
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 549–557,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Bilingually Motivated Domain-Adapted Word Segmentation
for Statistical Machine Translation

Yanjun Ma Andy Way
National Centre for Language Technology

School of Computing
Dublin City University

Dublin 9, Ireland
{yma, away}@computing.dcu.ie

Abstract

We introduce a word segmentation ap-
proach to languages where word bound-
aries are not orthographically marked,
with application to Phrase-Based Statis-
tical Machine Translation (PB-SMT). In-
stead of using manually segmentedmono-
lingual domain-specific corpora to train
segmenters, we make use of bilingual cor-
pora and statistical word alignment tech-
niques. First of all, our approach is
adapted for the specific translation task at
hand by taking the corresponding source
(target) language into account. Secondly,
this approach does not rely on manu-
ally segmented training data so that it
can be automatically adapted for differ-
ent domains. We evaluate the perfor-
mance of our segmentation approach on
PB-SMT tasks from two domains and
demonstrate that our approach scores con-
sistently among the best results across dif-
ferent data conditions.

1 Introduction

State-of-the-art Statistical Machine Translation
(SMT) requires a certain amount of bilingual cor-
pora as training data in order to achieve compet-
itive results. The only assumption of most cur-
rent statistical models (Brown et al., 1993; Vogel
et al., 1996; Deng and Byrne, 2005) is that the
aligned sentences in such corpora should be seg-
mented into sequences of tokens that are meant to
be words. Therefore, for languages where word
boundaries are not orthographically marked, tools
which segment a sentence into words are required.
However, this segmentation is normally performed
as a preprocessing step using various word seg-
menters. Moreover, most of these segmenters are
usually trained on a manually segmented domain-

specific corpus, which is not adapted for the spe-
cific translation task at hand given that the manual
segmentation is performed in amonolingual con-
text. Consequently, such segmenters cannot pro-
duce consistently good results when used across
different domains.

A substantial amount of research has been car-
ried out to address the problems of word segmen-
tation. However, most research focuses on com-
bining various segmenters either in SMT training
or decoding (Dyer et al., 2008; Zhang et al., 2008).
One important yet often neglected fact is that the
optimal segmentation of the source (target) lan-
guage is dependent on the target (source) language
itself, its domain and its genre. Segmentation con-
sidered to be “good” from amonolingual point
of view may be unadapted for training alignment
models or PB-SMT decoding (Ma et al., 2007).
The resulting segmentation will consequently in-
fluence the performance of an SMT system.

In this paper, we propose a bilingually moti-
vated automatically domain-adapted approach for
SMT. We utilise a small bilingual corpus with
the relevant language segmented into basic writ-
ing units (e.g. characters for Chinese or kana for
Japanese). Our approach consists of using the
output from an existing statistical word aligner
to obtain a set of candidate “words”. We evalu-
ate the reliability of these candidates using sim-
ple metrics based on co-occurrence frequencies,
similar to those used in associative approaches to
word alignment (Melamed, 2000). We then mod-
ify the segmentation of the respective sentences
in the parallel corpus according to these candi-
date words; these modified sentences are then
given back to the word aligner, which produces
new alignments. We evaluate the validity of our
approach by measuring the influence of the seg-
mentation process on Chinese-to-English Machine
Translation (MT) tasks in two different domains.

The remainder of this paper is organised as fol-
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lows. In section 2, we study the influence of
word segmentation on PB-SMT across different
domains. Section 3 describes the working mecha-
nism of our bilingually motivated word segmenta-
tion approach. In section 4, we illustrate the adap-
tation of our decoder to this segmentation scheme.
The experiments conducted in two different do-
mains are reported in Section 5 and 6. We discuss
related work in section 7. Section 8 concludes and
gives avenues for future work.

2 The Influence of Word Segmentation
on SMT: A Pilot Investigation

The monolingual word segmentation step in tra-
ditional SMT systems has a substantial impact on
the performance of such systems. A considerable
amount of recent research has focused on the in-
fluence of word segmentation on SMT (Ma et al.,
2007; Chang et al., 2008; Zhang et al., 2008);
however, most explorations focused on the impact
of various segmentation guidelines and the mech-
anisms of the segmenters themselves. A current
research interest concerns consistency of perfor-
mance across different domains. From our ex-
periments, we show that monolingual segmenters
cannot produce consistently good results when ap-
plied to a new domain.

