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Abstract

We discuss text summarization in terms of
maximum coverage problem and its vari-
ant. We explore some decoding algorithms
including the ones never used in this sum-
marization formulation, such as a greedy
algorithm with performance guarantee, a
randomized algorithm, and a branch-and-
bound method. On the basis of the results
of comparative experiments, we also aug-
ment the summarization model so that it
takes into account the relevance to the doc-
ument cluster. Through experiments, we
showed that the augmented model is su-
perior to the best-performing method of
DUC’04 on ROUGE-1 without stopwords.

1 Introduction

Automatic text summarization is one of the tasks
that have long been studied in natural language
processing. This task is to create a summary, or
a short and concise document that describes the
content of a given set of documents (Mani, 2001).

One well-known approach to text summariza-
tion is the extractive method, which selects some
linguistic units (e.g., sentences) from given doc-
uments in order to generate a summary. The ex-
tractive method has an advantage that the gram-
maticality is guaranteed at least at the level of the
linguistic units. Since the actual generation of
linguistic expressions has not achieved the level
of the practical use, we focus on the extractive
method in this paper, especially the method based
on the sentence extraction. Most of the extractive
summarization methods rely on sequentially solv-
ing binary classification problems of determining
whether each sentence should be selected or not.
In such sequential methods, however, the view-
point regarding whether the summary is good as
a whole, is not taken into consideration, although
a summary conveys information as a whole.

We represent text summarization as an opti-
mization problem and attempt to globally solve
the problem. In particular, we represent text sum-
marization as a maximum coverage problem with
knapsack constraint (MCKP). One of the advan-
tages of this representation is that MCKP can di-
rectly model whether each concept in the given
documents is covered by the summary or not,
and can dispense with rather counter-intuitive ap-
proaches such as giving penalty to each pair of two
similar sentences. By formally apprehending the
target problem, we can use a lot of knowledge and
techniques developed in the combinatorial mathe-
matics, and also analyse results more precisely. In
fact, on the basis of the results of the experiments,
we augmented the summarization model.

The contributions of this paper are as follows.
We are not the first to represent text summarization
as MCKP. However, no researchers have exploited
the decoding algorithms for solving MCKP in
the summarization task. We conduct compre-
hensive comparative experiments of those algo-
rithms. Specifically, we test the greedy algorithm,
the greedy algorithm with performance guarantee,
the stack decoding, the linear relaxation problem
with randomized decoding, and the branch-and-
bound method. On the basis of the experimental
results, we then propose an augmented model that
takes into account the relevance to the document
cluster. We empirically show that the augmented
model is superior to the best-performing method
of DUC’04 on ROUGE-1 without stopwords.

2 Related Work

Carbonell and Goldstein (2000) used sequential
sentence selection in combination with maximal
marginal relevance (MMR), which gives penalty
to sentences that are similar to the already se-
lected sentences. Schiffman et al.’s method (2002)
is also based on sequential sentence selection.
Radev et al. (2004), in their method MEAD, used
a clustering technique to find the centroid, that
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is, the words with high relevance to the topic
of the document cluster. They used the centroid
to rank sentences, together with the MMR-like
redundancy score. Both relevance and redun-
dancy are taken into consideration, but no global
viewpoint is given. In CLASSY, which is the
best-performing method in DUC’04, Conroy et
al. (2004) scored sentences with the sum of tf-idf
scores of words. They also incorporated sentence
compression based on syntactic or heuristic rules.

McDonald (2007) formulated text summariza-
tion as a knapsack problem and obtained the
global solution and its approximate solutions. Its
relation to our method will be discussed in Sec-
tion 6.1. Filatova and Hatzivassiloglou (2004) first
formulated text summarization as MCKP. Their
decoding method is a greedy one and will be em-
pirically compared with other decoding methods
in this paper. Yih et al. (2007) used a slightly-
modified stack decoding. The optimization prob-
lem they solved was the MCKP with the last sen-
tence truncation. Their stack decoding is one of
the decoding methods discussed in this paper. Ye
et al. (2007) is another example of coverage-based
methods. Shen et al. (2007) regarded summariza-
tion as a sequential labelling task and solved it
with Conditional Random Fields. Although the
model is globally optimized in terms of likelihood,
the coverage of concepts is not taken into account.

