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Abstract and adaptability to new grammars and languages

This paper presents a chunking-based dis- (Buchhol_z_and Marsi, 2006). L
criminative approach to full parsing. We A traditional approach to discriminative full

convert the task of full parsing into a series parsing i.s_ to gonvert a full parsing task intq a series
of chunking tasks and apply a conditional of classification p_robl_ems. Ratnaparkhi (1997)
random field (CRF) model to each level performs full parsing in a bottom-up and left-to-

of chunking. The probability of an en- right manner and uses a maximum entropy clas-
tire parse tree is computed as the product sifier to make decisions to construct individual

of the probabilities of individual chunk- ~ Phrases. Sagae and Lavie (2006) use the shift-
ing results. The parsing is performed in a reduce parsing framework and a maximum en-

bottom-up manner and the best derivation tropy model for local classification to decide pars-

is efficiently obtained by using a depth- ing actions. These approaches are often called
first search algorithm. Experimental re-  history-based approaches. S

sults demonstrate that this simple parsing A more recent approach to discriminative full
framework produces a fast and reasonably ~ Parsing is to treat the task as a single structured
accurate parser. prediction problem. Finkel et al. (2008) incor-

porated rich local features into a tree CRF model
and built a competitive parser. Huang (2008) pro-
Full parsing analyzes the phrase structure of a serfposed to use a parse forest to incorporate non-local
tence and provides useful input for many kindsfeatures. They used a perceptron algorithm to op-
of high-level natural language processing such aimize the weights of the features and achieved
summarization (Knight and Marcu, 2000), pro- state-of-the-art accuracy. Petrov and Klein (2008)
noun resolution (Yang et al., 2006), and infor-introduced latent variables in tree CRFs and pro-
mation extraction (Miyao et al., 2008). One of posed a caching mechanism to speed up the com-
the major obstacles that discourage the use of fuputation.
parsing in large-scale natural language process- In general, the latter whole-sentence ap-
ing applications is its computational cost. For ex-proaches give better accuracy than history-based
ample, the MEDLINE corpus, a collection of ab- approaches because they can better trade off deci-
stracts of biomedical papers, consists of 70 millionsions made in different parts in a parse tree. How-
sentences and would require more than two yeargver, the whole-sentence approaches tend to re-
of processing time if the parser needs one seconguire a large computational cost both in training
to process a sentence. and parsing. In contrast, history-based approaches
Generative models based on lexicalized PCFGare less computationally intensive and usually pro-
enjoyed great success as the machine learninguce fast parsers.
framework for full parsing (Collins, 1999; Char-  In this paper, we present a history-based parser
niak, 2000), but recently discriminative modelsusing CRFs, by treating the task of full parsing as
attract more attention due to their superior accua series of chunking problems where it recognizes
racy (Charniak and Johnson, 2005; Huang, 20083hunks in a flat input sequence. We use the linear-

1 Introduction

Proceedings of the 12th Conference of the European Chapter of the ACL, pages 790-798,
Athens, Greece, 30 March — 3 April 2009. (©2009 Association for Computational Linguistics

790



NP QP VP
N N\ /\
VBN NN VvBDDT JJ CD CD NNS .
| o | NP VBD NE

Estimated volume was a light 2.4 millionnoes . ‘ ‘ ‘ ‘
volume was ounces

Figure 1: Chunking, the first (base) level.
Figure 3: Chunking, the 3rd level.

NP
S
NP VBD DT JJ QP SIN. NP/VPN.
voILme v‘vas ‘a light r‘nillion rt‘nes ‘ voILme ‘was ‘
Figure 2: Chunking, the 2nd level. Figure 4: Chunking, the 4th level.
chain CRF model to perform chunking. 2 Full Parsing by Chunking

Although our parsing model falls into the cat- . _ _
egory of history-based approaches, it is one steB—h'S section describes the parsing framework em-
closer to the whole-sentence approaches becauBloyed in this work.
the parser uses a whole-sequence model (i.e. The parsing process is conceptually very sim-
CRFs) for individual chunking tasks. In other Ple. The parser first performs chunking by iden-
words, our parser could be located somewherdifying base phrases, and converts the identified
between traditional history-based approaches anrases to non-terminal symbols. It then performs
whole-sentence approaches. One of our motivachunking for the updated sequence and converts
tions for this work was that our parsing model the newly recognized phrases into non-terminal
may achieve a better balance between accuradymbols. The parser repeats this process until the
and speed than existing parsers. whole sequence is chunked as a sentence

