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Abstract

A set of labeled classes of instances is ex-
tracted from text and linked into an exist-
ing conceptual hierarchy. Besides a signif-
icant increase in the coverage of the class
labels assigned to individual instances, the
resulting resource of labeled classes is
more effective than similar data derived
from the manually-created Wikipedia, in
the task of attribute extraction over con-
ceptual hierarchies.

1 Introduction

Motivation : Sharing basic intuitions and long-
term goals with other tasks within the area of Web-
based information extraction (Banko and Etzioni,
2008; Davidov and Rappoport, 2008), the task
of acquiring class attributes relies on unstructured
text available on the Web, as a data source for ex-
tracting generally-useful knowledge. In the case
of attribute extraction, the knowledge to be ex-
tracted consists in quantifiable properties of var-
ious classes (e.g.,top speed, body styleand gas
mileagefor the class ofsports cars).

Existing work on large-scale attribute extraction
focuses on producing ranked lists of attributes, for
target classes of instances available in the form
of flat sets of instances (e.g.,ferrari modena,
porsche carrera gt) sharing the same class label
(e.g.,sports cars). Independently of how the input
target classes are populated with instances (man-
ually (Paşca, 2007) or automatically (Paşca and
Van Durme, 2008)), and what type of textual data
source is used for extracting attributes (Web docu-
ments or query logs), the extraction of attributes
operates at a lexical rather than semantic level.
Indeed, the class labels of the target classes may

be not more than text surface strings (e.g.,sports
cars) or even artificially-created labels (e.g.,Car-
toonChar in lieu of cartoon characters). More-
over, although it is commonly accepted thatsports
carsare alsocars, which in turn are alsomotor ve-
hicles, the presence ofsports carsamong the input
target classes does not lead to any attributes being
extracted forcars andmotor vehicles, unless the
latter two class labels are also present explicitly
among the input target classes.

Contributions : The contributions of this paper
are threefold. First, we investigate the role of
classes of instances acquired automatically from
unstructured text, in the task of attribute extrac-
tion over concepts from existing conceptual hi-
erarchies. For this purpose, ranked lists of at-
tributes are acquired from query logs for various
concepts, after linking a set of more than 4,500
open-domain, automatically-acquired classes con-
taining a total of around 250,000 instances into
conceptual hierarchies available in WordNet (Fell-
baum, 1998). In comparison, previous work
extracts attributes for either manually-specified
classes of instances (Paşca, 2007), or for classes of
instances derived automatically but considered as
flat rather than hierarchical classes, and manually
associated to existing semantic concepts (Paşca
and Van Durme, 2008). Second, we expand the
set of classes of instances acquired from text, thus
increasing their usefulness in attribute extraction
in particular and information extraction in general.
To this effect, additional class labels (e.g.,mo-
tor vehicles) are identified for existing instances
(e.g.,ferrari modena) of existing class labels (e.g.,
sports cars), by exploiting IsA relations available
within the conceptual hierarchy (e.g.,sports cars
are alsomotor vehicles). Third, we show that
large-scale, automatically-derived classes of in-
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stances can have as much as, or even bigger, prac-
tical impact in open-domain information extrac-
tion tasks than similar data from large-scale, high-
coverage, manually-compiled resources. Specif-
ically, evaluation results indicate that the accu-
racy of the extracted lists of attributes is higher
by 8% at rank 10, 13% at rank 30 and 18% at
rank 50, when using the automatically-extracted
classes of instances rather than the comparatively
more numerous and a-priori more reliable, human-
generated, collaboratively-vetted classes of in-
stances available within Wikipedia (Remy, 2002).