Our pilot investigation into the influence of
word segmentation on SMT involves three off-
the-shelf Chinese word segmenters including
ICTCLAS (ICT) Olympic version1, LDC seg-
menter2 and Stanford segmenter version 2006-05-
113. Both ICTCLAS and Stanford segmenters
utilise machine learning techniques, with Hidden
Markov Models for ICT (Zhang et al., 2003) and
conditional random fields for the Stanford seg-
menter (Tseng et al., 2005). Both segmenta-
tion models were trained on news domain data
with named entity recognition functionality. The
LDC segmenter is dictionary-based with word fre-
quency information to help disambiguation, both
of which are collected from data in the news do-
main. We used Chinese character-based and man-
ual segmentations as contrastive segmentations.
The experiments were carried out on a range of
data sizes from news and dialogue domains using
a state-of-the-art Phrase-Based SMT (PB-SMT)

1http://ictclas.org/index.html
2http://www.ldc.upenn.edu/Projects/

Chinese
3http://nlp.stanford.edu/software/

segmenter.shtml

system—Moses (Koehn et al., 2007). The perfor-
mance of PB-SMT system is measured with BLEU

score (Papineni et al., 2002).
We firstly measure the influence of word seg-

mentation on in-domain data with respect to the
three above mentioned segmenters, namely UN
data from the NIST 2006 evaluation campaign. As
can be seen from Table 1, using monolingual seg-
menters achieves consistently better SMT perfor-
mance than character-based segmentation (CS) on
different data sizes, which means character-based
segmentation is not good enough for this domain
where the vocabulary tends to be large. We can
also observe that the ICT and Stanford segmenter
consistently outperform the LDC segmenter. Even
using 3M sentence pairs for training, the differ-
ences between them are still statistically signifi-
cant (p < 0.05) using approximate randomisation
(Noreen, 1989) for significance testing.

40K 160K 640K 3M
CS 8.33 12.47 14.40 17.80
ICT 10.17 14.85 17.20 20.50
LDC 9.37 13.88 15.86 19.59
Stanford 10.45 15.26 16.94 20.64

Table 1: Word segmentation on NIST data sets

However, when tested on out-of-domain data,
i.e. IWSLT data in the dialogue domain, the re-
sults seem to be more difficult to predict. We
trained the system on different sizes of data and
evaluated the system on two test sets: IWSLT
2006 and 2007. From Table 2, we can see that on
the IWSLT 2006 test sets, LDC achieves consis-
tently good results and the Stanford segmenter is
the worst.4 Furthermore, the character-based seg-
mentation also achieves competitive results. On
IWSLT 2007, all monolingual segmenters outper-
form character-based segmentation and the LDC
segmenter is only slightly better than the other seg-
menters.

From the experiments reported above, we
can reach the following conclusions. First of
all, character-based segmentation cannot achieve
state-of-the-art results in most experimental SMT
settings. This also motivates the necessity to
work on better segmentation strategies. Second,
monolingual segmenters cannot achieve consis-

4Interestingly, the developers themselves also note the
sensitivity of the Stanford segmenter and incorporate exter-
nal lexical information to address such problems (Chang et
al., 2008).
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40K 160K
IWSLT06 CS 19.31 23.06

Manual 19.94 -
ICT 20.34 23.36
LDC 20.37 24.34
Stanford 18.25 21.40

IWSLT07 CS 29.59 30.25
Manual 33.85 -
ICT 31.18 33.38
LDC 31.74 33.44
Stanford 30.97 33.41

Table 2: Word segmentation on IWSLT data sets

tently good results when used in another domain.
In the following sections, we propose a bilingually
motivated segmentation approach which can be
automatically derived from a small representative
data set and the experiments show that we can con-
sistently obtain state-of-the-art results in different
domains.