3 Modeling text summarization

In this paper, we focus on the extractive summa-
rization, which generates a summary by select-
ing linguistic units (e.g., sentences) in given doc-
uments. There are two types of summarization
tasks: single-document summarization and multi-
document summarization. While single-document
summarization is to generate a summary from a
single document, multi-document summarization
is to generate a summary from multiple documents
regarding one topic. Such a set of multiple docu-
ments is called a document cluster. The method
proposed in this paper is applicable to both tasks.
In both tasks, documents are split into several lin-
guistic units D = {s1, · · · , s|D|} in preprocess-
ing. We will select some linguistic units from D to
generate a summary. Among other linguistic units
that can be used in the method, we use sentences
so that the grammaticality at the sentence level is
going to be guaranteed.

We introduce conceptual units (Filatova and

Hatzivassiloglou, 2004), which compose the
meaning of a sentence. Sentence si is represented
by a set of conceptual units {ei1, · · · , ei|si|}. For
example, the sentence “The man bought a book
and read it” could be regarded as consisting of two
conceptual units “the man bought a book” and “the
man read the book”. It is not easy, however, to
determine the appropriate granularity of concep-
tual units. A simple way would be to regard the
above sentence as consisting of four conceptual
units “man”, “book”, “buy”, and “read”. There
is some work on the definition of conceptual units.
Hovy et al. (2006) proposed to use basic elements,
which are dependency subtrees obtained by trim-
ming dependency trees. Although basic elements
were proposed for evaluation of summaries, they
can probably be used also for summary genera-
tion. However, such novel units have not proved
to be useful for summary generation. Since we fo-
cus more on algorithms and models in this paper,
we simply use words as conceptual units.

The goal of text summarization is to cover as
many conceptual units as possible using only a
small number of sentences. In other words, the
goal is to find a subset S(⊂ D) that covers as
many conceptual units as possible. In the follow-
ing, we introduce models for that purpose. We
think of the situation that the summary length must
be at most K (cardinality constraint) and the sum-
mary length is measured by the number of words
or bytes in the summary.

Let xi denote a variable which is 1 if sentence
si is selected, otherwise 0, aij denote a constant
which is 1 if sentence si contains word ej , oth-
erwise 0. We regard word ej as covered when at
least one sentence containing ej is selected as part
of the summary. That is, word ej is covered if and
only if

∑
i aijxi ≥ 1. Now our objective is to find

the binary assignment on xi with the best coverage
such that the summary length is at most K:

max. |{j|
∑

i aijxi ≥ 1}|
s.t.

∑
i cixi ≤ K; ∀i, xi ∈ {0, 1},

where ci is the cost of selecting si, i.e., the number
of words or bytes in si.

For convenience, we rewrite the problem above:

max.
∑

j zj

s.t.
∑

i cixi ≤ K; ∀j,
∑

i aijxi ≥ zj ;
∀i, xi ∈ {0, 1}; ∀j, zj ∈ {0, 1},
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where zj is 1 when ej is covered, 0 otherwise. No-
tice that this new problem is equivalent to the pre-
vious one.

Since not all the words are equally important,
we introduce weights wj on words ej . Then the
objective is restated as maximizing the weighted
sum

∑
j wjzj such that the summary length is at

most K. This problem is called maximum cov-
erage problem with knapsack constraint (MCKP),
which is an NP-hard problem (Khuller et al.,
1999). We should note that MCKP is different
from a knapsack problem. MCKP merely has a
constraint of knapsack form. Filatova and Hatzi-
vassiloglou (2004) pointed out that text summa-
rization can be formalized by MCKP.

The performance of the method depends on how
to represent words and which words to use. We
represent words with their stems. We use only
the words that are content words (nouns, verbs,
or adjectives) and not in the stopword list used in
ROUGE (Lin, 2004).

The weights wj of words are also an impor-
tant factor of good performance. We tested two
weighting schemes proposed by Yih et al. (2007).
The first one is interpolated weights, which are in-
terpolated values of the generative word probabil-
ity in the entire document and that in the beginning
part of the document (namely, the first 100 words).
Each probability is estimated with the maximum
likelihood principle. The second one is trained
weights. These values are estimated by the logis-
tic regression trained on data instances, which are
labeled 1 if the word appears in a summary in the
training dataset, 0 otherwise. The feature set for
the logistic regression includes the frequency of
the word in the document cluster and the position
of the word instance and others.