2 Attribute Extraction over Hierarchies

Extraction of Flat Labeled Classes: Unstruc-
tured text from a combination of Web documents
and query logs represents the source for deriving
a flat set of labeled classes of instances, which are
necessary as input for attribute extraction experi-
ments. The labeled classes are acquired in three
stages:

1) extraction of a noisy pool of pairs of a
class label and a potential class instance, by ap-
plying a few Is-A extraction patterns, selected
from (Hearst, 1992), to Web documents:

(fruits, apple), (fruits, corn), (fruits, mango),
(fruits, orange), (foods, broccoli), (crops, lettuce),
(flowers, rose);

2) extraction of unlabeled clusters of distribu-
tionally similar phrases, by clustering vectors of
contextual features collected around the occur-
rences of the phrases within Web documents (Lin
and Pantel, 2002):

{lettuce, broccoli, corn, ..},
{carrot, mango, apple, orange, rose, ..};
3) merging and filtering of the raw pairs and un-

labeled clusters into smaller, more accurate sets of
class instances associated with class labels, in an
attempt to use unlabeled clusters to filter noisy raw
pairs instead of merely using clusters to general-
ize class labels across raw pairs (Paşca and Van
Durme, 2008):

fruits={apple, mango, orange, ..}.
To increase precision, the vocabulary of class

instances is confined to the set of queries that are
most frequently submitted to a general-purpose
Web search engine. After merging, the resulting
pairs of an instance and a class label are arranged
into instance sets (e.g.,{ferrari modena, porsche
carrera gt}), each associated with a class label
(e.g.,sports cars).

Linking Labeled Classes into Hierarchies:
Manually-constructed language resources such as
WordNet provide reliable, wide-coverage upper-
level conceptual hierarchies, by grouping together
phrases with the same meaning (e.g.,{analgesic,
painkiller, pain pill}) into sets of synonyms
(synsets), and organizing the synsets into concep-
tual hierarchies (e.g.,painkillersare a subconcept,
or a hyponym, ofdrugs) (Fellbaum, 1998). To de-
termine the points of insertion of automatically-
extracted labeled classes into hand-built Word-
Net hierarchies, the class labels are looked up in
WordNet using built-in morphological normaliza-
tion routines. When a class label (e.g.,age-related
diseases) is not found in WordNet, it is looked up
again after iteratively removing its leading words
(e.g.,related diseases, anddiseases) until a poten-
tial point of insertion is found where one or more
senses exist in WordNet for the class label.

An efficient heuristic for sense selection is to
uniformly choose the first (that is, most frequent)
sense of the class label in WordNet, as point of
insertion. Due to its simplicity, the heuristic is
bound to make errors whenever the correct sense is
not the first one, thus incorrectly linkingacademic
journals under the sense ofjournals as personal
diaries rather than periodicals, andactive volca-
noesunder the sense ofvolcanoesas fissures in
the earth, rather than mountains formed by vol-
canic material. Nevertheless, choosing the first
sense is attractive for three reasons. First, Word-
Net senses are often too fine-grained, making the
task of choosing the correct sense difficult even
for humans (Palmer et al., 2007). Second, choos-
ing the first sense from WordNet is sometimes
better than more intelligent disambiguation tech-
niques (Pradhan et al., 2007). Third, previous ex-
perimental results on linking Wikipedia classes to
WordNet concepts confirm that first-sense selec-
tion is more effective in practice than other tech-
niques (Suchanek et al., 2007). Thus, a class la-
bel and its associated instances are inserted under
the first WordNet sense available for the class la-
bel. For example,silicon valley companiesand its
associated instances (apple, hewlett packardetc.)
are inserted under the first of the 9 senses ofcom-
paniesin WordNet, which corresponds to compa-
nies as institutions created to conduct business.

In order to trade off coverage for higher preci-
sion, the heuristic can be restricted to link a class
label under the first WordNet sense available, as
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before, but only when no other senses are avail-
able at the point of insertion beyond the first sense.
With the modified heuristic, the class labelinternet
search enginesis linked under the first and only
sense ofsearch enginesin WordNet, butsilicon
valley companiesis no longer linked under the first
of the 9 senses ofcompanies.

