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Abstract
The paper presents an application of
Structural  Correspondence  Learning

(SCL) (Blitzer et al., 2006) for domain

adaptation of a stochastic attribute-value
grammar (SAVG). So far, SCL has
been applied successfully in NLP for
Part-of-Speech tagging and Sentiment
Analysis (Blitzer et al., 2006; Blitzer

et al., 2007). An attempt was made
in the CoNLL 2007 shared task to ap-
ply SCL to non-projective dependency
parsing (Shimizu and Nakagawa, 2007),
however, without any clear conclusions.
We report on our exploration of applying

SCL to adapt a syntactic disambiguation
model and show promising initial results
on Wikipedia domains.

I ntroduction

The problem itself has started to get attention
only recently (Roark and Bacchiani, 2003; Hara et
al., 2005; Daumé Il and Marcu, 2006; Daumeé lll,
2007; Blitzer et al., 2006; McClosky et al., 2006;
Dredze et al., 2007). We distinguish two main ap-
proaches to domain adaptation that have been ad-
dressed in the literature (Daumeé Ill, 2008uper-
visedandsemi-supervised

In supervised domain adaptatig@ildea, 2001;
Roark and Bacchiani, 2003; Hara et al., 2005;
Daumeé llIl, 2007), besides the labeled source data,
we have access to a comparably small, but labeled
amount of target data. In contrasgmi-supervised
domain adaptatioriBlitzer et al., 2006; McClosky
et al., 2006; Dredze et al., 2007) is the scenario in
which, in addition to the labeled source data, we
only haveunlabeledand no labeled target domain
data. Semi-supervised adaptation is a much more
realistic situation, while at the same time also con-
siderably more difficult.

Many current, effective natural language process- Studies on the supervised task have shown that
ing systems are based on supervised Machingtraightforward baselines (e.g. models based on
Learning techniques. The parameters of such sysource only, target only, or the union of the data)
tems are estimated to best reflect the charactefchieve arelatively high performance level and are
istics of the training data, at the cost of porta- Surprisingly difficult to beat” (Daumé Ill, 2007).
bility: a system will be successful only as long Thus, one conclusion from that line of work is that
as the training material resembles the input tha@S Soon as there is a reasonable (often even small)
the model gets. Therefore, whenever we have ac@mount of labeled target data, it is often more fruit-
cess to a large amount of labeled data from som&! to either just use that, or to apply simple adap-
“source” (out-of-domain), but we would like a tation techniques (Daumeé Ill, 2007; Plank and van
model that performs well on some new “target” Noord, 2008).
domain (Gildea, 2001; Daumeé lll, 2007), we face
the problem oflomain adaptation

The need for domain adaptation arises in manyVhile several authors have looked at the super-
NLP tasks: Part-of-Speech tagging, Sentimenvised adaptation case, there are less (and espe-
Analysis, Semantic Role Labeling or Statisticalcially less successful) studies on semi-supervised
Parsing, to name but a few. For example, the perdomain adaptation (McClosky et al., 2006; Blitzer
formance of a statistical parsing system drops iret al., 2006; Dredze et al., 2007). Of these, Mc-
an appalling way when a model trained on the WallClosky et al. (2006) deal specifically with self-
Street Journal is applied to the more varied Browrtraining for data-driven statistical parsing. They
corpus (Gildea, 2001). show that together with a re-ranker, improvements
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are obtained. Similarly, Structural Correspon-uation we explore Wikipedia as primary test and
dence Learning (Blitzer et al., 2006; Blitzer et training collection.

al., 2007; Blitzer, 2008) has proven to be suc- Inthe sequel, we first introduce the parsing sys-
cessful for the two tasks examined, PoS taggingem. Section 4 reviews Structural Correspondence
and Sentiment Classification. In contrast, Dredzd.earning and shows our application of SCL to
et al. (2007) report on “frustrating” results on parse selection, including all our design choices.
the CoNLL 2007 semi-supervised adaptation taskn Section 5 we present the datasets, introduce the
for dependency parsing, i.e. "no team was ablgrocess of constructing target domain data from
to improve target domain performance substanWikipedia, and discuss interesting initial empiri-
tially over a state of the art baseline”. In the cal results of this ongoing study.

same shared task, an attempt was made to ap- ]

ply SCL to domain adaptation for data-driven de-3 Background: Alpino parser

pendency parsing (Shimizu and Nakagawa, 2007)a|pino (van Noord and Malouf, 2005; van Noord,
The system just ended up at_rank 7 out of 8 team$00g) is a robust computational analyzer for Dutch
However, based on annotation dn‘ferences_ in thj‘?hat implements the conceptual two-stage parsing
datasets (Dredze et al., 2007) and a bug in theigpproach. The system consists of approximately
system (Shimizu and Nakagawa, 2007), their regog grammar rules in the tradition of HPSG, and
sults are inconclusive.Thus, the effectiveness of a large hand-crafted lexicon, that together with a
SCL is rather unexplored for parsing. left-corner parser constitutes the generation com-

