial

Network Expansion Example 1

Network Expansion Example 2 Network Expansion Example 3

3.2 Semantic Networks from Word Thesauri
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Algorithm 1 MaxSR(G,u,v,w)

Require: A directed weighted graph G, two
nodes u, v and a weighting scheme £ —
(0..1).

Ensure: The path from u to v with the maximum
product of the edges weights.
Initialize-Single-Source(G,u)

1: for all verticesv € V[G] do
2 dy] = -0
3: wv]=NULL
4: end for
5 du] =1
Relaxg, v, w)
6: if d[v] < d[u] - w(u,v) then
7. d] =d[u] - w(u,v)
8 7 =u
9: end if

Maximum-Relatedness(G,u,v,w)
Initialize-Single-Source(G,u)
S=10
Q=VIG]
while v € Q do
s = Extract from( the vertex with maxi
S=5Us
for all verticesk € Adjacency List ofs do
Relax(s,k,w)
end for
end while
return the path following all the ancestor®f
v back tou

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

weight assigned by weighting functian
Proof 1 For the proof of this theorem we follow

above to prove the theorem. Becausg oc-
curs befores; on the path froms, to s, and all
edge weights are nonnegatfvand in (0,1) we
have (ss,sy) > 0(ss,s¢), and thusd[s,] =
d(ss,sy) > d(ss,sf) > d[sf]. But boths,
and sy were inV — S whens; was chosen,
so we haved[sf] > d[s,]. Thus,d[s,] =
d(ss,sy) = 0(ss,s¢) = d[sg]. Consequently,
d[s¢] = d(ss, sf) which contradicts our choice of
sy. We conclude that at the time each verigxs
inserted intoS, d[sf] = 0(ss, s¢).

Next, to prove that the returned maximum
product is the SCM(S,0) - SPE(S,0O), let
the path between, and s; with the maximum
edge weight product havé edges. Then, Al-
gorithm 1 returns the maximurf[}_; e;i1) =

co—Zdsdy . 2dpdy .
dmettray = imwiaen - iz gty

1

dmaa: -

SCM(S,0) - SPE(S,0).

3.4 Word Sense Disambiguation

The reader will have noticed that our model com-
putes the SR between two termg;, based on the
pair of senses;,s; of the two terms respectively,
which maximizes the produdCM - SPE. Al-
ternatively, a WSD algorithm could have disam-
biguated the two terms, given the text fragments
where the two terms occurred. Though interesting,
this prospect is neither addressed, nor examined in
this work. Still, it is in our next plans and part of
our future work to embed in our model some of
the interesting WSD approaches, like knowledge-
based (Sinha and Mihalcea, 2007; Brody et al.,

the course of thinking of the proof of theorem2006), corpus-based (Mihalcea and Csomai, 2005;
25.10 in (Cormen et al., 1990). We shall show McCarthy et al., 2004), or combinations with very

that for each vertexs; € V, d[sy] is the max-
imum product of edges’ weight through the se
lected path, starting frons,, at the time when
sy is inserted intoS. From now on, the nota-
tion d(ss,sy) will represent this product. Path
p connects a vertex iy, namelys,, to a ver-
tex inV — S, namelys;. Consider the first ver-
tex s, along p such thats, € V' — S and lets,
be y's predecessor. Now, path can be decom-
posed ass;, — s, — s, — sy. We claim that
d[sy] = 6(ss,sy) Whensy is inserted intaS. Ob-
serve thats, € S. Then, becausey is chosen as
the first vertex for whicki[s ;] # d(ss, s¢) when it
is inserted intaS, we hadd[s,] = (ss, s») When
s, was inserted intc.

We can now obtain a contradiction to the
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high accuracy (Montoyo et al., 2005).

3.5 The GVSM Model

In equation 2, which captures the document-query
similarity in the GVSM model, the orthogonality
between terms; andt; is expressed by the inner
product of the respective term vectars;. Recall
that¢; andt; are in reality unknown. We estimate
their inner product by equation 3, whesg and

s; are the senses of termsandt; respectively,
maximizingSCM - SPE.

®3)

odel we assume that each term can
with any other term, an

tit; = SR((ti, t;), (si,55), O)

Since in our
be semantlcgﬁy relate

2The sign of the algorithm is not considered at this step.