It is also worth mentioning that our approach is ~ Figures 1to 4 show an example of a parsing pro-
similar in spirit to supertagging for parsing with C€ss by this framework. In the first (base) level,
lexicalized grammar formalisms such as CCG andh€ chunker identifies two base phrases, (NP Es-
HPSG (Clark and Curran, 2004; Ninomiya et al.,fimated volume) and (QP 2.4 million), and re-
2006), in which significant speed-ups for parsingplaces each phrase with its non-terminal symbol
time are achieved. and headl In the second level, the chunker iden-

In this paper, we show that our approach is inlifies a noun phrase, (NP a light million ounces),
deed appealing in that the parser runs very fas@nd converts it into NP. This process is repeated
and gives competitive accuracy. We evaluate oukntil the whole sentence is chunked at the fourth
parser on the standard data set for parsing expelevel- The full parse tree is recovered from the
iments (i.e. the Penn Treebank) and compare ghunking history in a straightforward way.
with existing approaches to full parsing. This idea of converting full parsing into a se-

This paper is organized as follows. Section 21€s of chunking tasks is not new by any means—
presents the overall chunk parsing strategy. Sedhe history of this kind of approach dates back to
tion 3 describes the CRF model used to perfornt950s (Joshi and Hopely, 1996). More recently,
individual chunking steps. Section 4 describes thdrants (1999) used a cascaded Markov model to
depth-first algorithm for finding the best derivation Parse German text. Tjong Kim Sang (2001) used
of a parse tree. The part-of-speech tagger used #H€ |OB tagging method to represent chunks and
the parser is described in section 5. ExperimenMemory-based learing, and achieved an f-score

tal results on the Penn Treebank corpus are prd2f 80.49 on the WSJ corpus. Tsuruoka and Tsu-
vided in Section 6. Section 7 discusses possibléi (2005) improved upon their approach by using

improvements and extensions of our work. Sec-" i1ne nead word is identified by using the head-

tion 8 offers some concluding remarks. percolation table (Magerman, 1995).
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5000 , , , : : 3.1 Linear Chain CRFs

. A linear chain CRF defines a single log-linear
4000 - 11 1  probabilistic distribution over all possible tag se-
[%] — 1 -
§ 3000 - B ) guences for the input sequence:
i)
c
i 2000 - ] p(y[x) eXPZZ)\kfk 6 Y, Ye-1,%),
t=1k=1
1000 -
where fi (¢, yi, y:—1, X) is typically a binary func-
0 0 :5 1'0 1'5 2'0 e a0 tion indicating the presence of feature)\;, is the
Heiaht weight of the feature, and(X) is a normalization
9 function:
Figure 5: Distribution of tree height in WSJ sec-
tions 2-21. ZepoZ)\kfk (t, yt, Yr—1,X).

t=1k=1

a maximum entropy classifier and achieved an fThis model allows us to define features on states
score of 85.9. However, there is still a large gapand edges combined with surface observations.
between the accuracy of chunking-based parsers The weights of the features are determined in
and that of widely-used practical parsers such asuch a way that they maximize the conditional log-
Collins parser and Charniak parser (Collins, 1999jikelihood of the training data:

Charniak, 2000).

2.1 Heightsof Trees Zlogp )+ R(N),

A natural question about this parsing framework is
how many levels of chunking are usually needed tavhere R(\) is introduced for the purpose cégu-
parse a sentence. We examined the distribution drization which prevents the model from overfit-
the heights of the trees in sections 2-21 of the Walting the training data. The L1 or L2 norm is com-
Street Journal (WSJ) corpus. The result is showimonly used in statistical natural language process-
in Figure 5. Most of the sentences have less thafhg (Gao et al., 2007). We used L1-regularization,
20 levels. The average was 10.0, which means W@hich is defined as
need to perform, on average, 10 chunking tasks to

. . : K
obtain a full parse tree for a sentence if the parsing R(\) = 1 Z I
is performed in a deterministic manner. Ot F
3 Chunkingwith CRFs where C is the meta-parameter that controls the

The accuracy of chunk parsing is highlv deoen degree of regularization. We used the OWL-QN
y P 9 ghly dep ‘algorithm (Andrew and Gao, 2007) to obtain the
dent on the accuracy of each level of chunking.

. . . rameters that maximize the L1-regulariz n-
This section describes our approach to the chu nIJOa ameIers that maximize the egularized co
ing task ditional log-likelihood.