So far, most previous work on domain adaptaponent. For parse selection, Alpino employs a dis-
tion for parsing has focused afata-drivensys-  criminative approach based on Maximum Entropy
tems (Gildea, 2001; Roark and Bacchiani, 2003{MaxEnt). The output of the parser is dependency
McClosky et al., 2006; Shimizu and Nakagawa,structure based on the guidelines of CGN (Oost-
2007), i.e. systems employing (constituent or dedlijk, 2000).
pendency basedyeebank grammargCharniak, The Maximum Entropy model (Berger et al.,
1996). Parse selection constitutes an important996; Ratnaparkhi, 1997; Abney, 1997) is a con-
part of many parsing systems (Johnson et algitional model that assigns a probability to every
1999; Hara et al., 2005; van Noord and Malouf,possible parse for a given sentence The model
2005; McClosky et al., 2006). Yet, the adaptationconsists of a set af feature functionsf; (w) that
of parse selection models to novel domains is a fagescribe properties of parses, together with their
less studied area. This may be motivated by th@ssociated weight®;. The denominator is a nor-
fact that potential gains for this task are inherentlymalization term wheré’(s) is the set of parses
bounded by the underlying grammar. The fewwith yield s:
studies on adapting disambiguation models (Hara
et al., 2005; Plank and van Noord, 2008) have fo- m
cused exclusively on the supervised scenario exp(2_j= 0;fi(w))

- po(wls;0) = m
Therefore, the direction we explore in this 2 yey(s) XP(2j=1 0313 (v)))

study is semi-supervised domain adaptation for o parameters (weights) can be estimated

parse disambiguation. We examine the effeCqtficiently by maximizing the regularized condi-

tiveness ofStructural Correspondence Learning tional likelihood of a training corpus (Johnson et

(SCL) (Blitzer et al., 2006) for this task, a re- 5 1999: van Noord and Malouf 2005):
cently proposed adaptation technique shown to be ’ '
Y5 0

effective for PoS tagging and Sentiment Analy-
sis. The system used in this study is Alpino, a 202
wide-coverage Stochastic Attribute Value Gram-

mar (SAVG) for Dutch (van Noord and Malouf, ¥EereL(9)$stthe I|_keI|hood IOf_thT_ traltnlng dgta.
2005; van Noord, 2006). For our empirical eval- " € second term 1S a reguiarization term (Gaus-
sian prior on the feature weights with mean zero
IAs shown in Dredze et al. (2007), the biggest IC)mblemand varlqncgr). The estimated weights determine
for the shared task was that the provided datasets were aithe contribution of each feature. Features appear-
notated with different annotation guidelines, thus the-gening in correct parses are given increasing (posi-

eral conclusion was that the task was ill-defined (Nobuyuki' ) ) an
Shimizu, personal communication). tive) weight, while features in incorrect parses are

(1)

0 = arg max log L(0) — 2
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given decreasing (negative) weight. Once a model Input: - labeled source dati(z, y5)*, }

is trained, it can be applied to choose the parse - unlabeled data from both source and
with the highest sum of feature weights. target domainc,; = z, 7

The MaxEnt model consists of a large set off
features, corresponding to instantiations of feature
templates that model various properties of parses. 2
For instance, Part-of-Speech tags, dependency re-
lations, grammar rule applications, etc. The cur{ 3. Create matrixIV,, ., of binary predictor
rent standard model uses about 11,000 features.  weight vectorsiW = [wy, .., w,,], wheren
We will refer to this set of features as original fea- is the number of nonpivot features:it,
tures. They are used to train the baseline model on
the given labeled source data.

1. Selectn pivot features

. Trainm binary classifiers (pivot predictorg

~—

4. Apply SVD to W: Woxm =

UanDnXmVT?;Xm where § = Uazh ]
SCL (Structural ~ Correspondence  Learn- O APPly projectionzs¢# and train a predicto
ing) (Blitzer et al., 2006; Blitzer et al., 2007; on the original and new features obtaingd
Blitzer, 2008) is a recently proposed domain through the projection.