Extraction of Attributes for Hierarchy Con-
cepts: The labeled classes of instances linked to
conceptual hierarchies constitute the input to the
acquisition of attributes of hierarchy concepts, by
mining a collection of Web search queries. The at-
tributes capture properties that are relevant to the
concept. The extraction of attributes exploits the
sets of class instances rather than the associated
class labels. More precisely, for each hierarchy
concept for which attributes must be extracted, the
instances associated to all class labels linked un-
der the subhierarchy rooted at the concept are col-
lected as a union set of instances, thus exploiting
the transitivity of IsA relations. This step is equiv-
alent to propagating the instances upwards, from
their class labels to higher-level WordNet concepts
under which the class labels are linked, up to the
root of the hierarchy. The resulting sets of in-
stances constitute the input to the acquisition of
attributes, which consists of four stages:

1) identification of a noisy pool of candidate at-
tributes, as remainders of queries that also con-
tain one of the class instances. In the case of the
conceptmovies, whose instances includejay and
silent bob strike backandkill bill , the query“cast
jay and silent bob strike back”produces the can-
didate attributecast;

2) construction of internal vector representa-
tions for each candidate attribute, based on queries
(e.g., “cast selection for kill bill”) that contain a
candidate attribute (cast) and a class instance (kill
bill ). These vectors consist of counts tied to the
frequency with which an attribute occurs with a
given “templatized” query. The latter replaces spe-
cific attributes and instances from the query with
common placeholders, e.g.,“X for Y” ;

3) construction of a reference internal vector
representation for a small set of seed attributes
provided as input. A reference vector is the nor-
malized sum of the individual vectors correspond-
ing to the seed attributes;

4) ranking of candidate attributes with respect
to each concept, by computing the similarity be-
tween their individual vector representations and

the reference vector of the seed attributes.
The result of the four stages, which are de-

scribed in more detail in (Paşca, 2007), is a ranked
list of attributes (e.g., [opening song, cast, charac-
ters,...]) for each concept (e.g.,movies).

3 Experimental Setting

Textual Data Sources: The acquisition of open-
domain knowledge relies on unstructured text
available within a combination of Web documents
maintained by, and search queries submitted to the
Google search engine. The textual data source
for extracting labeled classes of instances con-
sists of around 100 million documents in En-
glish, as available in a Web repository snapshot
from 2006. Conversely, the acquisition of open-
domain attributes relies on a random sample of
fully-anonymized queries in English submitted by
Web users in 2006. The sample contains about 50
million unique queries. Each query is accompa-
nied by its frequency of occurrence in the logs.
Other sources of similar data are available publicly
for research purposes (Gao et al., 2007).
Parameters for Extracting Labeled Classes:
When applied to the available document col-
lection, the method for extracting open-domain
classes of instances from unstructured text intro-
duced in (Paşca and Van Durme, 2008) produces
4,583 class labels associated to 258,699 unique
instances, for a total of 869,118 pairs of a class
instance and an associated class label. All col-
lected instances occur among to the top five mil-
lion queries with the highest frequency within the
input query logs. The data is further filtered by
discarding labeled classes with fewer than 25 in-
stances. The classes, examples of which are shown
in Table 1, are linked under conceptual hierarchies
available within WordNet 3.0, which contains a to-
tal of 117,798 English noun phrases grouped in
82,115 concepts (or synsets).
Parameters for Extracting Attributes : For each
target concept from the hierarchy, given the union
of all instances associated to class labels linked to
the target concept or one of its subconcepts, and
given a set of five seed attributes (e.g.,{quality,
speed, number of users, market share, reliabil-
ity} for search engines), the method described
in (Paşca, 2007) extracts ranked lists of attributes
from the input query logs. Internally, the rank-
ing of attributes uses Jensen-Shannon (Lee, 1999)
to compute similarity scores between internal rep-
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Class Label Class Size Class Instances
accounting systems 40 flexcube, myob, oracle financials, peachtree accounting, sybiz

antimicrobials 97 azithromycin, chloramphenicol, fusidic acid, quinolones, sulfa drugs
civilizations 197 ancient greece, chaldeans, etruscans, inca, indians, roman republic

elementary particles 33 axions, electrons, gravitons, leptons, muons, neutrons, positrons
farm animals 61 angora goats, burros, cattle, cows, donkeys, draft horses,mule, oxen

forages 27 alsike clover, rye grass, tall fescue, sericea lespedeza, birdsfoot trefoil
ideologies 179 egalitarianism, laissez-faire capitalism, participatory democracy

social events 436 academic conferences, afternoon teas, block parties, masquerade balls

Table 1: Examples of instances within labeled classes extracted from unstructured text, used as input for
attribute extraction experiments

resentations of seed attributes, on one hand, and
each of the newly acquired attributes, on the other
hand. Depending on the experiments, the amount
of supervision is thus limited to either 5 seed at-
tributes for each target concept, or to 5 seed at-
tributes (population, area, president, flag andcli-
mate) provided for only one of the extracted la-
beled classes, namelyeuropean countries.

