
Proceedings of the EACL 2009 Demonstrations Session, pages 29–32,
Athens, Greece, 3 April 2009. c©2009 Association for Computational Linguistics

Foma: a finite-state compiler and library

Mans Hulden
University of Arizona

mhulden@email.arizona.edu

Abstract

Foma is a compiler, programming lan-
guage, and C library for constructing
finite-state automata and transducers for
various uses. It has specific support for
many natural language processing appli-
cations such as producing morphologi-
cal and phonological analyzers. Foma is
largely compatible with the Xerox/PARC
finite-state toolkit. It also embraces Uni-
code fully and supports various differ-
ent formats for specifying regular expres-
sions: the Xerox/PARC format, a Perl-like
format, and a mathematical format that
takes advantage of the ‘Mathematical Op-
erators’ Unicode block.

1 Introduction

Foma is a finite-state compiler, programming lan-
guage, and regular expression/finite-state library
designed for multi-purpose use with explicit sup-
port for automata theoretic research, construct-
ing lexical analyzers for programming languages,
and building morphological/phonological analyz-
ers, as well as spellchecking applications.

The compiler allows users to specify finite-state
automata and transducers incrementally in a simi-
lar fashion to AT&T’s fsm (Mohri et al., 1997) and
Lextools (Sproat, 2003), the Xerox/PARC finite-
state toolkit (Beesley and Karttunen, 2003) and
the SFST toolkit (Schmid, 2005). One of Foma’s
design goals has been compatibility with the Xe-
rox/PARC toolkit. Another goal has been to al-
low for the ability to work with n-tape automata
and a formalism for expressing first-order logi-
cal constraints over regular languages and n-tape-
transductions.

Foma is licensed under the GNU general pub-
lic license: in keeping with traditions of free soft-
ware, the distribution that includes the source code

comes with a user manual and a library of exam-
ples.

The compiler and library are implemented in C
and an API is available. The API is in many ways
similar to the standard C library <regex.h>, and
has similar calling conventions. However, all the
low-level functions that operate directly on au-
tomata/transducers are also available (some 50+
functions), including regular expression primitives
and extended functions as well as automata deter-
minization and minimization algorithms. These
may be useful for someone wanting to build a sep-
arate GUI or interface using just the existing low-
level functions. The API also contains, mainly for
spell-checking purposes, functionality for finding
words that match most closely (but not exactly) a
path in an automaton. This makes it straightfor-
ward to build spell-checkers from morphological
transducers by simply extracting the range of the
transduction and matching words approximately.

Unicode (UTF8) is fully supported and is in
fact the only encoding accepted by Foma. It has
been successfully compiled on Linux, Mac OS X,
and Win32 operating systems, and is likely to be
portable to other systems without much effort.

2 Basic Regular Expressions

Retaining backwards compatibility with Xe-
rox/PARC and at the same time extending the for-
malism means that one is often able to construct
finite-state networks in equivalent various ways,
either through ASCII-based operators or through
the Unicode-based extensions. For example, one
can either say:

ContainsX = Σ* X Σ*;
MyWords = {cat}|{dog}|{mouse};
MyRule = n -> m || p;
ShortWords = [MyLex1]1 ∩ Σˆ<6;

or:

29

Operators Compatibility variant Function

[] () [] () grouping parentheses, optionality

∀ ∃ N/A quantifiers

\ ‘ term negation, substitution/homomorphism

: : cross-product

+ ∗ + ∗ Kleene closures
ˆ<n ˆ>n ˆ{m,n} ˆ<n ˆ>n ˆ{m,n} iterations
1 2 .1 .2 .u .l domain & range
.f N/A eliminate all unification flags
¬ $ $. $? ˜ $ $. $? complement, containment operators

/ ./. /// \\\ /\/ / ./. N/A N/A ‘ignores’, left quotient, right quotient, ‘inside’ quotient
∈ /∈ = 6= N/A language membership, position equivalence
� ≺ < > precedes, follows
∨ ∪ ∧ ∩ - .P. .p. | & − .P. .p. union, intersection, set minus, priority unions
=> -> (->) @-> => -> (->) @-> context restriction, replacement rules
‖ <> shuffle (asynchronous product)
× ◦ .x. .o. cross-product, composition

Table 1: The regular expressions available in Foma from highest to lower precedence. Horizontal lines
separate precedence classes.

30

define ContainsX ?* X ?*;
define MyWords {cat}|{dog}|{mouse};
define MyRule n -> m || _ p;
define ShortWords Mylex.i.l & ?ˆ<6;

In addition to the basic regular expression oper-
ators shown in table 1, the formalism is extended
in various ways. One such extension is the abil-
ity to use of a form of first-order logic to make
existential statements over languages and trans-
ductions (Hulden, 2008). For instance, suppose
we have defined an arbitrary regular language L,
and want to further define a language that contains
only one factor of L, we can do so by:

OneL = (∃x)(x ∈ L ∧ ¬(∃y)(y ∈ L
∧ ¬(x = y)));

Here, quantifiers apply to substrings, and we at-
tribute the usual meaning to ∈ and ∧, and a kind of
concatenative meaning to the predicate S(t1, t2).
Hence, in the above example, OneL defines the
language where there exists a string x such that
x is a member of the language L and there does
not exist a string y, also in L, such that y would
occur in a different position than x. This kind
of logical specification of regular languages can
be very useful for building some languages that
would be quite cumbersome to express with other
regular expression operators. In fact, many of the
internally complex operations of Foma are built
through a reduction to this type of logical expres-
sions.