adaptation technique which uses unlabeled data
from both source and target domain to learn
correspondences between features from different
domains. domains. Then, a binary classifier is trained for
Before describing the algorithm in detail, let us each pivot feature (pivot predictor) of the form:
illustrate the intuition behind SCL with an exam- “Does pivot featurd occur in this instance?”. The
ple, borrowed from Blitzer et al. (2007). Supposepivots are masked in the unlabeled data and the
we have a Sentiment Analysis system trained omim is to predict them using non-pivot features.
book reviews (domain A), and we would like to In this way, we obtain a weight vectar for each
adapt it to kitchen appliances (domain B). Fea-ivot predictor. Positive entries in the weight vec-
tures such as “boring” and “repetitive” are com-tor indicate that a non-pivot is highly correlated
mon ways to express negative sentiment in Awith the respective pivot feature. Step 3 is to ar-
while “not working” or “defective” are specific to range then weight vectors in a matri¥V’, where
B. If there are features across the domains, e.@ column corresponds to a pivot predictor weight
“don’t buy”, with which the domain specific fea- vector. Applying the projectioi?V”z (wherez
tures are highly correlated with, then we mightis a training instance) would give us new fea-
tentatively align those features. tures, however, for “both computational and sta-
Therefore, the key idea of SCL is to identify au- tistical reasons” (Blitzer et al., 2006; Ando and
tomatically correspondences among features frordhang, 2005) a low-dimensional approximation of
different domains by modeling their correlations the original feature space is computed by applying
with pivot features Pivots are features occur- Singular Value Decomposition (SVD) diiV (step
ring frequently and behaving similarly in both do- 4). Letd = U[ . be the toph left singular vec-
mains (Blitzer et al., 2006). They are inspired bytors of W (with h a dimension parameter and
auxiliary problems from Ando and Zhang (2005). the number of non-pivot features). The resultihg
Non-pivot features that correspond with many ofis a projection onto a lower dimensional sp&g
the same pivot-features are assumed to corrggarameterized by.
spond. Intuitively, if we are able to find good cor-  The final step of SCL is to train a linear predic-
respondences among features, then the augmentgst on the augmented labeled source datdz).
labeled source domain data should transfer bettedn more detail, the original feature spacés aug-
to a target domain (where no labeled data is availmented withh new features obtained by apply-
able) (Blitzer et al., 2006). ing the projectiondz. In this way, we can learn
The outline of the algorithm is given in Figure 1. weights for domain-specific features, which oth-
The first step is to identifyn pivot features oc- erwise would not have been observed.é IEon-
curring frequently in the unlabeled data of bothtains meaningful correspondences, then the pre-

Figure 1: SCL algorithm (Blitzer et al., 2006).
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dictor trained on the augmented data should trans-= 5000. In this way we obtained on average 360

fer well to the new domain. pivot features, on the datasets described in Sec-
tion 5.

4.1 SCL for Parse Disambiguation

A property of the pivot predictors is that they can Predictive featur_es As p0|r_1ted out by Blltzc_er et

be trained from unlabeled data, as they represelﬂ]' (2006), each instance will actually contain fea-

properties of the input. So far, pivot features on thdt"€S Which are totally predictive of the pivot fea-

word levelwere used (Blitzer et al., 2006; Blitzer tqr'es (ie. the pivot itself). ) In ou’r case, we.a_1d’-
et al., 2007; Blitzer, 2008), e.g. “Does the bigramd|t|onaIIy have to pay attention to 'more specific

not buyoccur in this document?” (Blitzer, 2008). featuresr; 6-9“2_ s a feature that ex_tefndi, n theh
Pivot features are the key ingredient for scL sense that it incorporates more information than

and they should align well with the NLP task. For its parent (l.e. which grammar rules applied in the

PoS tagging and Sentiment Analysis, features OIgonstruction of da_lughter nodes). Itis crucial' to re-
the word level are intuitively well-related to the MOV® these predictive features when creating the

problem at hand. For the task of parse disambigua{[-raining data for the pivot predictors.

tion based on a conditional model this is not they; atrix and SVD Following Blitzer et al. (2006)
case. _ N (which follow Ando and Zhang (2005)), we only
Hence, we actually introduce an additional and;se positive entries in the pivot predictors weight
new layer of abstraction, which, we hypothesize, qctors to compute the SVD. Thus, when con-
aligns well with the task of parse disambiguation:strucﬁng the matrixi¥, we disregard all nega-
we firstparsethe unlabeled data. In this way We tjye entries intv and compute the SVDIW =
obtain full parses for given sentences as produce@DVT) on the resulting non-negative sparse ma-

by the grammar, allowing access to more abstragtix  This sparse representation saves both time
representations of the underlying pivot predictorg,q space.

training data (for reasons of efficiency, we here use
only the first generated parse as training data fon.2 Further practical issues of SCL

the pivot predictors, rather than n-best). .
. . In practice, there are more free parameters and
Thus, instead of using word-level features, our . i
. model choices (Ando and Zhang, 2005; Ando,
features correspond to properties of the gener;

] L 2006; Blitzer et al., 2006; Blitzer, 2008) besides
ated parses: application of grammar rulek r@ .
; the ones discussed above.
features), dependency relationdef), PoS tags o .
. Feature normalization and feature scaling.
(f1,f2), syntactic featuress(), precedencenf), ) .
S " Blitzer et al. (2006) found it necessary to normal-
bilexical preferencesz), apposition §ppo3 and . )
ize and scale the new features obtained by the pro-
further features for unknown words, temporal.”~ . ; .
o jectiond, in order to “allow them to receive more
phrases, coordinatiorhfin_.year and pl, respec- . . L .
. ) . . weight from a regularized discriminative learner”.
tively). This allows us to get a possibly noisy,