Experimental Runs: The experiments consist of
four different runs, which correspond to different
choices for the source of conceptual hierarchies
and class instances linked to those hierarchies, as
illustrated in Table 2. In the first run, denoted N,
the class instances are those available within the
latest version of WordNet (3.0) itself via HasIn-
stance relations. The second run, Y, corresponds to
an extension of WordNet based on the manually-
compiled classes of instances from categories in
Wikipedia, as available in the 2007-w50-5 version
of Yago (Suchanek et al., 2007). Therefore, run Y
has the advantage of the fact that Wikipedia cat-
egories are a rich source of useful and accurate
knowledge (Nastase and Strube, 2008), which ex-
plains their previous use as a source for evaluation
gold standards (Blohm et al., 2007). The last two
runs from Table 2, Es and Ea, correspond to the
set of open-domain labeled classes acquired from
unstructured text. In both Es and Ea, class labels
are linked to the first sense available at the point
of insertion in WordNet. In Es, the class labels
are linked only if no other senses are available at
the point of insertion beyond the first sense, thus
promoting higher linkage precision at the expense
of fewer links. For example, since the phrasesim-
pressionists, sports carsandpaintershave 1, 1 and
4 senses available in WordNet respectively, the
class labelsfrench impressionistsandsports cars
are linked to the respective WordNet concepts,
whereas the class labelpainters is not. Compar-
atively, in Ea, the class labels are uniformly linked

Description Source of Hierarchy and Instances
N Y Es Ea

Include instances
√ √

- -
from WordNet?

Include instances -
√ √ √

from elsewhere?

#Instances (×103) 14.3 1,296.5 108.0 257.0
#Class labels 945 30,338 1,315 4,517

#Pairs of a class label 17.4 2,839.8 191.0 859.0
and instance (×103)

Table 2: Source of class instances for various ex-
perimental runs

to the first sense available in WordNet, regardless
of whether other senses may or may not be avail-
able. Thus, Ea trades off potentially lower preci-
sion for the benefit of higher linkage recall, and
results in more of the class labels and their asso-
ciated instances extracted from text to be linked to
WordNet than in the case of run Es.

4 Evaluation

4.1 Evaluation of Labeled Classes

Coverage of Class Instances: In run N, the in-
put class instances are the component phrases of
synsets encoded via HasInstance relations under
other synsets in WordNet. For example, the synset
corresponding to{search engine}, defined as“a
computer program that retrieves documents or
files or data from a database or from a computer
network”, has 3 HasInstance instances in Word-
Net, namelyAsk Jeeves, GoogleandYahoo. Ta-
ble 3 illustrates the coverage of the class instances
extracted from unstructured text and linked to
WordNet in runs Es and Ea respectively, relative to
all 945 WordNet synsets that contain HasInstance
instances. Note that the coverage scores are con-
servative assessments of actual coverage, since a
run (i.e., Es or Ea) receives credit for a WordNet
instance only if the run contains an instance that
is a full-length, case-insensitive match (e.g.,ask
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Concept HasInstance Instances within WordNet Cvg
Synset Offset Examples Count Es Ea

{existentialist, existentialist, 10071557 Albert Camus, Beauvoir, Camus, 8 1.00 1.00
philosopher, existential philosopher} Heidegger, Jean-Paul Sartre

{search engine} 06578654 Ask Jeeves, Google, Yahoo 3 1.00 1.00

{university} 04511002 Brown, Brown University, 44 0.61 0.77
Carnegie Mellon University

{continent} 09254614 Africa, Antarctic continent, Europe, 13 0.54 0.54
Eurasia, Gondwanaland, Laurasia

{microscopist} 10313872 Anton van Leeuwenhoek, Anton 6 0.00 0.00
van Leuwenhoek, Swammerdam

Average over all 945 WordNet concepts that have HasInstanceinstance(s) 18.71 0.21 0.40

Table 3: Coverage of class instances extracted from text andlinked to WordNet (used as input in runs Es

and Ea respectively), measured as the fraction of WordNet HasInstance instances (used as input in run
N) that occur among the class instances (Cvg=coverage)

jeeves) of the WordNet instance. On average, the
coverage scores for class instances of runs Es and
Ea relative to run N are 0.21 and 0.40 respectively,
as shown in the last row in Table 3. Comparatively,
the equivalent instance coverage for run Y, which
already includes most of the WordNet instances by
design (cf. (Suchanek et al., 2007)), is 0.59.