4 Algorithms for solving MCKP

We explain how to solve MCKP. We first explain
the greedy algorithm applied to text summariza-
tion by Filatova and Hatzivassiloglou (2004). We
then introduce a greedy algorithm with perfor-
mance guarantee. This algorithm has never been
applied to text summarization. We next explain the
stack decoding used by Yih et al. (2007). We then
introduce an approximate method based on linear
relaxation and a randomized algorithm, followed
by the branch-and-bound method, which provides
the exact solution.

Although the algorithms used in this paper

themselves are not novel, this work is the first
to apply the greedy algorithm with performance
guarantee, the randomized algorithm, and the
branch-and-bound to solve the MCKP and auto-
matically create a summary. In addition, we con-
duct a comparative study on summarization algo-
rithms including the above.

There are some other well-known methods for
similar problems (e.g., the method of conditional
probability (Hromkovič, 2003)). A pipage ap-
proach (Ageev and Sviridenko, 2004) has been
proposed for MCKP, but we do not use this algo-
rithm, since it requires costly partial enumeration
and solutions to many linear relaxation problems.

As in the previous section, D denotes the set of
sentences {s1, · · · , s|D|}, and S denotes a subset
of D and thus represents a summary.

4.1 Greedy algorithm

Filatova and Hatzivassiloglou (2004) used a
greedy algorithm. In this section, Wl denotes the
sum of the weights of the words covered by sen-
tence sl. W ′

l denotes the sum of the weights of the
words covered by sl, but not by current summary
S. This algorithm sequentially selects sentence sl

with the largest W ′
l .

Greedy Algorithm
U ← D, S ← φ
while U 6= φ

si ← arg maxsl∈U W ′
l

if ci +
∑

sl∈S cl ≤ K then insert si into S

delete si in U
end while
output S.

This algorithm has performance guarantee
when the problem has a unit cost (i.e., when each
sentence has the same length), but no performance
guarantee for the general case where costs can
have different values.

4.2 Greedy algorithm with performance
guarantee

We describe a greedy algorithm with performance
guarantee proposed by Khuller et al. (1999), which
proves to achieve an approximation factor of (1 −
1/e)/2 for MCKP. This algorithm sequentially se-
lects sentence sl with the largest ratio W ′

l /cl. Af-
ter the sequential selection, the set of the selected
sentences is compared with the single-sentence
summary that has the largest value of the objec-
tive function. The larger of the two is going to
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be the output of this new greedy algorithm. Here
score(S) is

∑
j wjzj , the value of the objective

function for summary S.

Greedy Algorithm with Performance Guarantee
U ← D, S ← φ
while U 6= φ

si ← arg maxsl∈U W ′
l /cl

if ci +
∑

sl∈S cl ≤ K then insert si into S

delete si in U
end while
st ← arg maxsl

Wl

if score(S) ≥ Wt, output S,
otherwise, output {st}.
They also proposed an algorithm with a better per-
formance guarantee, which is not used in this pa-
per because it is costly due to its partial enumera-
tion.

4.3 Stack decoding
Stack decoding is a decoding method proposed by
Jelinek (1969). This algorithm requires K priority
queues, k-th of which is the queue for summaries
of length k. The objective function value is used
for the priority measure. A new solution (sum-
mary) is generated by adding a sentence to a cur-
rent solution in k-th queue and inserted into a suc-
ceeding queue.1 The “pop” operation in stack de-
coding pops the candidate summary with the least
priority in the queue. By restricting the size of
each queue to a certain constant stacksize, we can
obtain an approximate solution within a practical
computational time.

Stack Decoding
for k = 0 to K − 1

for each S ∈ queues[k]
for each sl ∈ D

insert sl into S
insert S into queues[k + cl]
pop if queue-size exceeds the stacksize

end for
end for

end for
return the best solution in queues[K]

4.4 Randomized algorithm
Khuller et al. (2006) proposed a randomized al-
gorithm (Hromkovič, 2003) for MCKP. In this al-
gorithm, a relaxation linear problem is generated
by replacing the integer constraints xi ∈ {0, 1}

1We should be aware that stack in a strict data-structure
sense is not used in the algorithm.

and zj ∈ {0, 1} with linear constraints xi ∈ [0, 1]
and zj ∈ [0, 1]. The optimal solution x∗

i to the re-
laxation problem is regarded as the probability of
sentence si being selected as a part of summary:
x∗

i = P (xi = 1). The algorithm randomly se-
lects sentence si with probability x∗

i , in order to
generate a summary. It has been proved that the
expected length of each randomly-generated sum-
mary is upper-bounded by K, and the expected
value of the objective function is at least the op-
timal value multiplied by (1−1/e) (Khuller et al.,
2006). This random generation of a summary is it-
erated many times, and the summaries that are not
longer than K are stored as candidate summaries.
Among those many candidate summaries, the one
with the highest value of the objective function is
going to be the output by this algorithm.