. ." For each of the features, they centered them by
but more abstract representation of the underlym% biractin t the mean and normalized them
data. The set of features used in Alpino is further ubtracting out the mean a ormalized them to

described in van Noord and Malouf (2005) unit variance (i.e. z — mean,/sd). They then
' rescaled the features by a factefound on held-

Selection of pivot features As pivot features out dataiadz.

should be common across domains, here we re- Restricted Regularization.When training the
strict our pivots to be of the typd,p1,s1(the most  supervised model on the augmented feature space
frequently occurring feature types). In more de-(z,6x), Blitzer et al. (2006) only regularize the
tail, r1 indicates which grammar rule appligoll ~ weight vector of the original features, but not
whether coordination conjuncts are parallel, andhe one for the new low-dimensional features.
s1whether topicalization or long-distance depen-This was done to encourage the model to use
dencies occurred. We count how often each feathe new low-dimensional representation rather
ture appears in the parsed source and target dthan the higher-dimensional original representa-
main data, and select thosg,pl,slfeatures as tion (Blitzer, 2008).

pivot features whose count is> t, wheret is a Dimensionality reduction by feature typeAn
specified threshold. In all our experiments, we seextension suggested in Ando and Zhang (2005) is
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to compute separate SVDs for blocks of the matrix2008). CA is usually slightly lower than f-score.
W corresponding to feature types (as illustrated irLet D; be the number of dependencies produced
Figure 2), and then to apply separate projectiorby the parser for sentence Dy, is the number of
for every type. Due to the positive results in Andodependencies in the treebank parse, Bjds the
(2006), Blitzer et al. (2006) include this in their number of correct dependencies produced by the
standard setting of SCL and report results usingarser. Then,
block SVDs only.

CA Do
m pivot predictors ZZ maX(D;, D}%)

A
- o If we want to compare the performance of dis-

E ambiguation models, we can employ themea-
sure (van Noord and Malouf, 2005; van Noord,
n nonpivots feature type submatrix | 13 2007). Intuitively, it tells us how much of the dis-
ambiguation problem has been solved.
fn A-D
¢ = _CA—base % 100

oracle — base

Figure 2: lllustration of dimensionality reduction detail. th :

by feature type (Ando and Zhang, 2005). The gre)Jn morz Ietal ' tbezﬁ rrﬁ;asure mcorporatre]zs an up-
area corresponds to a feature type (submatrix df€ and lower bound.basemeasures ¢ € accu-
1) on which the SVD is computed (block SVD); racy of a model that simply selects the first parse

the white area is regarded as fixed to zero ma‘triceé(.)r _each sentencegracle represents the accuracy
achieved by a model that always selects the best

parse from the set of potential parses (within the

5 Experimentsand Results coverage of the parser). In addition, we also re-
port relative error reduction(rel.er), which is the
relative difference inp scores for two models.
The base (source domain) disambiguation model As target domain, we consider the Dutch part
is trained on the Alpino Treebank (van Noord, of Wikipedia as data collection, described in the
2006) (newspaper text), which consists of ap-ollowing.
proximately 7,000 sentences and 145,000 tokens.
For parameter estimation of the disambiguatior?-2 Wikipedia asresource
model, in all reported experiments we use thein our experiments, we exploit Wikipedia both as
TADM? toolkit (toolkit for advanced discrimina- testset and as unlabeled data source. We assume
tive training), with a Gaussian prior¢=1000) that in order to parse data from a very specific do-
and the (default) limited memory variable metric main, say about the artist Prince, then data related
estimation technique (Malouf, 2002). to that domain, like information about the New

For training the binary pivot predictors, we use Power Generation, the Purple rain movie, or other
the MegaM Optimization Package with the so- American singers and artists, should be of help.
called "bernoulli implicit” input format. To com- Thus, we exploit Wikipedia and its category sys-
pute the SVD, we use SVDLIBE. tem to gather domain-specific target data.

The output of the parser is dependency struc-

ture. A standard evaluation metric is to measureconsmmIon of target domain data In more

. etail, we use the Dutch part of Wikipedia pro-
th t of ted d d that
© amount of generated dependencies fha a{/%ded by WikiXML,® a collection of Wikipedia ar-

identical to the stored dependencies (correct la- | tod to XML f t Asth .
beled dependencies), expressed as f-score. An aﬂg €s converted to ormat. As e corpus 1s
ncoded in XML, we can exploit general purpose

ternative measure is concept accuracy (CA), whiclf
is similar to f-score, but allows possible discrep-XML Query Languages, such as XQuery, Xsltand

ancy between the number of returned dependeril_(vF_’sth,dFo extract relevant information from the
cies (van Noord, 2006; Plank and van Noord, ' < Pedia Corpus.