Relative Coverage of Class Labels: The link-
ing of class labels to WordNet concepts allows for
the expansion of the set of classes of instances ac-
quired from text, thus increasing its usefulness in
attribute extraction in particular and information
extraction in general. To this effect, additional
class labels are identified for existing instances,
in the form of component phrases of the synsets
that are superconcepts (or hypernyms, in WordNet
terminology) of the synset under which the class
label of the instance is linked in WordNet. For ex-
ample, since the class labelsports carsis linked
under the WordNet synset{sports car, sport car},
and the latter has the synset{motor vehicle, auto-
motive vehicle} among its hypernyms, the phrases
motor vehiclesand automotive vehiclesare col-
lected as new class labels1 and associated to ex-
isting instances ofsports carsfrom the original
set, such asferrari modena. No phrases are col-
lected from a selected set of 10 top-level Word-
Net synsets, including{entity} and{object, phys-
ical object}, which are deemed too general to be
useful as class labels. As illustrated in Table 4,
a collected pair of a new class label and an exist-
ing instance either does not have any impact, if the
pair already occurs in the original set of labeled

1For consistency with the original labeled classes, new
class labels collected from WordNet are converted from sin-
gular (e.g.,motor vehicle) to plural (e.g.,motor vehicles).

Already in original labeled classes:
painters alfred sisley

european countries austria
Expansion of existing labeled classes:

animals avocet
animals northern oriole

scientists howard gardner
scientists phil zimbardo

Creation of new labeled classes:
automotive vehicles acura nsx
automotive vehicles detomaso pantera

creative persons aaron copland
creative persons yoshitomo nara

Table 4: Examples of additional class labels col-
lected from WordNet, for existing instances of the
original labeled classes extracted from text

classes; or expands existing classes, if the class
label already occurs in the original set of labeled
classes but not in association to the instance; or
creates new classes of instances, if the class label
is not part of the original set. The latter two cases
aggregate to increases in coverage, relative to the
pairs from the original sets of labeled classes, of
53% for Es and 304% for Ea.

4.2 Evaluation of Attributes

Target Hierarchy Concepts: The performance of
attribute extraction is assessed over a set of 25 tar-
get concepts also used for evaluation in (Paşca,
2008). The set of 25 target concepts includes:Ac-
tor, Award, Battle, CelestialBody, ChemicalEle-
ment, City, Company, Country, Currency, Dig-
italCamera, Disease, Drug, FictionalCharacter,
Flower, Food, Holiday, Mountain, Movie, Nation-
alPark, Painter, Religion, River, SearchEngine,
Treaty, Wine. Each target concept represents ex-
actly one WordNet concept (synset). For instance,
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one of the target concepts, denotedCountry, cor-
responds to a synset situated at the internal off-
set 08544813 in WordNet 3.0, which groups to-
gether the synonymous phrasescountry, stateand
land and associates them with the definition“the
territory occupied by a nation”. The target con-
cepts exhibit variation with respect to their depths
within WordNet conceptual hierarchies, ranging
from a minimum of 5 (e.g., forFood) to a maxi-
mum of 11 (forFlower), with a mean depth of 8
over the 25 concepts.

Evaluation Procedure: The measurement of re-
call requires knowledge of the complete set of
items (in our case, attributes) to be extracted. Un-
fortunately, this number is often unavailable in in-
formation extraction tasks in general (Hasegawa
et al., 2004), and attribute extraction in particular.
Indeed, the manual enumeration of all attributes
of each target concept, to measure recall, is un-
feasible. Therefore, the evaluation focuses on the
assessment of attribute accuracy.