A common approach to the chunking problem3.2 Features
is to convert the problem into a sequence taggin
task by using the “BIO” (B for beginning, | for
inside, and O for outside) representation. For ex
ample, the chunking process given in Figure 1 is
expressed as the following BIO sequences.

%able 1 shows the features used in chunking for
the base level. Since the task is basically identical
to shallow parsing by CRFs, we follow the feature
sets used in the previous work by Sha and Pereira
(2003). We use unigrams, bigrams, and trigrams

B-NP I-NP O O O B-QP I-QP O O of part-of-speech (POS) tags and words.

This representation enables us to use the linear- The difference between our CRF chunker and
chain CRF model to perform chunking, since thethat in (Sha and Pereira, 2003) is that we could
task is simply assigning appropriate labels to a senot use second-order CRF models, hence we could
quence. not use trigram features on the BIO states. We
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Symbol Unigrams s_o, s_1, S, S4+1, S+2

Symbol Bigrams | s_2s_1, $_1S0, S0S+1, S+15+2

Symbol Trigrams 5_35_25_1, S-25-150, S—15054+1, S0S+15+2, S4+154+25+3
Word Unigrams h_s, h_1, hg, h+1, h+2

Word Bigrams h_sh_1, h_1hg, h0h+1, h+1h+2

Word Trigrams h_1hoh41

Table 1: Feature templates used in the base level chunkiggresents a terminal symbol (i.e. POS tag)
and the subscript represents a relative positlorepresents a word.

found that using second order CRFs in our taskhe derivations should then be marginalized over
was very difficult because of the computationalto produce the probability of a parse tree, but in
cost. Recall that the computational cost for CRFghis paper we ignore this effect and simply focus
is quadratic to the number of possible states. lronly on the best derivation.
our task, we need to consider the states for all non-
terminal symbols, whereas their work is only con- We use a depth-first search algorithm to find the
cerned with noun phrases. highest probability derivation. Figure 6 shows the
Table 2 shows feature templates used in the norlgorithm in pseudo-code. The parsing process is
base levels of chunking. In the non-base levels ofMPlemented with a recursive function. In each
chunking, we can use a richer set of features thalgvel of chunking, the recursive function first in-
the base-level chunking because the chunker ha@kes a CRF chunker to obtain chunking hypothe-
access to the information about the partial tree§€S for the given sequence. For each hypothesis
that have been already created. In addition to th&/hose probability is high enough to have possibil-
features listed in Table 1, the chunker looks intolty of constituting the best derivation, the function
the daughters of the current non-terminal Sym_calls itself with the sequence updated by the hy-
bol and use them as features. It also uses theothesis. The parsing process is performed in a
words and POS tags around the edges of the rdottom up manner and this recursive process ter-
gion covered by the current non-terminal Symb0|_minates if the whole sequence is chunked as a sen-
We also added a special feature to better captuf¢nce.
PP-attachment. The chunker looks at the head of

the second daughter of the prepositional phrase t% To extract multiple chunking hypotheses from
. . the CRF chunker, we use a branch-and-bound
incorporate the semantic head of the phrase.

algorithm rather than the A* search algorithm,
4 Searching for the Best Parse whic_h is perhaps more commonly used in previous
studies. We do not give pseudo code, but the ba-
The probability for an entire parse tree is com-sic idea is as follows. It first performs the forward
puted as the product of the probabilities output byviterbi algorithm to obtain the best sequence, stor-
the individual CRF chunkers: ing the upper bounds that are used for pruning in
b branch-and-bound. It then performs a branch-and-
score = [[ p(yilxi), (1) bound algorithm in a backward manner to retrieve
i—0 possible candidate sequences whose probabilities
are greater than the given threshold. Unlike A*
where: is the level of chunking and is the height  search, this method is memory efficient because it
of the tree. The task of full parsing is then 105 performed in a depth-first manner and does not

choose the series of chunking results that maXirequire priority queues for keeping uncompleted
mizes this probability. hypotheses.