3 Bilingually Motivated Word
Segmentation

3.1 Notation

While in this paper, we focus on Chinese–English,
the method proposed is applicable to other lan-
guage pairs. The notation, however, assumes
Chinese–English MT. Given a Chinese sentence
cJ
1 consisting ofJ characters{c1, . . . , cJ} and

an English sentenceeI
1 consisting of I words

{e1, . . . , eI}, AC→E will denote a Chinese-to-
English word alignment betweencJ

1 andeI
1. Since

we are primarily interested in1-to-n alignments,
AC→E can be represented as a set of pairsai =
〈Ci, ei〉 denoting a link between one single En-
glish wordei and a few Chinese charactersCi.The
setCi is empty if the wordei is not aligned to any
character incJ

1 .

3.2 Candidate Extraction

In the following, we assume the availability of an
automatic word aligner that can output alignments
AC→E for any sentence pair(cJ

1 , eI
1) in a paral-

lel corpus. We also assume thatAC→E contain
1-to-n alignments. Our method for Chinese word
segmentation is as follows: whenever a single En-
glish word is aligned with several consecutive Chi-
nese characters, they are considered candidates for
grouping. Formally, given an alignmentAC→E

betweencJ
1 and eI

1, if ai = 〈Ci, ei〉 ∈ AC→E,

with Ci = {ci1 , . . . , cim} and∀k ∈ J1,m − 1K,
ik+1 − ik = 1, then the alignmentai betweenei

and the sequence of wordsCi is considered a can-
didate word. Some examples of such1-to-n align-
ments between Chinese and English we can derive
automatically are displayed in Figure 1.5

Figure 1: Example of1-to-n word alignments be-
tween English words and Chinese characters

3.3 Candidate Reliability Estimation

Of course, the process described above is error-
prone, especially on a small amount of training
data. If we want to change the input segmentation
to give to the word aligner, we need to make sure
that we are not making harmful modifications. We
thus additionally evaluate the reliability of the can-
didates we extract and filter them before inclusion
in our bilingual dictionary. To perform this filter-
ing, we use two simple statistical measures. In the
following, ai = 〈Ci, ei〉 denotes a candidate.

The first measure we consider is co-occurrence
frequency (COOC(Ci, ei)), i.e. the number of
timesCi andei co-occur in the bilingual corpus.
This very simple measure is frequently used in as-
sociative approaches (Melamed, 2000). The sec-
ond measure is the alignment confidence (Ma et
al., 2007), defined as

AC(ai) =
C(ai)

COOC(Ci, ei)
,

where C(ai) denotes the number of alignments
proposed by the word aligner that are identical to
ai. In other words,AC(ai) measures how often
the aligner alignsCi andei when they co-occur.
We also impose that|Ci | ≤ k, wherek is a fixed
integer that may depend on the language pair (be-
tween 3 and 5 in practice). The rationale behind
this is that it is very rare to get reliable alignments
between one word andk consecutive words when
k is high.

5While in this paper we are primarily concerned with lan-
guages where the word boundaries are not orthographically
marked, this approach, however, can also be applied to lan-
guages marked with word boundaries to constructbilingually
motivated “words”.
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The candidates are included in our bilingual dic-
tionary if and only if their measures are above
some fixed thresholdstCOOC andtAC , which al-
low for the control of the size of the dictionary and
the quality of its contents. Some other measures
(including the Dice coefficient) could be consid-
ered; however, it has to be noted that we are more
interested here in the filtering than in the discov-
ery of alignmentsper se, since our method builds
upon an existing aligner. Moreover, we will see
that even these simple measures can lead to an im-
provement in the alignment process in an MT con-
text.

3.4 Bootstrapped word segmentation

Once the candidates are extracted, we perform
word segmentation using the bilingual dictionar-
ies constructed using the method described above;
this provides us with an updated training corpus,
in which some character sequences have been re-
placed by a single token. This update is totally
naive: if an entryai = 〈Ci, ei〉 is present in the
dictionary and matches one sentence pair(cJ

1 , eI
1)

(i.e.Ci andei are respectively contained incJ
1 and

eI
1), then we replace the sequence of charactersCi

with a single token which becomes a new lexical
unit.6 Note that this replacement occurs even if
no alignment was found betweenCi andei for the
pair (cJ

1 , eI
1). This is motivated by the fact that the

filtering described above is quite conservative; we
trust the entryai to be correct.