5.1 Experimental design

- Given a wikipagep, with ¢ € categories(p),
*http: //tadm sour cef or ge. net / we can identify pages related to of various
htt p: // wwv. cs. ut ah. edu/ ~hal / megant -

*http://tedl ab. mit.edu/ ~dr/svdlibc/ Shttp://il ps.science.uva.nl /W ki XM/
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types of relatedness’: directly related pages (thosé\n overview of the testset including size indica-
that share a category, i.e. all wheredd € tions is given in Table 1. Table 2 provides infor-
categories(p’) such thate = ¢/), or alterna- mation on the target domain datasets constructed
tively, pages that share a sub- or supercategorfrom Wikipedia.

of p, i.e. p’ whered € categories(p’) andcd €

. : Wiki/DCOI'ID  Title Sents
- rc . .
sub categomes(p) ore € super categorzes(p) 6677/026563 Prince (musician) 358
For example, Figure 3 shows the categories ex-6729/036834  Paus Johannes Paulus Il 232
tracted for the Wikipedia article about pope Jo-_ 182654/041235 Augustus De Morgan 259

hannes Paulus Il. .
Table 1: Size of test datasets.
<wi ki page i d="6677">
<cat t="direct" n="Categorie: Paus"/>
<cat t="direct" n="Categorie: Pool s_theol oog"/>

<ca§ :=”super” n:"gi egorie: ge(;ligi Eutshl |ei_dir"/> ) Relatedto  Articles Sents Tokens Relationship
<cat t="super" n=" egori e: Roons- kat hol i ek persoon"/> - -

<cat t="super” n="Categorie Vaticaanstad"/> Prince 290 9,772 145,504 filtered super
<cat t="super" n="Categorie:Bisschop"/> Paus 445 8,832 134,451  all

<cat t="super" n="Categori e: Kerkgeschi edeni s"/> De Morgan 394 8,466 132,948 all

<cat t="sub" n="Categorie: Tegenpaus"/>
<cat t="super" n="Categorie: Pool s persoon"/>

</ wi ki page> Table 2: Size of related unlabeled data; relation-
ship indicates whether all related pages are used

Figure 3: Example of extracted Wikipedia cate-or some are filtered out (see section 5.2).
gories for a given article (direct, sup- and subcats).

To create the set of related pages for a given ar5.3 Empirical Results

ticle p, we proceed as follows: For all reported results, we randomly select=

1. Find sub- and supercategoriespof 200 maximum number of parses per sentence for

evaluation.
2. Extract all pages that are relateght@ihrough

sharing a direct, sub or super category) Basdline accuracies Table 3 shows the baseline

performance (of the standard Alpino model) on the

various Wikipedia testsets (CA, f-score). The third
In our empirical setup, we followed Blitzer et al. and fourth column indicate the upper- and lower

(2006) and tried to balance the size of source anlound measures (defined in section 5.1).

target data. Thus, depending on the size of the re-

sulting target domain dataset, and the “broadr_\ess";'rtilsce ST scséos f'scg’srzs b?ls_%5 orgg"%

of the categories involved in creating it, we might paus Johannes Paulus Il 8572  86.32 74.30  89.09

wish to filter out certain pages. We implemented_Augustus De Morgan 80.09 80.61 70.08 83.52

a filter mechanism that excludes pages of a cer-

tain category (e.g. a supercategory that is hypoth- Table 3: Baseline results.

esized to be “too broad”). Alternatively, we might

have used a filter mechanism that excludes certain While the parser normally operates on an accu-

pages directly. racy level of roughly 88-89% (van Noord, 2007)

In our experiments, we always included page®n its own domain (newspaper text), the accu-
that are directly related to a page of inter-racy on these subdomains drops to around 85%.

est, and those that shared a subcategory. Ofhe biggest performance decrease (to 80%) was
course, the page itself is not included in thaton the article about the British logician and math-

dataset. With regard to supercategories, we usigmatician De Morgan. This confirms the intu-

super_categories(p), unless stated otherwise. given that mathematical expressions might emerge
_ _ ~in the data (e.g. “Wet der distributiviteit : a(b+c)
Test collection  Ourtestset consists of a selection= gp+ac” - distributivity law).

of Wikipedia articles that have been manually cor-

rected in the course of the D-Coi/LASSY projéct. SCL results Table 4 shows the results of our in-
~ %Ongoing project, sedt t p: // www. | et . rug. nl / stantiation of SCL for parse disambiguation, with
~vannoor d/ Lassy/ varying h parameter (dimensionality parameter;

3. Optionally, filter out certain pages

42



h = 25 means that applying the projectia re- 5.4 Additional Empirical Results

sulted in adding 25 new features to every SOUrcg, the foliowing, we describe additional results ob-

domain instance). tained by extensions and/or refinements of our cur-
rent SCL instantiation.