It should be noted that there are cases where
different derivations (chunking histories) lead to It is straightforward to introduce beam search in
the same parse tree (i.e. phrase structure). Strictihis search algorithm—we simply limit the num-
speaking, therefore, what we describe here as theer of hypotheses generated by the CRF chunker.
probability of a parse tree is actually the proba-We examine how the width of the beam affects the
bility of a single derivation. The probabilities of parsing performance in the experiments.
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Symbol Unigrams S—2, S—1, S0, S+1, S+2

Symbol Bigrams S_25_1, $—180, S0S+1, S+1542

Symbol Trigrams $_35_925_1, S_25-150, S—15054+1, S0S+15+2, S4+154+25+3
Head Unigrams h_s, h_1, hg, h+1, h+2

Head Bigrams h_sh_q, hflh(], h0h+1, h+1h+2

Head Trigrams h_1hohi1

Symbol & Daughters sodo1, ... Sodom

Symbol & Word/POS context SoWj—1, S0Pj—1, SOWk+1 s SOPk+1

Symbol & Words on the edgessow;, sowy,

Freshness whethersy has been created in the level just below
PP-attachment h_1hgmgs (only whensg = PP)

Table 2: Feature templates used in the upper level chunkingpresents a non-terminal symbdl.
represents a head percolated from the bottom for each synifabk theith daughter ofsg. w; is the
first word in the range covered 3y. w;_ is the word preceding;. wy, is the last word in the range
covered bysg. w41 Is the word followingwy. p represents POS tagsi. represents the head of the
second daughter af,.

Word Unigram W_2, W_1, W, W1, Wit2 the current word by lowering capital letters and

Word Bigram W_1W0, WoW41, W—] W41 converting all the numerals into ‘#’, and used the
Prefix, Suffix prefixes ofw normalized word as a feature.

suffixes ofwyg

(up to length 10) 6 Experiments

Character features wg has a hyphen

wp has a number

wg has a capital letter
wy is all capital
Normalized word | N(wyg)

We ran parsing experiments using the Wall Street
Journal corpus. Sections 2-21 were used as the
training data. Section 22 was used as the devel-
opment data, with which we tuned the feature set
and parameters for learning and parsing. Section

Table 3: Feature templates used in the POS tagget3 was reserved for the final accuracy report.

w represents a word and the subscript represents aThe training data for the CRF chunkers were

relative position. created by converting each parse tree in the train-
ing data into a list of chunking sequences like
the ones presented in Figures 1 to 4. We trained

5 Part-of-Speech Tagging three CRF models, i.e., the POS tagging model,

.__the base chunking model, and the non-base chunk-

We use the CRF model also for POS tagglng.mg model. The training took about two days on a

The CRF-based POS tagger is incorporated in thgingle CPU.

parser in exactly the same way as the other lay- We used thevalb script provided by Sekine and

ers of chunking. In other words, the POS taggin . . i
process is treated like the bottom layer of Chunk?Colllns for evaluating the labeled recall/precision

; . . .. .. ofth rser All experiments wer r-
ing, so the parser considers multiple probablllstlco. the parser outpufs All experiments were ca

hypotheses output by the tagger in the search a[-'ed out on a server with 2.2 GHz AMD Opteron
gorithm described in the previous section.

processors and 16GB memory.

51 Features 6.1 Chunking Performance

Table 3 shows the feature templates used in thEI'St: we describe the accuracy of individual
POS tagger. Most of them are standard feature§hUnking processes. Table 4 shows the results
commonly used in POS tagging for English. wefor the ten most frequently occurring symbols on
used unigrams and bigrams of neighboring wordst"€ development data. Noun phrases (NP) are the
prefixes a.nd' suffixes of the current word, and S_ome 2The script is available at http://nlp.cs.nyu.edu/evalb/. We
characteristics of the word. We also normalizedused the parameter file “COLLINS.prm”.
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1: procedure PARSESENTENCHX) Symbol | # Samples Recall| Prec.| F-score
2: PARSE(x, 1, 0) NP 317,597 94.79| 94.16| 94.47
3: VP 76,281| 91.46| 91.98| 91.72
4: function PARSE(x, p, q) PP 66,979| 92.84| 92.61| 92.72
5: if x is chunked as a complete sentence S 33,739| 91.48| 90.64| 91.06
6: returnp ADVP 21,686| 84.25| 85.86| 85.05
7 H — PERFORMCHUNKING(x, ¢/p) ADJP 14,422| 77.27| 78.46| 77.86
8: for h € H in descending order of their QP 14,308| 89.43| 91.16| 90.28
probabilitiesdo SBAR 11,603 96.42| 96.97| 96.69
9 < p X h.probability WHNP 8,827| 95.54| 97.50| 96.51
10: if > g then PRT 3,391| 95.72| 90.52| 93.05
11: x’ «+ UPDATESEQUENCHX, h) : : : : X
12: s — PARSE(X', 1, q) all 579,253| 92.63| 92.62| 92.63
13: if s > gthen
14: q—s Table 4. Chunking performance (section 22, all
15: return q sentences).
16:
17: function PERFORMCHUNKING(X, t) Beam| Recall| Prec.| F-score| Time (sec)
18: perform chunking with a CRF chunker and 1 86.72| 87.83| 87.27 16
19: return a set of chunking hypotheses whose 2 88.50| 88.85| 88.67 41
20: probabilities are greater than 3 88.69| 89.08| 88.88 61
21: 4 88.72| 89.13| 88.92 92
22: function UPDATESEQUENCHX, h) 5 88.73| 89.14| 88.93 119
23: update sequenceaccording to chunking 10 88.68| 89.19| 88.93 179
24 hypothesi¢ and return the updated
25: sequence. Table 5: Beam width and parsing performance