This process can be applied several times: once
we have grouped some characters together, they
become the new basic unit to consider, and we can
re-run the same method to get additional group-
ings. However, we have not seen in practice much
benefit from running it more than twice (few new
candidates are extracted after two iterations).

4 Word Lattice Decoding

4.1 Word Lattices

In the decoding stage, the various segmentation
alternatives can be encoded into a compact rep-
resentation of word lattices. A word latticeG =
〈V,E〉 is a directed acyclic graph that formally is
a weighted finite state automaton. In the case of
word segmentation, each edge is a candidate word
associated with its weights. A straightforward es-

6In case of overlap between several groups of words to
replace, we select the one with the highest confidence (ac-
cording totAC).

timation of the weights is to distribute the proba-
bility mass for each node uniformly to each out-
going edge. The single node having no outgoing
edges is designated the “end node”. An example
of word lattices for a Chinese sentence is shown in
Figure 2.

4.2 Word Lattice Generation

Previous research on generating word lattices re-
lies on multiplemonolingual segmenters (Xu et
al., 2005; Dyer et al., 2008). One advantage of
our approach is that the bilingually motivated seg-
mentation process facilitates word lattice genera-
tion without relying on other segmenters. As de-
scribed in section 3.4, the update of the training
corpus based on the constructedbilingual dictio-
nary requires that the sentence pair meets the bilin-
gual constraints. Such a segmentation process in
the training stage facilitates the utilisation of word
lattice decoding.

4.3 Phrase-Based Word Lattice Decoding

Given a Chinese input sentencecJ
1 consisting ofJ

characters, the traditional approach is to determine
the best word segmentation and perform decoding
afterwards. In such a case, we first seek a single
best segmentation:

f̂K
1 = arg max

fK
1

,K

{Pr(fK
1 |cJ

1 )}

Then in the decoding stage, we seek:

êI
1 = arg max

eI
1
,I

{Pr(eI
1|f̂

K
1 )}

In such a scenario, some segmentations which are
potentially optimal for the translation may be lost.
This motivates the need for word lattice decoding.
The search process can be rewritten as:

êI
1 = arg max

eI
1
,I

{max
fK
1

,K
Pr(eI

1, f
K
1 |cJ

1 )}

= arg max
eI
1
,I

{max
fK
1

,K
Pr(eI

1)Pr(fK
1 |eI

1, c
J
1 )}

= arg max
eI
1
,I

{max
fK
1

,K
Pr(eI

1)Pr(fK
1 |eI

1)Pr(fK
1 |cJ

1 )}

Given the fact that the number of segmentations
fK
1 grows exponentially with respect to the num-

ber of charactersK, it is impractical to firstly enu-
merate all possiblefK

1 and then to decode. How-
ever, it is possible to enumerate all the alternative
segmentations for a substring ofcJ

1 , making the
utilisation of word lattices tractable in PB-SMT.
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Figure 2: Example of a word lattice

5 Experimental Setting

5.1 Evaluation

The intrinsic quality of word segmentation is nor-
mally evaluated against a manually segmented
gold-standard corpus using F-score. While this
approach can give a direct evaluation of the qual-
ity of the word segmentation, it is faced with sev-
eral limitations. First of all, it is really difficult to
build a reliable and objective gold-standard given
the fact that there is only 70% agreement between
native speakers on this task (Sproat et al., 1996).
Second, an increase in F-score does not necessar-
ily imply an improvement in translation quality. It
has been shown that F-score has a very weak cor-
relation with SMT translation quality in terms of
BLEU score (Zhang et al., 2008). Consequently,
we chose to extrinsically evaluate the performance
of our approach via the Chinese–English transla-
tion task, i.e. we measure the influence of the
segmentation process on the final translation out-
put. The quality of the translation output is mainly
evaluated using BLEU, with NIST (Doddington,
2002) and METEOR (Banerjee and Lavie, 2005)
as complementary metrics.