3 Building morphological analyzers

As mentioned, Foma supports reading and writ-
ing of the LEXC file format, where morphological
categories are divided into so-called continuation
classes. This practice stems back from the earliest
two-level compilers (Karttunen et al., 1987). Be-
low is a simple example of the format:

Multichar_Symbols +Pl +Sing
LEXICON Root

Nouns;

LEXICON Nouns
cat Plural;
church Plural;

LEXICON Plural

+Pl:%ˆs #;
+Sing #;

4 An API example

The Foma API gives access to basic functions,
such as constructing a finite-state machine from
a regular expression provided as a string, per-
forming a transduction, and exhaustively matching
against a given string starting from every position.

The following basic snippet illustrates how to
use the C API instead of the main interface of
Foma to construct a finite-state machine encod-
ing the language a+b+ and check whether a string
matches it:

1. void check_word(char *s) {
2. fsm_t *network;
3. fsm_match_result *result;
4.
5. network = fsm_regex("a+ b+");
6. result = fsm_match(fsm, s);
7. if (result->num_matches > 0)
8. printf("Regex matches");
9.
10 }

Here, instead of calling the fsm regex() function to
construct the machine from a regular expressions,
we could instead have accessed the beforemen-
tioned low-level routines and built the network en-
tirely without regular expressions by combining
low-level primitives, as follows, replacing line 5
in the above:

network = fsm_concat(
fsm_kleene_plus(
fsm_symbol("a")),
fsm_kleene_plus(
fsm_symbol("b")));

The API is currently under active develop-
ment and future functionality is likely to include
conversion of networks to 8-bit letter transduc-
ers/automata for maximum speed in regular ex-
pression matching and transduction.

5 Automata visualization and
educational use

Foma has support for visualization of the ma-
chines it builds through the AT&T Graphviz li-
brary. For educational purposes and to illustrate
automata construction methods, there is some sup-
port for changing the behavior of the algorithms.

31

For instance, by default, for efficiency reasons,
Foma determinizes and minimizes automata be-
tween nearly every incremental operation. Oper-
ations such as unions of automata are also con-
structed by default with the product construction
method that directly produces deterministic au-
tomata. However, this on-the-fly minimization
and determinization can be relaxed, and a Thomp-
son construction method chosen in the interface so
that automata remain non-deterministic and non-
minimized whenever possible—non-deterministic
automata naturally being easier to inspect and an-
alyze.

6 Efficiency

Though the main concern with Foma has not
been that of efficiency, but of compatibility and
extendibility, from a usefulness perspective it is
important to avoid bottlenecks in the underly-
ing algorithms that can cause compilation times
to skyrocket, especially when constructing and
combining large lexical transducers. With this
in mind, some care has been taken to attempt
to optimize the underlying primitive algorithms.
Table 2 shows a comparison with some exist-
ing toolkits that build deterministic, minimized
automata/transducers. One the whole, Foma
seems to perform particularly well with patho-
logical cases that involve exponential growth in
the number of states when determinizing non-
deterministic machines. For general usage pat-
terns, this advantage is not quite as dramatic, and
for average use Foma seems to perform compa-
rably with e.g. the Xerox/PARC toolkit, perhaps
with the exception of certain types of very large
lexicon descriptions (>100,000 words).

7 Conclusion

The Foma project is multipurpose multi-mode
finite-state compiler geared toward practical con-
struction of large-scale finite-state machines such
as may be needed in natural language process-
ing as well as providing a framework for re-
search in finite-state automata. Several wide-
coverage morphological analyzers specified in the
LEXC/xfst format have been compiled success-
fully with Foma. Foma is free software and will
remain under the GNU General Public License.
As the source code is available, collaboration is
encouraged.

GNU AT&T
Foma xfst flex fsm 4

Σ∗aΣ15 0.216s 16.23s 17.17s 1.884s
Σ∗aΣ20 8.605s nf nf 153.7s
North Sami 14.23s 4.264s N/A N/A
8queens 0.188s 1.200s N/A N/A
sudoku2x3 5.040s 5.232s N/A N/A
lexicon.lex 1.224s 1.428s N/A N/A
3sat30 0.572s 0.648s N/A N/A

Table 2: A relative comparison of running a se-
lection of regular expressions and scripts against
other finite-state toolkits. The first and second en-
tries are short regular expressions that exhibit ex-
ponential behavior. The second results in a FSM
with 221 states and 222 arcs. The others are scripts
that can be run on both Xerox/PARC and Foma.
The file lexicon.lex is a LEXC format English dic-
tionary with 38418 entries. North Sami is a large
lexicon (lexc file) for the North Sami language
available from http://divvun.no.

References

Beesley, K. and Karttunen, L. (2003). Finite-State
Morphology. CSLI, Stanford.

Hulden, M. (2008). Regular expressions and pred-
icate logic in finite-state language processing.
In Piskorski, J., Watson, B., and Yli-Jyrä, A.,
editors, Proceedings of FSMNLP 2008.

Karttunen, L., Koskenniemi, K., and Kaplan,
R. M. (1987). A compiler for two-level phono-
logical rules. In Dalrymple, M., Kaplan, R.,
Karttunen, L., Koskenniemi, K., Shaio, S., and
Wescoat, M., editors, Tools for Morphological
Analysis. CSLI, Palo Alto, CA.

Mohri, M., Pereira, F., Riley, M., and Allauzen, C.
(1997). AT&T FSM Library-Finite State Ma-
chine Library. AT&T Labs—Research.

Schmid, H. (2005). A programming language for
finite-state transducers. In Yli-Jyrä, A., Kart-
tunen, L., and Karhumäki, J., editors, Finite-
State Methods and Natural Language Process-
ing FSMNLP 2005.

Sproat, R. (2003). Lextools: a toolkit for
finite-state linguistic analysis. AT&T Labs—
Research.

32

