
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 478–486,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Treebank Grammar Techniques for Non-Projective Dependency Parsing

Marco Kuhlmann
Uppsala University
Uppsala, Sweden

marco.kuhlmann@lingfil.uu.se

Giorgio Satta
University of Padua

Padova, Italy
satta@dei.unipd.it

Abstract

An open problem in dependency parsing
is the accurate and efficient treatment of
non-projective structures. We propose to
attack this problem using chart-parsing
algorithms developed for mildly context-
sensitive grammar formalisms. In this pa-
per, we provide two key tools for this ap-
proach. First, we show how to reduce non-
projective dependency parsing to parsing
with Linear Context-Free Rewriting Sys-
tems (LCFRS), by presenting a technique
for extracting LCFRS from dependency
treebanks. For efficient parsing, the ex-
tracted grammars need to be transformed
in order to minimize the number of nonter-
minal symbols per production. Our second
contribution is an algorithm that computes
this transformation for a large, empirically
relevant class of grammars.

1 Introduction

Dependency parsing is the task of predicting the
most probable dependency structure for a given
sentence. One of the key choices in dependency
parsing is about the class of candidate structures
for this prediction. Many parsers are confined to
projective structures, in which the yield of a syn-
tactic head is required to be continuous. A major
benefit of this choice is computational efficiency:
an exhaustive search over all projective structures
can be done in cubic, greedy parsing in linear time
(Eisner, 1996; Nivre, 2003). A major drawback of
the restriction to projective dependency structures
is a potential loss in accuracy. For example, around
23% of the analyses in the Prague Dependency
Treebank of Czech (Hajič et al., 2001) are non-
projective, and for German and Dutch treebanks,
the proportion of non-projective structures is even
higher (Havelka, 2007).

The problem of non-projective dependency pars-
ing under the joint requirement of accuracy and
efficiency has only recently been addressed in the
literature. Some authors propose to solve it by tech-
niques for recovering non-projectivity from the out-
put of a projective parser in a post-processing step
(Hall and Novák, 2005; Nivre and Nilsson, 2005),
others extend projective parsers by heuristics that
allow at least certain non-projective constructions
to be parsed (Attardi, 2006; Nivre, 2007). McDon-
ald et al. (2005) formulate dependency parsing as
the search for the most probable spanning tree over
the full set of all possible dependencies. However,
this approach is limited to probability models with
strong independence assumptions. Exhaustive non-
projective dependency parsing with more powerful
models is intractable (McDonald and Satta, 2007),
and one has to resort to approximation algorithms
(McDonald and Pereira, 2006).

In this paper, we propose to attack non-project-
ive dependency parsing in a principled way, us-
ing polynomial chart-parsing algorithms developed
for mildly context-sensitive grammar formalisms.
This proposal is motivated by the observation that
most dependency structures required for the ana-
lysis of natural language are very nearly projective,
differing only minimally from the best projective
approximation (Kuhlmann and Nivre, 2006), and
by the close link between such ‘mildly non-project-
ive’ dependency structures on the one hand, and
grammar formalisms with mildly context-sensitive
generative capacity on the other (Kuhlmann and
Möhl, 2007). Furthermore, as pointed out by Mc-
Donald and Satta (2007), chart-parsing algorithms
are amenable to augmentation by non-local inform-
ation such as arity constraints and Markovization,
and therefore should allow for more predictive stat-
istical models than those used by current systems
for non-projective dependency parsing. Hence,
mildly non-projective dependency parsing prom-
ises to be both efficient and accurate.

478

Contributions In this paper, we contribute two
key tools for making the mildly context-sensitive
approach to accurate and efficient non-projective
dependency parsing work.

First, we extend the standard technique for ex-
tracting context-free grammars from phrase-struc-
ture treebanks (Charniak, 1996) to mildly con-
text-sensitive grammars and dependency treebanks.
More specifically, we show how to extract, from
a given dependency treebank, a lexicalized Linear
Context-Free Rewriting System (LCFRS) whose
derivations capture the dependency analyses in the
treebank in the same way as the derivations of
a context-free treebank grammar capture phrase-
structure analyses. Our technique works for arbit-
rary, even non-projective dependency treebanks,
and essentially reduces non-projective dependency
to parsing with LCFRS. This problem can be solved
using standard chart-parsing techniques.