To remove any bias towards higher-ranked at-
tributes during the assessment of class attributes,
the ranked lists of attributes produced by each run
to be evaluated are sorted alphabetically into a
merged list. Each attribute of the merged list is
manually assigned a correctness label within its
respective class. In accordance with previously
introduced methodology, an attribute isvital if it
must be present in an ideal list of attributes of
the class (e.g.,side effectsfor Drug); okay if it
provides useful but non-essential information; and
wrong if it is incorrect (Paşca, 2007).

To compute the precision score over a ranked
list of attributes, the correctness labels are con-
verted to numeric values (vital to 1, okay to 0.5
andwrong to 0). Precision at some rankN in the
list is thus measured as the sum of the assigned
values of the firstN attributes, divided byN .

Attribute Accuracy : Figure 1 plots the precision
at ranks 1 through 50 for the ranked lists of at-
tributes extracted by various runs as an average
over the 25 target concepts, along two dimensions.
In the leftmost graphs, each of the 25 target con-
cepts counts towards the computation of precision
scores of a given run, regardless of whether any
attributes were extracted or not for the target con-
cept. In the rightmost graphs, only target con-
cepts for which some attributes were extracted are
included in the precision scores of a given run.
Thus, the leftmost graphs properly penalize a run
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Figure 1: Accuracy of the attributes extracted for
various runs, as an average over the entire set of
25 target concepts (left graphs) and as an average
over (variable) subsets of the 25 target concepts
for which some attributes were extracted in each
run (right graphs). Seed attributes are provided as
input for only one target concept (top graphs), or
for each target concept (bottom graphs)

for failing to extract any attributes for some tar-
get concepts, whereas the rightmost graphs do not
include any such penalties. On the other dimen-
sion, in the graphs at the top of Figure 1, seed at-
tributes are provided only for one class (namely,
european countries), for a total of 5 attributes over
all classes. In the graphs at the bottom of the fig-
ure, there are 5 seed attributes for each of the 25
target concepts in the graphs at the bottom of Fig-
ure 1, for a total of 5×25=125 attributes.

Several conclusions can be drawn after inspect-
ing the results. First, providing more supervi-
sion, in the form of seed attributes for all concepts
rather than for only one concept, translates into
higher attribute accuracy for all runs, as shown
by the graphs at the top vs. graphs at the bot-
tom of Figure 1. Second, in the leftmost graphs,
run N has the lowest precision scores, which is in
line with the relatively small number of instances
available in the original WordNet, as confirmed by
the counts from Table 2. Third, in the leftmost
graphs, the more restrictive run Es has lower pre-
cision scores across all ranks than its less restric-
tive counterpart Ea. In other words, adding more
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Class Precision
@10 @30 @50

N Y Es Ea N Y Es Ea N Y Es Ea

Actor 1.00 1.00 1.00 1.00 0.78 0.85 0.98 0.95 0.62 0.84 0.95 0.96
Award 0.00 0.50 0.95 0.85 0.00 0.35 0.80 0.73 0.00 0.29 0.70 0.69
Battle 0.80 0.90 0.00 0.90 0.76 0.80 0.00 0.80 0.74 0.72 0.00 0.73

CelestialBody 1.00 1.00 1.00 0.40 1.00 1.00 0.93 0.16 0.98 0.89 0.91 0.12
ChemicalElement 0.00 0.65 0.80 0.80 0.00 0.45 0.83 0.63 0.00 0.48 0.84 0.51

City 1.00 1.00 0.00 1.00 0.86 0.80 0.00 0.83 0.78 0.70 0.00 0.76
Company 0.00 1.00 0.90 1.00 0.00 0.90 0.93 0.88 0.00 0.77 0.82 0.80

Country 1.00 0.90 1.00 1.00 0.98 0.81 0.96 0.96 0.97 0.76 0.98 0.97
Currency 0.00 0.90 0.00 0.90 0.00 0.53 0.00 0.83 0.00 0.36 0.00 0.87

DigitalCamera 0.00 0.20 0.85 0.85 0.00 0.10 0.85 0.85 0.00 0.10 0.82 0.82
Disease 0.00 0.60 0.75 0.75 0.00 0.76 0.83 0.83 0.00 0.63 0.87 0.86