SR((t;,tj),0) = SR((t;,t;),0), the new space (2003), (GM) Gabrilovich and Markovitch (2007),
is of (-1 dimensions. In this space, each di-(F) Finkelstein et al. (2002), (HR) ) and (SP)
mension stands for a distinct pair of terms. GivenStrube and Ponzetto (2006). In Table 1 the results
a document vectoafk in the VSM TF-IDF space, of SR and the ten compared measures are shown.
we define the value in thei, j) dimension of The reported numbers are the Spearman correla-
the new document vector space &gti,¢;) =  tion of the measures’ rankings with the gold stan-
%F _dJﬁF(‘trzl’:dlllg:))FjL TIF - IbDF(tj7dk)) 'titja tdard (human judgements).

e a e TF- values because any product- :
based value results to zero, unless b(_)tl%/t%rms af§ The correlations for the three data sets show that
present in the document. The dimensigtis, ¢,) R p_erforms better than_ any other measure Qf se-
of the query, are computed similarly. A GVSM mantic relatedness, besides the case of (HR) in the
model aims at being able to retrieve document$/&C data set. It surpasses HR though in the R&G

that not necessarily contain exact matches of thg 4 the 353-C data set. The latter contains the
query terms, and this is its great advantage. This ‘

new space leads to a new GVSM model, which iord pairs of the M&C data set. To visualize the
a_ natural extension of the standard VSM. The coperformance of our measure in a more comprehen-
S'ﬂevfl'g“la”r%’ etween a documentand aquery  gipie manner, Figure 2 presents for all pairs in the
g nowbecomes. R&G data set, and with increasing order of relat-
edness values based on human judgements, the re-
spective values of these pairs that SR produces. A
closer look on Figure 2 reveals that the values pro-
duced by SR (right figure) follow a pattern similar
to that of the human ratings (left figure). Note that
the x-axis in both charts begins from the least re-
4 Experimental Evaluation lated pair of terms, accordi'ng to humans, and goes
up to the most related pair of terms. The y-axis
The experimental evaluation in this work is two- in the left chart is the respective humans’ rating
fold. First, we test the performance of the semanfor each pair of terms. The right figure shows SR
tic relatedness measure (SR) for a pair of wordsor each pair. The reader can consult Budanitsky
in three benchmark data sets, namely the Ruberand Hirst (2006) to confirm that all the other mea-
stein and Goodenough 65 word pairs (Rubensures of semantic relatedness we compare to, do
stein and Goodenough, 1965)(R&G), the Miller not follow the same pattern as the human ratings,
and Charles 30 word pairs (Miller and Charles,as closely as our measure of relatedness does (low
1991)(M&C), and the 353 similarity data sety values for small x values and high y values for

(Finkelstein et al., 2002). Second, we evaluatehigh x). The same pattern applies in the M&C and
the performance of the proposed GVSM in three353-C data sets.

TREC collections (TREC 1, 4 and 6).

Yoien X dr(ti, t) - alts, ty)

VI S dilt t)? S Tt t)?
@

wheren is the dimension of the VSM TF-IDF
space.

cos(d_;;,, q) =

4.2 Evaluation of the GVSM

For the evaluation of the proposed GVSM model,
, . we have experimented with three TREC collec-
For the evaluation of the proposed semantic Mions 3 namely TREC 1 (TIPSTER disks 1 and
latedness measure between two terms we experé) TR'EC 4 (TIPSTER disks 2 and 3) and TREC
mented in three widely used data sets in which huB ,(TIPSTER disks 4 and 5). We selected those
man subjec_ts hav<_a provided scores of relate_dne%ﬁqEC collections in order to cover as many dif-
for each pair. A k"_]d O_f gold standard” ranking ferent thematic subjects as possible. For example,
of related word pairs (i.e., from the most reIateOITREC 1 contains documents from the Wall Street

words to the most irrelevant) has thus been '®3ournal, Associated Press, Federal Register, and

ated, against which computer programs can Slhstracts of U.S. department of energy. TREC 6
their ability on measuring semantic relatedness bediffers from TREC 1. since it has documents from

tween words. We compared our measure againgh, ,cja| Times, Los Angeles Times and the For-
ten known measures of semantic relatedness: (H%gn Broadcast Information Service

Hirst and St-Onge (1998), (JC) Jiang and Conrath
(1997), (LC) Leacock et al. (1998), (L) Lin (1998),
(R) Resnik (1995), (JS) Jarmasz and Szpakowicz °http://trec. nist.gov/

4.1 Evaluation of the Semantic Relatedness
Measure

For each TREC, we executed the standard base-
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| HS | JC | LCc | L | R | JS |GM | F | HR | SP| SR
R&G | 0.745 [ 0.709 | 0.785 | 0.77 | 0.748 [ 0.842 | 0.816 | N/A | 0.817 | 0.56 | 0.861
M&C | 0.653 | 0.805 | 0.748 [ 0.767 | 0.737 | 0.832 | 0.723 | N/A | 0.904 | 0.49 || 0.855
353-C| NJA | NJA| 034 | N/A| 035 [ 0.55 | 0.75 | 0.56 | 0.552 | 0.48 || 0.61