4.5 Branch-and-bound method

The branch-and-bound method (Hromkovič,
2003) is an efficient method for finding the exact
solutions to integer problems. Since MCKP is an
NP-hard problem, it cannot generally be solved in
polynomial time under a reasonable assumption
that NP 6=P. However, if the size of the problem
is limited, sometimes we can obtain the exact
solution within a practical time by means of the
branch-and-bound method.

4.6 Weakly-constrained algorithms

In evaluation with ROUGE (Lin, 2004), sum-
maries are truncated to a target length K. Yih et
al. (2007) used a stack decoding with a slight mod-
ification, which allows the last sentence in a sum-
mary to be truncated to a target length. Let us call
this modified algorithm the weakly-constrained
stack decoding. The weakly-constrained stack de-
coding can be implemented simply by replacing
queues[k + cl] with queues[min(k + cl,K)]. We
can also think of weakly-constrained versions of
the greedy and randomized algorithms introduced
before.

In this paper, we do not adopt weakly-
constrained algorithms, because although an ad-
vantage of the extractive summarization is the
guaranteed grammaticality at the sentence level,
the summaries with a truncated sentence will relin-
quish this advantage. We mentioned the weakly-
constrained algorithms in order to explain the re-
lation between the proposed model and the model
proposed by Yih et al. (2007).
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5 Experiments and Discussion

5.1 Experimental Setting

We conducted experiments on the dataset of
DUC’04 (2004) with settings of task 2, which is
a multi-document summarization task. 50 docu-
ment clusters, each of which consists of 10 doc-
uments, are given. One summary is to be gen-
erated for each cluster. Following the most rel-
evant previous method (Yih et al., 2007), we set
the target length to 100 words. DUC’03 (2003)
dataset was used as the training dataset for trained
weights. All the documents were segmented
into sentences using a script distributed by DUC.
Words are stemmed by Porter’s stemmer (Porter,
1980). ROUGE version 1.5.5 (Lin, 2004) was
used for evaluation.2 Among others, we focus
on ROUGE-1 in the discussion of the result, be-
cause ROUGE-1 has proved to have strong corre-
lation with human annotation (Lin, 2004; Lin and
Hovy, 2003). Wilcoxon signed rank test for paired
samples with significance level 0.05 was used for
the significance test of the difference in ROUGE-
1. The simplex method and the branch-and-bound
method implemented in GLPK (Makhorin, 2006)
were used to solve respectively linear and integer
programming problems.

The methods that are compared here are the
greedy algorithm (greedy), the greedy algorithm
with performance guarantee (g-greedy), the ran-
domized algorithm (rand), the stack decoding
(stack), and the branch-and-bound method (exact).

5.2 Results

The experimental results are shown in Tables 1
and 2. The columns 1, 2, and SU4 in the ta-
bles respectively refer to ROUGE-1, ROUGE-2,
and ROUGE-SU4. In addition, rand100k refers to
the randomized algorithm with 100,000 randomly-
generated solution candidates, and stack30 refers
to stack with the stacksize being 30. The right-
most column (‘time’) shows the average computa-
tional time required for generating a summary for
a document cluster.

Both with interpolated (Table 1) and trained
weights (Table 2), g-greedy significantly outper-
formed greedy. With interpolated weights, there
was no significant difference between exact and
g-greedy, and between exact and stack30. With
trained weights, there was no significant differ-

2With options -n 4 -m -2 4 -u -f A -p 0.5 -l 100 -t 0 -d -s.

Table 1: ROUGE of MCKP with interpolated
weights. Underlined ROUGE-1 scores are signif-
icantly different from the score of exact. Compu-
tational time was measured in seconds.