(section 22, all sentences).
Figure 6: Searching for the best parse with a

depth-first search algorithm. This pseudo-code il-

lustrates how to find the highest probability parsereal parsing process, the chunkers have to use the
but in the real implementation, the function needsoutput from the previous (one level below) chun-
to keep track of chunking histories as well as probker, so the quality of the input is not as good as
abilities. that used in this evaluation.

most common symbol and consist of 55% of all6'2 Parsing Performance

phrases. The accuracy of noun phrases recognitiddext, we present the actual parsing performance.
was relatively high, but it may be useful to designThe first set of experiments concerns the relation-
special features for this particular type of phraseship between the width of beam and the parsing
considering the dominance of noun phrases in thperformance. Table 5 shows the results obtained
corpus. Although not directly comparable, Shaon the development data. We varied the width of
and Pereira (2003) report almost the same levahe beam from 1 to 10. The beam width of 1 cor-
of accuracy (94.38%) on noun phrase recognitionfesponds to deterministic parsing. Somewhat un-
using a much smaller training set. We attributeexpectedly, the parsing accuracy did not drop sig-
their superior performance mainly to the use ofnificantly even when we reduced the beam width
second-order features on state transitions. Tablet a very small number such as 2 or 3.
also suggests that adverb phrases (ADVP) and ad- One of the interesting findings was that re-
jective phrases (ADJP) are more difficult to recog-call scores were consistently lower than precision
nize than other types of phrases, which coincidescores throughout all experiments. A possible rea-
with the result reported in (Collins, 1999). son is that, since the score of a parse is defined
It should be noted that the performance reporteés the product of all chunking probabilities, the
in this table was evaluated using the gold standargarser could prefer a parse tree that consists of
sequences as the input to the CRF chunkers. In thee small number of chunk layers. This may stem
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from the history-based model’s inability of prop- (Perkins et al., 2003) may help us to incorporate
erly trading off decisions made by different chun-such higher-order features, but the problem of de-
kers. creased efficiency of dynamic programming in the
Overall, the parsing speed was very high. TheCRF would probably need to be addressed.
deterministic version (beam width = 1) parsed In this work, we treated the chunking problem
1700 sentences in 16 seconds, which means thas a sequence labeling problem by using the BIO
the parser needed only 10 msec to parse one serepresentation for the chunks. However, semi-
tence. The parsing speed decreases as we increddarkov conditional random fields (semi-CRFs)
the beam width. can directly handle the chunking problem by
The parser was also memory efficient. Thanksonsidering all possible combinations of subse-
to L1 regularization, the training process did notquences of arbitrary length (Sarawagi and Cohen,
resultin many non-zero feature weights. The num2004). Semi-CRFs allow one to use a richer set
bers of non-zero weight features were 58,505 (foof features than CRFs, so the use of semi-CRFs
the base chunker), 263,889 (for the non-base churir our parsing framework should lead to improved
ker), and 42,201 (for the POS tagger). The parseaccuracy. Moreover, semi-CRFs would allow us to
required only 14MB of memory to run. incorporate some useful restrictions in producing
There was little accuracy difference between thechunking hypotheses. For example, we could nat-
beam width of 4 and 5, so we adopted the beanurally incorporate the restriction that every chunk
width of 4 for the final accuracy report on the testhas to contain at least one symbol that has just

data. been created in the previous letelt is hard for
the normal CRF model to incorporate such restric-
6.3 Comparison with Previous Work tions.