Table 1: Correlations of semantic relatedness measures with human judgements

HUMAN RATINGS AGAINST HUMAN RANKINGS SEMANTIC RELATEDNESS AGAINST HUMAN RANKINGS
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Figure 2: Correlation between human ratings and SR in the R&G data set.

line TF-IDF VSM model for the first 20 topics in TREC 1. This small boost in performance
of each collection. Limited resources prohibitedproves that the proposed GVSM model is promis-
us from executing experiments in the tap00  ing. There are many aspects though in the GVSM
documents. To minimize the execution time, wethat we think require further investigation, like for
have indexed all the pairwise semantic relatedexample the fact that we have not conducted WSD
ness values according to the SR measure, in 80 as to map each document and query term oc-
database, whose size reached 300GB. Thus, tloeirrence into its correct sense, or the fact that the
execution of the SR itself is really fast, as all pair-weighting scheme of the edges used in SR gen-
wise SR values between WordNet synsets are irerates from the distribution of each edge type in
dexed. For TREC 1, we used topigs — 70, for ~ WordNet, while there might be other more sophis-
TREC 4 topic201 — 220 and for TREC 6 topics ticated ways to compute edge weights. We believe
301 — 320. From the results of the VSM model, that if these, but also more aspects discussed in
we kept the top0 retrieved documents. In order the next section, are tackled, the proposed GVSM
to evaluate whether the proposed GVSM can aignay improve more the retrieval performance.

the VSM performance, we executed the GVSM

in the same retrieved documents. The interpo5 Future Work

lated precision-recall values in the 11-standard re- ) ) )

call points for these executions are shown in ﬁg_From the experimental evaluation we infer that

ure 3 (left graphs), for both VSM and GVSM. In SR performs very well, and in fact better than all
the right graphs of figure 3, the differences in in-the tested related measures. With regards to the

terpolated precision for the same recall levels ar&VSM model, experimental evaluation in three

depicted. For reasons of simplicity, we have ex-TREC collections has shown that the model is

cluded the recall values in the right graphs, abov@Omising and may boost retrieval performance
which, both systems had zero precision. Thus, fof°re if several details are further investigated and
TREC 1 in the y-axis we have depicted the difrer-further er_xhancements are made. Pri_marily, the
ence in the interpolated precision values (%) of th&@mputation of the maximum semantic related-
GVSM from the VSM, for the firsti recall points. "€SS between two terms includes the selection of
For TRECs 4 and 6 we have done the same for th'€ Semantic path between two senses that maxi-
first 9 ands recall points respectively. mizes SR. This can be partially unrealistic since
we are not sure whether these senses are the cor-
As shown in figure 3, the proposed GVSM mayrect senses of the terms. To tackle this issue,
improve the performance of the TFIDF VSM up to WSD techniques may be used. In addition, the
1.93% in TREC 4,0.99% in TREC 6 and).42%  role of phrase detection is yet to be explored and
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Precision-Recall Curves TREC 1 Differences from Interpolated Precision in TREC 1
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Figure 3: Differences (%) from the baseline in interpolated precision.

added into the model. Since we are using a largé Conclusions
knowledge-base (WordNet), we can add a simple
method to look-up term occurrences in a specifieqy, this paper we presented a new measure of
window and check whether they form a phrasesemantic relatedness and expanded the standard
This would also decrease the ambiguity of the rey/su to embed the semantic relatedness between
spective text fragment, since in WordNet a phras‘foairs of terms into a new GVSM model. The
is usually monosemous. semantic relatedness measure takes into account
Moreover, there are additional aspects that deall of the semantic links offered by WordNet. It
serve further research. In previously proposedonsiders WordNet as a graph, weighs edges de-
GVSM, like the one proposed by Voorhees (1993)pending on their type and depth and computes
or by Mavroeidis et al. (2005), it is suggestedthe maximum relatedness between any two nodes,
that semantic information can create an individuaFonnected via one or more paths. The com-
space, leading to a dual representation of each dogarison to well known measures gives promis-
ument, namely, a vector with document’s termsing results. The application of our measure in
and another with semantic information. Ratio-the suggested GVSM demonstrates slightly im-
nally, the proposed GVSM could act complemen-Proved performance in information retrieval tasks.
tary to the standard VSM representation. Thus, th& is on our next plans to study the influence of
similarity between a query and a document may b&VSD performance on the proposed model. Fur-
computed by weighting the similarity in the terms thermore, a comparative analysis between the pro-
space and the senses’ space. Fina”y, we shou[@psed GVSM and other semantic network based
also examine the perspective of applying the promOdels will also shed light towards the condi-
posed measure of semantic relatedness in a quetns, under which, embedding semantic informa-
expansion technique, similarly to the work of Fangtion improves text retrieval.
(2008).
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