Drug 0.00 1.00 1.00 1.00 0.00 0.91 1.00 1.00 0.00 0.88 0.96 0.96
FictionalCharacter 0.80 0.70 0.00 0.55 0.65 0.48 0.00 0.38 0.42 0.41 0.00 0.34

Flower 0.00 0.65 0.00 0.70 0.00 0.26 0.00 0.55 0.00 0.16 0.00 0.53
Food 0.00 0.80 0.90 1.00 0.00 0.65 0.71 0.96 0.00 0.53 0.59 0.96

Holiday 0.00 0.60 0.80 0.80 0.00 0.50 0.48 0.48 0.00 0.37 0.41 0.41
Mountain 1.00 0.75 0.00 0.90 0.96 0.61 0.00 0.86 0.77 0.58 0.00 0.74

Movie 0.00 1.00 1.00 1.00 0.00 0.90 0.80 0.78 0.00 0.85 0.75 0.74
NationalPark 0.90 0.80 0.00 0.00 0.85 0.76 0.00 0.00 0.82 0.75 0.00 0.00

Painter 1.00 1.00 1.00 1.00 0.96 0.93 0.88 0.96 0.92 0.89 0.76 0.93
Religion 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.92 0.97

River 1.00 0.80 0.00 0.00 0.70 0.60 0.00 0.00 0.61 0.58 0.00 0.00
SearchEngine 0.40 0.00 0.25 0.25 0.23 0.00 0.35 0.35 0.32 0.00 0.43 0.43

Treaty 0.50 0.90 0.80 0.80 0.33 0.65 0.53 0.53 0.26 0.59 0.42 0.42
Wine 0.00 0.30 0.80 0.80 0.00 0.26 0.43 0.45 0.00 0.20 0.28 0.29

Average (over 25) 0.41 0.71 0.59 0.77 0.36 0.59 0.53 0.67 0.32 0.53 0.49 0.63
Average (over non-empty) 0.86 0.78 0.87 0.83 0.75 0.64 0.78 0.73 0.68 0.57 0.73 0.68

Table 5: Comparative accuracy of the attributes extracted by various runs, for individual concepts, as an
average over the entire set of 25 target concepts, and as an average over (variable) subsets of the 25 target
concepts for which some attributes were extracted in each run. Seed attributes are provided as input for
each target concept

restrictions may improve precision but hurts recall
of class instances, which results in lower average
precision scores for the attributes. Fourth, in the
leftmost graphs, the runs using the automatically-
extracted labeled classes (Es and Ea) not only out-
perform N, but one of them (Ea) also outperforms
Y. This is the most important result. It shows
that large-scale, automatically-derived classes of
instances can have as much as, or even bigger,
practical impact in attribute extraction than similar
data from larger (cf. Table 2), manually-compiled,
collaboratively created and maintained resources
such as Wikipedia. Concretely, in the graph on
the bottom left of Figure 1, the precision scores at
ranks 10, 30 and 50 are 0.71, 0.59 and 0.53 for run
Y, but 0.77, 0.67 and 0.63 for run Ea. The scores
correspond to attribute accuracy improvements of
8% at rank 10, 13% at rank 30, and 18% at rank
50 for run Ea over run Y. In fact, in the rightmost
graphs, that is, without taking into account target
concepts without any extracted attributes, the pre-
cision scores of both Es and Ea are higher than for

run Y across most, if not all, ranks from 1 through
50. In this case, it isE1 that produces the most
accurate attributes, in a task-based demonstration
that the more cautious linking of class labels to
WordNet concepts in Es vs. Ea leads to less cov-
erage but higher precision of the linked labeled
classes, which translates into extracted attributes
of higher accuracy but for fewer target concepts.

Analysis: The curves plotted in the two graphs
at the bottom of Figure 1 are computed as av-
erages over precision scores for individual target
concepts, which are shown in detail in Table 5.
Precision scores of 0.00 correspond to runs for
which no attributes are acquired from query logs,
because no instances are available in the subhier-
archy rooted at the respective concepts. For exam-
ple, precision scores for run N are 0.00 forAward
andDigitalCamera, among others concepts in Ta-
ble 5, due to the lack of any HasInstance instances
in WordNet for the respective concepts. The num-
ber of target concepts for which some attributes
are extracted is 12 for run N, 23 for Y, 17 for Es
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and 23 for Ea. Thus, both run N and run Es exhibit
rather binary behavior across individual classes, in
that they tend to either not retrieve any attributes or
retrieve attributes of relatively higher quality than
the other runs, causing Es and N to have the worst
precision scores in the last but one row of Table 5,
but the best precision scores in the last row of Ta-
ble 5.