____ CA fscore ¢ reler.  pegtyre normalization. We also tested fea-
baseline Prince 85.03 85.38 78.06 0.00 . . . .
SCL+/.h=25 8512 8546 7864 264 ture normalization (as described in Section 4.2).
SCL[+/],h=50 8529 8563 79.66 7.29 While Blitzer et al. (2006) found it necessary to
SCL[+/-],h =100 8519 8553 79.04 4.47 i At
SCL[+/-],h =200 8521 8554 79.18 5.10 g%rmallzi (and scale_) the prOJec'E[u;)n feature;;,_ we
baseline Paus 8572 8632 7723 o0oo U NOLODSEIVE any improvement by hormalizing
SCL[+/,h =25 8587 8648 7826 452 them (actually, it slightly degraded performance in
ggLFH Z =50 25-32 22-43 7;-% 2-8% our case). Thus, we found this step unnecessary,

L[+/-],h =100 85.87 49 78 4.5 : .
SCL[+-| h—200 8587 8648 78.26 452 and currently did not look at this issue any further.
baseline DeMorgan  80.09 80.61 74.44 0.00 ; e ; ;
SCLIFT =25 8015 8067 7492 188 Alook at ¢ To gain some insight pf which kind
SCL[+-,h =50 80.12 80.64 74.68 094 Of correspondences SCL learned in our case, we
SCL[+/-],h =100 80.12  80.64 74.68 094 started to examine the rows 6f Recall that ap-
SCL[+/-],h =200 80.15 80.67 74.91 1.88

plying a row of the projection matrig; to a train-
Table 4: Results of our instantiation of SCL (with INg instancex gives us a new real-valued fea-
varying h parameter and no feature normaliza-ture. If features from different domains have sim-
tion). ilar entries (scores) in the projection row, they

are assumed to correspond (Blitzer, 2008). Fig-

ure 4 shows example of correspondences that SCL

The results show a (sometimes) small but confound in the Prince dataset. The first column rep-

sistent increase in absolute performance on aflesents the score of a feature. The labwlsi
testsets over the baseline system (up+0.26 andal p indicate the domain of the features, re-
absolute CA score), as well as an increasesin SPectively. For readability, we here grouped the
measure (absolute error reduction). This correfeatures obtaining similar scores.

sponds to a relative error reduction of up to 7.29%,,
Thus, our first instantiation of SCL for parse dis- 0

ambiguation indeed shows promising results.
0

We can confirm that changing the dimensional-,
ity parameterh has rather little effect (Table 4), ©°
which is in line with previous findings (Ando and
Zhang, 2005; Blitzer et al., 2006). Thus we mightgj
fix the parameter and prefer smaller dimensionali-g-

ties, which saves space and time. 0.
0.

Note that these results were obtainedhout
any of the additional normalization, rescaling,
feature-specific regularization, or block SVD is-

00010248| dep35(’ Chaka Khan', nane(’ PER ), hd/ su, verb, ben) | wi ki
00010248| dep35(de, det, hd/ det, adj,’ Afro- Aneri kaanse’ ) | wi ki

0. 00010248| dep35(’ Yvette Marie Stevens’, nane(’ PER ), hd/ app,

noun, zanger es) | Wi ki

.000102772| dep34( | er aar, noun, hd/ su, verb) | al p

000161095| dep34( conmi ssi e, noun, hd/ obj 1, prep) | 16| al p
00016113| dep34(’ Conf essi ons Tour’, nane, hd/ obj 1, prep) | 2| wi ki

0. 000161241| dep34(orgel , noun, hd/ obj 1, prep) | 1| W ki

000217698| dep34(t our nee, noun, hd/ su, verb) | 1| wi ki
000223301| dep34(regi sseur, noun, hd/ su, ver b) | 15| wi ki
000224517| dep34(voor sprong, houn, hd/ su, verb) | 2| al p
000224684| dep34(wet enschap, noun, hd/ su, verb) | 2| al p
000226617| dep34( pop_r ock, noun, hd/ su, verb) | 1| wi ki
000228918| dep34(pl an, noun, hd/ su, verb)| 9] al p

Figure 4: Example projection froth (row 2).