5.2 Data

The data we used in our experiments are from
two different domains, namely news and travel di-
alogues. For the news domain, we trained our
system using a portion of UN data for NIST
2006 evaluation campaign. The system was de-
veloped on LDC Multiple-Translation Chinese
(MTC) Corpus and tested on MTC part 2, which
was also used as a test set for NIST 2002 evalua-
tion campaign.

For the dialogue data, we used the Chinese–
English datasets provided within the IWSLT 2007
evaluation campaign. Specifically, we used the
standard training data, to which we added devset1
and devset2. Devset4 was used to tune the param-
eters and the performance of the system was tested

on both IWSLT 2006 and 2007 test sets. We used
both test sets because they are quite different in
terms of sentence length and vocabulary size. To
test the scalability of our approach, we used HIT
corpus provided within IWSLT 2008 evaluation
campaign. The various statistics for the corpora
are shown in Table 3.

5.3 Baseline System

We conducted experiments using different seg-
menters with a standard log-linear PB-SMT
model: GIZA ++ implementation of IBM word
alignment model 4 (Och and Ney, 2003), the
refinement and phrase-extraction heuristics de-
scribed in (Koehn et al., 2003), minimum-error-
rate training (Och, 2003), a 5-gram language
model with Kneser-Ney smoothing trained with
SRILM (Stolcke, 2002) on the English side of the
training data, and Moses (Koehn et al., 2007; Dyer
et al., 2008) to translate both single best segmen-
tation and word lattices.

6 Experiments

6.1 Results

The initial word alignments are obtained using
the baseline configuration described above by seg-
menting the Chinese sentences into characters.
From these we build a bilingual1-to-n dictionary,
and the training corpus is updated by grouping the
characters in the dictionaries into a single word,
using the method presented in section 3.4. As pre-
viously mentioned, this process can be repeated
several times. We then extract aligned phrases us-
ing the same procedure as for the baseline sys-
tem; the only difference is the basic unit we are
considering. Once the phrases are extracted, we
perform the estimation of weights for the fea-
tures of the log-linear model. We then use a
simple dictionary-based maximum matching algo-
rithm to obtain a single-best segmentation for the
Chinese sentences in the development set so that
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Train Dev. Eval.
Zh En Zh En Zh En

Dialogue Sentences 40,958 489 (7 ref.) 489 (6 ref.)/489 (7 ref.)
Running words 488,303 385,065 8,141 46,904 8,793/4,377 51,500/23,181
Vocabulary size 2,742 9,718 835 1,786 936/772 2,016/1,339

News Sentences 40,000 993 (9 ref.) 878 (4 ref.)
Running words 1,412,395 956,023 41,466 267,222 38,700 105,530
Vocabulary size 6057 20,068 1,983 10,665 1,907 7,388

Table 3: Corpus statistics for Chinese (Zh) character segmentation and English (En)

minimum-error-rate training can be performed.7

Finally, in the decoding stage, we use the same
segmentation algorithm to obtain the single-best
segmentation on the test set, and word lattices can
also be generated using the bilingual dictionary.
The various parameters of the method (k, tCOOC ,
tAC , cf. section 3) were optimised on the develop-
ment set. One iteration of character grouping on
the NIST task was found to be enough; the optimal
set of values was found to bek = 3, tAC = 0.0
andtCOOC = 0, meaning that all the entries in the
bilingually dictionary are kept. On IWSLT data,
we found that two iterations of character grouping
were needed: the optimal set of values was found
to bek = 3, tAC = 0.3, tCOOC = 8 for the first
iteration, andtAC = 0.2, tCOOC = 15 for the
second.

As can be seen from Table 4, our bilingually
motivated segmenter (BS) achieved statistically
significantly better results than character-based
segmentation when enhanced with word lattice de-
coding.8 Compared to the best in-domain seg-
menter, namely the Stanford segmenter on this
particular task, our approach is inferior accord-
ing to BLEU and NIST. We firstly attribute this
to the small amount of training data, from which
a high quality bilingual dictionary cannot be ob-
tained due to data sparseness problems. We also
attribute this to the vast amount of named entity
terms in the test sets, which is extremely difficult
for our approach.9 We expect to see better re-
sults when a larger amount of data is used and the
segmenter is enhanced with a named entity recog-
niser. On IWSLT data (cf. Tables 5 and 6), our

7In order to save computational time, we used the same
set of parameters obtained above to decode both the single-
best segmentation and the word lattice.