Table 6 shows the performance of our parser on IntrOdUCing latent variables into the CRF model
the test data and summarizes the results of previay be another promising approach. This is the
ous work. Our parser achieved an f-score of 88.4nain idea of Petrov and Klein (2008), which sig-
on the test data, which is comparable to the accuRificantly improved parsing accuracy.
racy achieved by recent discriminative approaches A totally different approach to improving the
such as Finkel et al. (2008) and Petrov & Kleinaccuracy of our parser is to use the idea of “self-
(2008), but is not as high as the state-of-the-artraining” described in (McClosky et al., 2006).
accuracy achieved by the parsers that can incorfhe basic idea is to create a larger set of training
porate global features such as Huang (2008) anéata by applying an accurate parser (e.g. rerank-
Charniak & Johnson (2005). Our parser was mordng parser) to a large amount of raw text. We can
accurate than traditional history-based approachd§en use the automatically created treebank as the
such as Sagae & Lavie (2006) and Ra’[naparkl‘ﬁldditiona| training data for our parser. This ap-
(1997), and was significantly better than previougProach suggests that accurate (but slow) parsers
cascaded chunking approaches such as TsuruoR&d fast (but not-so-accurate) parsers can actually
& Tsujii (2005) and Tjong Kim Sang (2001). help each other.

Although the comparison presented in the table Also, since it is not difficult to extend our parser
is not perfectly fair because of the differences into produce N-best parsing hypotheses, one could
hardware platforms, the results show that our parsouild a fast reranking parser by using the parser as
ing model is a promising addition to the parsingthe base (hypotheses generating) parser.

frameworks for building a fast and accurate parser. _
8 Conclusion

7 Di ion
SCUsSI0 Although the idea of treating full parsing as a se-

One of the obvious ways to improve the accuracyies of chunking problems has a long history, there
of our parser is to improve the accuracy of in-has not been a competitive parser based on this
dividual CRF models. As mentioned earlier, weparsing framework. In this paper, we have demon-
were not able to use second-order features on stagérated that the framework actually enables us to
transitions, which would have been very useful,

3For example, the sequence VBD DT JJ in Figure 2 can-

due to the problem of ComDUtat'Onal cost. Incre'not be a chunk in the current level because it would have been

mental feature selection methods such as graftingready chunked in the previous level if it were.
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Recall | Precision| F-score| Time (min)
Thiswork (deter ministic) 86.3 87.5 86.9 0.5
Thiswork (search, beam width = 4) 88.2 88.7 88.4 1.7
Huang (2008) 91.7 Unk
Finkel et al. (2008) 87.8 88.2 88.0 >250*
Petrov & Klein (2008) 88.3 3*
Sagae & Lavie (2006) 87.8 88.1 87.9 17
Charniak & Johnson (2005) 90.6 91.3 91.0 Unk
Tsuruoka & Tsujii (2005) 85.0 86.8 85.9 2
Collins (1999) 88.1 88.3 88.2 39**
Tjong Kim Sang (2001) 78.7 82.3 80.5 Unk
Charniak (2000) 89.6 89.5 89.5 23**
Ratnaparkhi (1997) 86.3 87.5 86.9 Unk

Table 6: Parsing performance on section 23 (all sentences). * estimatadhe parsing time on the
training data. ** reported in (Sagae and Lavie, 2006) where Pentium@H&2vas used to run the
parsers.

build a competitive parser if we use CRF mod-Thorsten Brants. 1999. Cascaded markov models. In
els for each level of chunking and a depth-first Proceedings of EACL.

sggrch algorithm to search for the highest prObaSabine Buchholz and Erwin Marsi. 2006. CoNLL-X
bility parse. shared task on multilingual dependency parsing. In
Like other discriminative learning approaches, Proceedings of CoNLL-X, pages 149-164.

one of the advantages of our parser is its general;ugene Charniak and Mark Johnson. 2005. Coarse-

ity. The design of our parser is very generic, and to-fine n-best parsing and maxent discriminative
the features used in our parser are not particularly reranking. InProceedings of ACL, pages 173-180.

specific to the Penn Treebank. We expect it to be
P P Eugene Charniak. 2000. A maximum-entropy-

straightforward to adapt the parser to other projec- inspired parser. IrProceedings of NAACL 2000
tive grammars and languages. pages 132-139.

This parsing framework should be useful when

tephen Clark and James R. Curran. 2004. The impor-
one needs to process a large amount of text O§ tance of supertagging for wide-coverage CCG pars-

when real time processing is required, in which jng. In Proceedings of COLING 2004, pages 282—
the parsing speed is of top priority. In the deter- 288.

ministic setting, our parser only needed about 10
9, P y Michael Collins. 1999.Head-Driven Satistical Mod-
msec to parse a sentence.

els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.
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