ROUGE time
1 2 SU4 (sec)

greedy 0.283 0.083 0.123 <0.01
g-greedy 0.294 0.080 0.121 0.01
rand100k 0.300 0.079 0.119 1.88
stack30 0.304 0.078 0.120 4.53
exact 0.305 0.081 0.121 4.04

Table 2: ROUGE of MCKP with trained weights.
Underlined ROUGE-1 scores are significantly dif-
ferent from the score of exact. Computational time
was measured in seconds.

ROUGE time
1 2 SU4 (sec)

greedy 0.283 0.080 0.121 < 0.01
g-greedy 0.310 0.077 0.118 0.01
rand100k 0.299 0.077 0.117 1.93
stack30 0.309 0.080 0.120 4.23
exact 0.307 0.078 0.119 4.56

ence between exact and the other algorithms ex-
cept for greedy and rand100k. The result sug-
gests that approximate fast algorithms can yield
results comparable to the exact method in terms of
ROUGE-1 score. We will later discuss the results
in terms of objective function values and search
errors in Table 4.

We should notice that stack outperformed ex-
act with interpolated weights. To examine this
counter-intuitive point, we changed the stack-
size of stack with interpolated weights (inter) and
trained weights (train) from 10 to 100 and ob-
tained Table 3. This table shows that the ROUGE-
1 value does not increase as the stacksize does;
ROUGE-1 for stack with interpolated weights
does not change much with the stacksize, and the
peak of ROUGE-1 for trained weights is at the
stacksize of 20. Since stack with a larger stack-
size selects a solution from a larger number of so-
lution candidates, this result is counter-intuitive in
the sense that non-global decoding by stack has a
favorable effect.

We also counted the number of the document
clusters for which an approximate algorithm with
interpolated weights yielded the same solution as
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Table 3: ROUGE of stack with various stacksizes
size 10 20 30 50 100
inter 0.304 0.304 0.304 0.304 0.303
train 0.308 0.310 0.309 0.308 0.307

Table 4: Search errors of MCKP with interpolated
weights

solution same search error
ROUGE (=) = ⇓ ⇑
greedy 0 1 35 14

g-greedy 0 5 26 19
rand100k 6 5 25 14
stack30 16 11 8 11

exact (‘same solution’ column in Table 4). If
the approximate algorithm failed to yield the ex-
act solution (‘search error’ column), we checked
whether the search error made ROUGE score
unchanged (‘=’ column), decreased (‘⇓’ col-
umn), or increased (‘⇑’ column) compared with
ROUGE score of exact. Table 4 shows that (i)
stack30 is a better optimizer than other approx-
imate algorithms, (ii) when the search error oc-
curs, stack30 increases ROUGE-1 more often than
it decreases ROUGE-1 compared with exact in
spite of stack30’s inaccurate solution, (iii) ap-
proximate algorithms sometimes achieved better
ROUGE scores. We observed similar phenomena
for trained weights, though we skip the details due
to space limitation.

These observations on stacksize and search er-
rors suggest that there exists another maximization
problem that is more suitable to summarization.
We should attempt to find the more suitable maxi-
mization problem and solve it using some existing
optimization and approximation techniques.

6 Augmentation of the model

On the basis of the experimental results in the pre-
vious section, we augment our text summarization
model. We first examine the current model more
carefully. As mentioned before, we used words
as conceptual units because defining those units
is hard and still under development by many re-
searchers. Suppose here that a more suitable unit
has more detailed information, such as “A did B
to C”. Then the event “A did D to E” is a com-
pletely different unit from “A did B to C”. How-

ever, when words are used as conceptual units, the
two events have a redundant part “A”. It can hap-
pen that a document is concise as a summary, but
redundant on word level. By being to some extent
redundant on the word level, a summary can have
sentences that are more relevant to the document
cluster, as both of the sentences above are relevant
to the document cluster if the document cluster is
about “A”. A summary with high cohesion and co-
herence would have redundancy to some extent. In
this section, we will use this conjecture to augment
our model.

6.1 Augmented summarization model
The objective function of MCKP consists of only
one term that corresponds to coverage. We add
another term

∑
i(

∑
j wjaij)xi that corresponds

to relevance to the topic of the document clus-
ter. We represent the relevance of sentence si by
the sum of the weights of words in the sentence
(
∑

j wjaij). We take the summation of the rele-
vance values of the selected sentences:

max. (1 − λ)
∑

j wjzj + λ
∑

i(
∑

j wjaij)xi

s.t.
∑

i cixi ≤ K; ∀j,
∑

i aijxi ≥ zj ;
∀i, xi ∈ {0, 1}; ∀j, zj ∈ {0, 1},

where λ is a constant. We call this model MCKP-
Rel, because the relevance to the document cluster
is taken into account.