sues, etc. (discussed in section 4.2). We used the SCL clustered information about 'Chaka Khan’,
same Gaussian regularization ters?£1000) for  an 'Afro-Amerikaanse’ 'zangeres’ (afro-american
all features (original and new features), and didsinger) whose real name is ’Yvette Marie
not perform any feature normalization or rescal-Stevens’. She had close connections to Prince,
ing. This means our current instantiation of SCLwho even wrote one of her singles. These features
is an actuallysimplified version of the original got aligned to the Alpino feature ’leraar’ (teacher).
SCL algorithm, applied to parse disambiguation.Moreover, SCL finds that 'tournee’, ‘regisseur’
Of course, our results are preliminary and, ratheand 'poprock’ in the Prince domain behave like
than warranting many definite conclusions, en-voorsprong’ (advance), 'wetenschap’ (research)
courage further exploration of SCL and relatedand 'plan’ as possible heads in a subject relation
semi-supervised adaptation techniques. in the newspaper domain. Similarly, correspon-
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5.4

. . , 8
lossions Tour- and ‘orgel (e organ) © com. Ce——

’
missie’ (commission) are discovered. 8525
Moreunlabeled data Inthe experiments so far, s \
we balanced the amount of source and target dat. =
We started to examine the effect of more unla-*
beled target domain data. For the Prince datase ;. ﬁ
we included all supercategories in constructing e :
the related target domain data. The so obtaine & & & & & 3 SN 8

dataset contains: 859 articles, 29,186 sentences °
and 385,289 tokens; hence, the size approximatel

tripled (w.r.t. Table 2). Table 5 shows the effect Offeature type/r = 25: block SVD included all 9

using this larger dataset for SCL with= 25. The ) .
. feature types; the right part shows the accuracy
accuracy increases (from 85.12 to 85.25). Thus,
. : ‘when one feature type was removed.
there seems to be a positive effect (to be investi-

gated further).

¥igure 5: Results of dimensionality reduction by

— CA f-score ¢ reler.  higuation. While SCL has been successfully

aseline Prince 85.03 85.38 78.06 0.00 : : :

SCL[+/],h =25, all 85.25 85.58 79.42 6.20 a,pp"e‘?' to PoS tagging qnd Sentiment Angly-
sis (Blitzer et al., 2006; Blitzer et al., 2007), its

Table 5: First result on increasing unlabeled datagﬁectlveness for parsing was rather unexplored.

The empirical results show that our instantiation
Dimensionality reduction by feature type We of SCL to parse disambiguation gives promising

have started to implement the extension discussefitia! results, even without the many additional

in section 4.2, i.e. perform separate dimension_extensions on the feature level as done in Blitzer

ality reductions based on blocks of nonpivot fea-€t @l (2006). We exploited Wikipedia as pri-

tures. We clustered nonpivots (see section 4.1 fgfary resource, both for collecting unlabeled tar-
a description) into 9 types (ordered in terms ofdet domain data, as well as test suite for empirical
decreasing cluster size)dep fL/f2 (pos), ri/r2 evaluation. On the three examined datasets, SCL

(rules),apposperson mf z, hi, in_year, dist For slightly but constantly outperformed the baseline.

each type, a separate SVD was computed on suftPPYing SCL involves many design choices and
matrix W, (illustrated in Figure 2). Then, sepa- practical issues, which we tried to depict here in

rate projections were applied to every training in-detail. A novelty in our application is that we
stance. first actually parse the unlabeled data from both

The results of these experiments on the Princdomains. This allows us to get a possibly noisy,
dataset are shown in Figure 5. Applying SCL with but more apstract rgpresentgtlon of the u_nderlylng
dimensionality reduction by feature type (SCLdata on which the pivot predictors are trained.
block) results in a model that performs better (CA In the near future, we plan to extend the work on
85.27,¢ 79.52, rel.er. 6.65%) than the model with semi-supervised domain adaptation for parse dis-
no feature split (no block SVDs), thus obtaining aambiguation, viz. (1) further explore/refine SCL
relative error reduction of 6.65% over the baseline(block SVDs, varying amount of target domain
The same figure also shows what happens if weata, other testsets, etc.), and (2) examine self-
remove a specific feature type at a time; the appotraining. Studies on the latter have focused mainly
sition features contribute the most on this Princeon generative, constituent based, i.e. data-driven
domain. As a fact, one third of the sentences irparsing systems. Furthermore, from a machine
the Prince testset contain constructions with appolearning point of view, it would be interesting to
sitions (e.g. about film-, alboum- and song titles). know a measure of corpus similarity to estimate
the success of porting an NLP system from one do-
main to another. This relates to the general ques-

The paper presents an application of Structuralion of what is meant by domain.
Correspondence Learning (SCL) to parse disam-

6 Conclusionsand Future Work

44



References Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi
) ) Chi, and Stefan Riezler. 1999. Estimators for
Steven P. Abney. 1997. Stochastic attribute-value gigchastic “unification-based” grammars. Fmo-

grammarsComputational Linguistic23:597-618. ceedings of the 37th Annual Meeting of the ACL

Rie Kubota Ando and Tong Zhang. 2005. A frame-Robert Malouf. 2002. A comparison of algorithms
work for learning predictive structures from multi-  for maximum entropy parameter estimation.Piro-
ple tasks and unlabeled datdournal of Machine  ceedings of the Sixth Conference on Natural Lan-
Learning Researcgl6:1817-1853. guage Learning (CoNLL-2002Jaipei.