8Note the BLEU scores are particularly low due to the
number of references used (4 references), in addition to the
small amount of training data available.

9As we previously point out, both ICT and Stanford seg-
menters are equipped with named entity recognition func-
tionality. This may risk causing data sparseness problems on
small training data. However, this is beneficial in the transla-
tion process compared to character-based segmentation.

approach yielded a consistently good performance
on both translation tasks compared to the best in-
domain segmenter—the LDC segmenter. More-
over, the good performance is confirmed by all
three evaluation measures.

BLEU NIST M ETEOR

CS 8.43 4.6272 0.3778
Stanford 10.45 5.0675 0.3699
BS-SingleBest 7.98 4.4374 0.3510
BS-WordLattice 9.04 4.6667 0.3834

Table 4: BS on NIST task

BLEU NIST M ETEOR

CS 0.1931 6.1816 0.4998
LDC 0.2037 6.2089 0.4984
BS-SingleBest 0.1865 5.7816 0.4602
BS-WordLattice 0.2041 6.2874 0.5124

Table 5: BS on IWSLT 2006 task

BLEU NIST M ETEOR

CS 0.2959 6.1216 0.5216
LDC 0.3174 6.2464 0.5403
BS-SingleBest 0.3023 6.0476 0.5125
BS-WordLattice 0.3171 6.3518 0.5603

Table 6: BS on IWSLT 2007 task

6.2 Parameter Search Graph

The reliability estimation process is computation-
ally intensive. However, this can be easily paral-
lelised. From our experiments, we observed that
the translation results are very sensitive to the pa-
rameters and this search process is essential to
achieve good results. Figure 3 is the search graph
on the IWSLT data set in the first iteration step.
From this graph, we can see that filtering of the
bilingual dictionary is essential in order to achieve
better performance.
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Figure 3: The search graph on development set of
IWSLT task

6.3 Vocabulary Size

Our bilingually motivated segmentation approach
has to overcome another challenge in order to
produce competitive results, i.e. data sparseness.
Given that our segmentation is based on bilingual
dictionaries, the segmentation process can signif-
icantly increase the size of the vocabulary, which
could potentially lead to a data sparseness prob-
lem when the size of the training data is small. Ta-
bles 7 and 8 list the statistics of the Chinese side
of the training data, including the total vocabulary
(Voc), number of character vocabulary (Char.voc)
in Voc, and the running words (Run.words) when
different word segmentations were used. From Ta-
ble 7, we can see that our approach suffered from
data sparseness on the NIST task, i.e. a large
vocabulary was generated, of which a consider-
able amount of characters still remain as separate
words. On the IWSLT task, since the dictionary
generation process is more conservative, we main-
tained a reasonable vocabulary size, which con-
tributed to the final good performance.

Voc. Char.voc Run. Words
CS 6,057 6,057 1,412,395
ICT 16,775 1,703 870,181
LDC 16,100 2,106 881,861
Stanford 22,433 1,701 880,301
BS 18,111 2,803 927,182

Table 7: Vocabulary size of NIST task (40K)

6.4 Scalability

The experimental results reported above are based
on a small training corpus containing roughly
40,000 sentence pairs. We are particularly inter-
ested in the performance of our segmentation ap-

Voc. Char.voc Run. Words
CS 2,742 2,742 488,303
ICT 11,441 1,629 358,504
LDC 9,293 1,963 364,253
Stanford 18,676 981 348,251
BS 3,828 2,740 402,845

Table 8: Vocabulary size of IWSLT task (40K)

proach when it is scaled up to larger amounts of
data. Given that the optimisation of the bilingual
dictionary is computationally intensive, it is im-
practical to directly extract candidate words and
estimate their reliability. As an alternative, we can
use the obtained bilingual dictionary optimised on
the small corpus to perform segmentation on the
larger corpus. We expect competitive results when
the small corpus is a representative sample of the
larger corpus and large enough to produce reliable
bilingual dictionaries without suffering severely
from data sparseness.