The individual scores shown for Es and Ea in
Table 5 concur with the conclusion drawn earlier
from the graphs in Figure 1, that Run Es has lower
precision than Ea as an average over all target con-
cepts. Notable exceptions are the scores obtained
for the conceptsCelestialBodyandChemicalEle-
ment, where Es significantly outperforms Ea in Ta-
ble 5. This is due to confusing instances (e.g.,kobe
bryant) being associated with class labels (e.g.,
nba stars) that are incorrectly linked under the tar-
get concepts (e.g.,Star, which is a subconcept of
CelestialBodyin WordNet) in Ea, but not linked at
all and thus not causing confusion in Es.

Run Y performs better than Ea for 5 of the 25
individual concepts, includingNationalPark, for
which no instances ofnational parksor related
class labels are available in run Ea; andRiver, for
which relevant instances in the labeled classes in
Ea, but they are associated to the class labelriver
systems, which is incorrectly linked to the Word-
Net conceptsystemsrather than torivers. How-
ever, run Ea outperforms Y on 12 individual con-
cepts (e.g.,Award, DigitalCameraand Disease),
and also as an average over all classes (last two
rows in Table 5).

5 Related Work

Previous work on the automatic acquisition of at-
tributes for open-domain classes from text requires
the manual enumeration of sets of instances and
seed attributes, for each class for which attributes
are to be extracted. In contrast, the current method
operates on automatically-extracted classes. The
experiments reported in (Paşca and Van Durme,
2008) also exploit automatically-extracted classes
for the purpose of attribute extraction. However,
they operate on flat classes, as opposed to concepts
organized hierarchically. Furthermore, they re-
quire manual mappings from extracted class labels
into a selected set of evaluation classes (e.g., by
mappingriver systemsto River, football clubsto
SoccerClub, andparksto NationalPark), whereas
the current method maps class labels to concepts

automatically, by linking class labels and their as-
sociated instances to concepts. Manually-encoded
attributes available within Wikipedia articles are
used in (Wu and Weld, 2008) in order to derive
other attributes from unstructured text within Web
documents. Comparatively, the current method
extracts attributes from query logs rather than
Web documents, using labeled classes extracted
automatically rather than available in manually-
created resources, and requiring minimal supervi-
sion in the form of only 5 seed attributes provided
for only one concept, rather than thousands of at-
tributes available in millions of manually-created
Wikipedia articles. To our knowledge, there is
only one previous study (Paşca, 2008) that directly
addresses the problem of extracting attributes over
conceptual hierarchies. However, that study uses
labeled classes extracted from text with a different
method; extracts attributes for labeled classes and
propagates them upwards in the hierarchy, in order
to compute attributes of hierarchy concepts from
attributes of their subconcepts; and does not con-
sider resources similar to Wikipedia, as sources of
input labeled classes for attribute extraction.

6 Conclusion

This paper introduces an extraction framework
for exploiting labeled classes of instances to ac-
quire open-domain attributes from unstructured
text available within search query logs. The link-
ing of the labeled classes into existing conceptual
hierarchies allows for the extraction of attributes
over hierarchy concepts, without a-priori restric-
tions to specific domains of interest and with little
supervision. Experimental results show that the
extracted attributes are more accurate when us-
ing automatically-derived labeled classes, rather
than classes of instances derived from manually-
created resources such as Wikipedia. Current
work investigates the impact of the semantic dis-
tribution of the classes of instances on the overall
accuracy of attributes; the potential benefits of us-
ing more compact conceptual hierarchies (Snow
et al., 2007) on attribute accuracy; and the orga-
nization of labeled classes of instances into con-
ceptual hierarchies, as an alternative to inserting
them into existing conceptual hierarchies created
manually from scratch or automatically by filter-
ing manually-generated relations among classes
from Wikipedia (Ponzetto and Strube, 2007).
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