We discuss the relation to the model proposed
by McDonald (2007), whose objective function
consists of a relevance term and a negative re-
dundancy term. We believe that MCKP-Rel is
more intuitive and suitable for summarization, be-
cause coverage in McDonald (2007) is measured
by subtracting the redundancy represented with
the sum of similarities between two sentences,
while MCKP-Rel focuses directly on coverage.
Suppose sentence s1 contains conceptual units A
and B, s2 contains A, and s3 contains B. The
proposed coverage-based methods can capture the
fact that s1 has the same information as {s2, s3},
while similarity-based methods only learn that s1

is somewhat similar to each of s2 and s3. We
also empirically showed that our method outper-
forms McDonald (2007)’s method in experiments
on DUC’02, where our method achieved 0.354
ROUGE-1 score with interpolated weights and
0.359 with trained weights when the optimal λ is
given, while McDonald (2007)’s method yielded
at most 0.348. However, this very point can also
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Table 5: ROUGE-1 of MCKP-Rel with inter-
polated weights. The values in the parentheses
are the corresponding values of λ predicted using
DUC’03 as development data. Underlined are the
values that are significantly different from the cor-
responding values of MCKP.

interpolated trained
greedy 0.287 (0.1) 0.288 (0.8)

g-greedy 0.307 (0.3) 0.320 (0.4)
rand100k 0.310 (0.1) 0.316 (0.5)
stack30 0.324 (0.1) 0.327 (0.3)
exact 0.320 (0.3) 0.329 (0.5)

exactopt 0.327 (0.2) 0.329 (0.5)

be a drawback of our method, since our method
premises that a sentence is represented as a set
of conceptual units. Similarity-based methods are
free from such a premise. Taking advantages of
both models is left for future work.

The decoding algorithms introduced before are
also applicable to MCKP-Rel, because MCKP-Rel
can be reduced to MCKP by adding, for each sen-
tence si, a dummy conceptual unit which exists
only in si and has the weight

∑
j wjaij .

6.2 Experiments of the augmented model

We ran greedy, g-greedy, rand100k, stack30
and exact to solve MCKP-Rel. We experimented
on DUC’04 with the same experimental setting as
the previous ones.

6.2.1 Experiments with the predicted λ

We determined the value of λ for each method us-
ing DUC’03 as development data. Specifically, we
conducted experiments on DUC’03 with different
λ (∈ {0.0, 0.1, · · · , 1.0}) and simply selected the
one with the highest ROUGE-1 value.

The results with these predicted λ are shown
in Table 5. Only ROUGE-1 values are shown.
Method exactopt is exact with the optimal λ, and
can be regarded as the upperbound of MCKP-Rel.
To evaluate the appropriateness of models without
regard to search quality, we first focused on exact
and found that MCKP-Rel outperformed MCKP
with exact. This means that MCKP-Rel model
is superior to MCKP model. Among the algo-
rithms, stack30 and exact performed well. All
methods except for greedy yielded significantly
better ROUGE values compared with the corre-
sponding results in Tables 1 and 2.

Figures 1 and 2 show ROUGE-1 for different
values of λ. The leftmost part (λ = 0.0) cor-
responds to MCKP. We can see from the figures,
that MCKP-Rel at the best λ always outperforms
MCKP, and that MCKP-Rel tends to degrade for
very large λ. This means that excessive weight on
relevance has an adversative effect on performance
and therefore the coverage is important.
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Figure 1: MCKP-Rel with interpolated weights
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Figure 2: MCKP-Rel with trained weights

6.2.2 Experiments with the optimal λ

In the experiments above, we found that λ =
0.2 is the optimal value for exact with interpo-
lated weights. We suppose that this λ gives the
best model, and examined search errors as we
did in Section 5.2. We obtained Table 6, which
shows that search errors in MCKP-Rel counter-
intuitively increase (⇑) ROUGE-1 score less of-
ten than MCKP did in Table 4. This was the case
also for trained weights. This result suggests that
MCKP-Rel is more suitable to text summariza-
tion than MCKP is. However, exact with trained
weights at the optimal λ(= 0.4) in Figure 2 was
outperformed by stack30. It suggests that there is
still room for future improvement in the model.
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Table 6: Search errors of MCKP-Rel with interpo-
lated weights (λ = 0.2).