Rie Kubota Ando. 2006. Applying alternating struc- David McClosky, Eugene Charniak, and Mark John-
ture optimization to word sense disambiguation. In son. 2006. Effective self-training for parsing. In
Proceedings of the 10th Conference on Computa- Proceedings of the Human Language Technology
tional Natural Language Learning (CoNLL) Conference of the NAACL, Main Conferenpages

152-159, New York City, USA, June. Association

Adam Berger, Stephen Della Pietra, and Vincent Della  for Computational Linguistics.

Pietra. 1996. A maximum entropy approach to nat-

ural language processingcomputational Linguis- Nelleke Oostdijk. 2000. The Spoken Dutch Corpus:

tics, 22(1):39-72. Overview and first evaluation. IRroceedings of
Second International Conference on Language Re-

John Blitzer, Ryan McDonald, and Fernando Pereira. sources and Evaluation (LREQ)ages 887—894.
2006. Domain adaptation with structural correspon- _
dence learning. I'€onference on Empirical Meth- Barbara Plank and Gertjan van Noord. 2008. Ex-
ods in Natural Language Processingydney, Aus- pIorlng an auxmary distribution baseq apprpach.to
tralia. domain adaptation of a syntactic disambiguation

model. InProceedings of the Workshop on Cross-

John Blitzer, Mark Dredze, and Fernando Pereira. Framework and Cross-Domain Parser Evaluation

2007. Biographies, bollywood, boom-boxes and (PE), Manchester, August.

blenders: Domain adaptation for sentiment classi- . : : .
fication. InAssociation for Computational Linguis- A Ratnaparkhi. 1997. A simple introduction to max-

ics. P h R lic. imum entropy models for natural language process-
tics, Prague, Czech Republic ing. Technical report, Institute for Research in Cog-

John Blitzer. 2008. Domain Adaptation of Natural ~ Nitive Science, University of Pennsylvania.

Language Processing SystemPBh.D. thesis, Uni-

J ) Brian Roark and Michiel Bacchiani. 2003. Supervised
versity of Pennsylvania.

and unsupervised pcfg adaptation to novel domains.
In In Proceedings of the Human Language Technol-
ogy Conference and Meeting of the North American
Chapter of the Association for Computational Lin-
guistics (HLT-NAACL)

Hal Daumé Il and Daniel Marcu. 2006. Domain adap’Nobuyuki Shimizu and Hiroshi Nakagawa. 2007.

tatior) for statistical clas§ifiers]ournal of Artificial Structural correspondence learning for dependency
Intelligence Researcl26:101-126. parsing. InProceedings of the CoNLL Shared Task

Hal Daumeé lll. 2007. Frustratingly easy domain adap- Session of EMNLP-CoNLL 2007

tation. InConference of the Association for Compu- Gertjan van Noord and Robert Malouf.  2005.
tational LingUiStiCS (ACL)Prague, Czech Republic. Wide coverage parsing with stochastic at-

) ) tribute value grammars. Draft available from

Mark Dredze, John Blitzer, Pratha Pratim Taluk-  pitp://www.let.rug.nlMvannoord. A preliminary ver-
dar, Kuzman Ganchev, Joao Graca, and Fernando sjon of this paper was published in the Proceedings

Pereira. 2007. Frustratingly hard domain adap- of the IJCNLP workshop Beyond Shallow Analyses,
tation for parsing. InProceedings of the CONLL  Hainan China, 2004.

Shared Task Session - Conference on Natural Lan-
guage LearningPrague, Czech Republic. Gertjan van Noord. 2006 At LastParsingls Now
Operational. INTALN 2006 Verbum Ex Machina,
Daniel Gildea. 2001. Corpus variation and parser per- Actes De La 13e Conference sur Le Traitement
formance. InProceedings of the 2001 Conference Automatique des Langues nature)lgages 20—42,
on Empirical Methods in Natural Language Pro- |euven.
cessing (EMNLP).

Eugene Charniak. 1996. Tree-bank grammarsinin
Proceedings of the Thirteenth National Conference
on Artificial Intelligence pages 1031-1036.

Gertjan van Noord. 2007. Using self-trained bilexi-
Tadayoshi Hara, Miyao Yusuke, and Jun’ichi Tsu- cal preferencesto improve disambiguation accuracy.
jii. 2005. Adapting a probabilistic disambiguation  In Proceedings of the Tenth International Confer-
model of an hpsg parser to a new domain.Pho- ence on Parsing Technologies. IWPT 2007, Prague.
ceedings of the International Joint Conference on pages 1-10, Prague.
Natural Language Processing

45