As we can see from Table 9, our segmenta-
tion approach achieved consistent results on both
IWSLT 2006 and 2007 test sets. On the NIST task
(cf. Table 10), our approach outperforms the basic
character-based segmentation; however, it is still
inferior compared to the other in-domain mono-
lingual segmenters due to the low quality of the
bilingual dictionary induced (cf. section 6.1).

IWSLT06 IWSLT07
CS 23.06 30.25
ICT 23.36 33.38
LDC 24.34 33.44
Stanford 21.40 33.41
BS-SingleBest 22.45 30.76
BS-WordLattice 24.18 32.99

Table 9: Scale-up to 160K on IWSLT data sets

160K 640K
CS 12.47 14.40
ICT 14.85 17.20
LDC 13.88 15.86
Stanford 15.26 16.94
BS-SingleBest 12.58 14.11
BS-WordLattice 13.74 15.33

Table 10: Scalability of BS on NIST task
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6.5 Using different word aligners

The above experiments rely on GIZA ++ to per-
form word alignment. We next show that our ap-
proach is not dependent on the word aligner given
that we have a conservative reliability estimation
procedure. Table 11 shows the results obtained on
the IWSLT data set using the MTTK alignment
tool (Deng and Byrne, 2005; Deng and Byrne,
2006).

IWSLT06 IWSLT07
CS 21.04 31.41
ICT 20.48 31.11
LDC 20.79 30.51
Stanford 17.84 29.35
BS-SingleBest 19.22 29.75
BS-WordLattice 21.76 31.75

Table 11: BS on IWSLT data sets using MTTK

7 Related Work

(Xu et al., 2004) were the first to question the use
of word segmentation in SMT and showed that the
segmentation proposed by word alignments can be
used in SMT to achieve competitive results com-
pared to using monolingual segmenters. Our ap-
proach differs from theirs in two aspects. Firstly,
(Xu et al., 2004) use word aligners to reconstruct
a (monolingual) Chinese dictionary and reuse this
dictionary to segment Chinese sentences as other
monolingual segmenters. Our approach features
the use of a bilingual dictionary and conducts a
different segmentation. In addition, we add a pro-
cess which optimises the bilingual dictionary ac-
cording to translation quality. (Ma et al., 2007)
proposed an approach to improve word alignment
by optimising the segmentation of both source and
target languages. However, the reported experi-
ments still rely on some monolingual segmenters
and the issue of scalability is not addressed. Our
research focuses on avoiding the use of monolin-
gual segmenters in order to improve the robustness
of segmenters across different domains.

(Xu et al., 2005) were the first to propose the
use of word lattice decoding in PB-SMT, in order
to address the problems of segmentation. (Dyer
et al., 2008) extended this approach to hierarchi-
cal SMT systems and other language pairs. How-
ever, both of these methods require some mono-
lingual segmentation in order to generate word lat-
tices. Our approach facilitates word lattice gener-

ation given that our segmentation is driven by the
bilingual dictionary.

8 Conclusions and Future Work

In this paper, we introduced a bilingually moti-
vated word segmentation approach for SMT. The
assumption behind this motivation is that the lan-
guage to be segmented can be tokenised into ba-
sic writing units. Firstly, we extract1-to-n word
alignments using statistical word aligners to con-
struct a bilingual dictionary in which each entry
indicates a correspondence between one English
word andn Chinese characters. This dictionary is
then filtered using a few simple association mea-
sures and the final bilingual dictionary is deployed
for word segmentation. To overcome the segmen-
tation problem in the decoding stage, we deployed
word lattice decoding.

We evaluated our approach on translation tasks
from two different domains and demonstrate that
our approach is (i) not as sensitive as monolingual
segmenters, and (ii) that the SMT system using
our word segmentation can achieve state-of-the-art
performance. Moreover, our approach can easily
be scaled up to larger data sets and achieves com-
petitive results if the small data used is a represen-
tative sample.

As for future work, firstly we plan to integrate
some named entity recognisers into our approach.
We also plan to try our approach in more do-
mains and on other language pairs (e.g. Japanese–
English). Finally, we intend to explore the corre-
lation between vocabulary size and the amount of
training data needed in order to achieve good re-
sults using our approach.
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