solution same search error
ROUGE (=) = ⇓ ⇑
greedy 0 2 42 6

g-greedy 1 0 34 15
rand100k 3 6 33 8
stack30 14 13 14 10

6.2.3 Comparison with DUC results
In Section 6.2.1, we empirically showed that
the augmented model MCKP-Rel is better than
MCKP, whose optimization problem is used also
in one of the state-of-the-art methods by Yih et
al. (2007). It would also be beneficial to read-
ers to directly compare our method with DUC
results. For that purpose, we conducted experi-
ments with the cardinality constraint of DUC’04,
i.e., each summary should be 665 bytes long or
shorter. Other settings remained unchanged. We
compared the MCKP-Rel with peer65 (Conroy et
al., 2004) of DUC’04, which performed best in
terms of ROUGE-1 in the competition. Tables 7
and 8 are the ROUGE-1 scores, respectively eval-
uated without and with stopwords. The latter is the
official evaluation measure of DUC’04.

Table 7: ROUGE-1 of MCKP-Rel with byte con-
straints, evaluated without stopwords. Underlined
are the values significantly different from peer65.

interpolated train
greedy 0.289 (0.1) 0.284 (0.8)

g-greedy 0.297 (0.4) 0.323 (0.3)
rand100k 0.315 (0.2) 0.308 (0.4)
stack30 0.324 (0.2) 0.323 (0.3)
exact 0.325 (0.3) 0.326 (0.5)

exactopt 0.325 (0.3) 0.329 (0.4)
peer65 0.309

In Table 7, MCKP-Rel with stack30 and exact
yielded significantly better ROUGE-1 scores than
peer65. Although stack30 and exact yielded
greater ROUGE-1 scores than peer65 also in Ta-
ble 8, the difference was not significant. Only
greedy was significantly worse than peer65.3 One

3We actually succeeded in greatly improving the
ROUGE-1 value of MCKP-Rel evaluated with stopwords by
using all the words including stopwords as conceptual units.
However, we ignore those results in this paper, because it

Table 8: ROUGE-1 of MCKP-Rel with byte con-
straints, evaluated with stopwords. Underlined are
the values significantly different from peer65.

interpolated train
greedy 0.374 (0.1) 0.377 (0.4)

g-greedy 0.371 (0.0) 0.385 (0.2)
rand100k 0.373 (0.2) 0.366 (0.3)
stack30 0.384 (0.1) 0.386 (0.3)
exact 0.383 (0.3) 0.384 (0.4)

exactopt 0.385 (0.1) 0.384 (0.4)
peer65 0.382

possible explanation on the difference between Ta-
ble 7 and Table 8 is that peer65 would probably be
tuned to the evaluation with stopwords, since it is
the official setting of DUC’04.

From these results, we can conclude that the
MCKP-Rel is at least comparable to the best-
performing method, if we choose a powerful de-
coding method, such as stack and exact.

7 Conclusion

We regarded text summarization as MCKP. We
applied some algorithms to solve the MCKP and
conducted comparative experiments. We con-
ducted comparative experiments. We also aug-
mented our model to MCKP-Rel, which takes into
consideration the relevance to the document clus-
ter and performs well.

For future work, we will try other conceptual
units such as basic elements (Hovy et al., 2006)
proposed for summary evaluation. We also plan to
include compressed sentences into the set of can-
didate sentences to be selected as done by Yih et
al. (2007). We also plan to design other decod-
ing algorithms for text summarization (e.g., pipage
approach (Ageev and Sviridenko, 2004)). As dis-
cussed in Section 6.2, integration with similarity-
based models is worth consideration. We will in-
corporate techniques for arranging sentences into
an appropriate order, while the current work con-
cerns only selection. Deshpande et al. (2007) pro-
posed a selection and ordering technique, which is
applicable only to the unit cost case such as selec-
tion and ordering of words for title generation. We
plan to refine their model so that it can be applied
to general text summarization.

just trickily uses non-content words to increase the evalua-
tion measure, disregarding the actual quality of summaries.
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