Our extraction technique yields a grammar
whose parsing complexity is polynomial in the
length of the sentence, but exponential in both a
measure of the non-projectivity of the treebank and
the maximal number of dependents per word, re-
flected as the rank of the extracted LCFRS. While
the number of highly non-projective dependency
structures is negligible for practical applications
(Kuhlmann and Nivre, 2006), the rank cannot eas-
ily be bounded. Therefore, we present an algorithm
that transforms the extracted grammar into a nor-
mal form that has rank 2, and thus can be parsed
more efficiently. This contribution is important
even independently of the extraction procedure:
While it is known that a rank-2 normal form of
LCFRS does not exist in the general case (Rambow
and Satta, 1999), our algorithm succeeds for a large
and empirically relevant class of grammars.

2 Preliminaries

We start by introducing dependency trees and
Linear Context-Free Rewriting Systems (LCFRS).
Throughout the paper, for positive integers i and j ,
we write Œi; j � for the interval f k j i � k � j g,
and use Œn� as a shorthand for Œ1; n�.

2.1 Dependency Trees

Dependency parsing is the task to assign depend-
ency structures to a given sentence w. For the
purposes of this paper, dependency structures are
edge-labelled trees. More formally, let w be a sen-
tence, understood as a sequence of tokens over

some given alphabet T , and let L be an alphabet
of edge labels. A dependency tree for w is a con-
structD D .w;E; �/, where E forms a rooted tree
(in the standard graph-theoretic sense) on the set
Œjwj�, and � is a total function that assigns every
edge in E a label in L. Each node of D represents
a (position of a) token in w.

Example 1 Figure 2 shows a dependency tree for
the sentence A hearing is scheduled on the issue
today, which consists of 8 tokens and the edges
f .2; 1/; .2; 5/; .3; 2/; .3; 4/; .4; 8/; .5; 7/; .7; 6/ g.
The edges are labelled with syntactic functions
such as sbj for ‘subject’. The root node is marked
by a dotted line. �

Let u be a node of a dependency treeD. A node u0

is a descendant of u, if there is a (possibly empty)
path from u to u0. A block of u is a maximal
interval of descendants of u. The number of blocks
of u is called the block-degree of u. The block-
degree of a dependency tree is the maximum among
the block-degrees of its nodes. A dependency tree
is projective, if its block-degree is 1.

Example 2 The tree shown in Figure 2 is not
projective: both node 2 (hearing) and node 4
(scheduled) have block-degree 2. Their blocks are
f 2 g; f 5; 6; 7 g and f 4 g; f 8 g, respectively.

2.2 LCFRS
Linear Context-Free Rewriting Systems (LCFRS)
have been introduced as a generalization of sev-
eral mildly context-sensitive grammar formalisms.
Here we use the standard definition of LCFRS
(Vijay-Shanker et al., 1987) and only fix our nota-
tion; for a more thorough discussion of this formal-
ism, we refer to the literature.

Let G be an LCFRS. Recall that each nonter-
minal symbol A of G comes with a positive integer
called the fan-out of A, and that a production p
of G has the form

A! g.A1; : : : ; Ar/ I g.Ex1; : : : ; Exr/ D Ę ;

whereA;A1; : : : ; Ar are nonterminals with fan-out
f; f1; : : : ; fr , respectively, g is a function symbol,
and the equation to the right of the semicolon spe-
cifies the semantics of g. For each i 2 Œr�, Exi is
an fi -tuple of variables, and Ę D h˛1; : : : ; f̨ i is a
tuple of strings over the variables on the left-hand
side of the equation and the alphabet of terminal
symbols in which each variable appears exactly
once. The production p is said to have rank r ,
fan-out f , and length j˛1jC � � �C j f̨ jC .f �1/.

479

3 Grammar Extraction

We now explain how to extract an LCFRS from a
dependency treebank, in very much the same way
as a context-free grammar can be extracted from a
phrase-structure treebank (Charniak, 1996).

3.1 Dependency Treebank Grammars

A simple way to induce a context-free grammar
from a phrase-structure treebank is to read off the
productions of the grammar from the trees. We will
specify a procedure for extracting, from a given
dependency treebank, a lexicalized LCFRS G that
is adequate in the sense that for every analysis D
of a sentencew in the treebank, there is a derivation
tree of G that is isomorphic to D, meaning that
it becomes equal to D after a suitable renaming
and relabelling of nodes, and has w as its derived
string. Here, a derivation tree of an LCFRS G is
an ordered tree such that each node u is labelled
with a production p of G, the number of children
of u equals the rank r of p, and for each i 2 Œr�,
the i th child of u is labelled with a production that
has as its left-hand side the i th nonterminal on the
right-hand side of p.

The basic idea behind our extraction procedure
is that, in order to represent the compositional struc-
ture of a possibly non-projective dependency tree,
one needs to represent the decomposition and relat-
ive order not of subtrees, but of blocks of subtrees
(Kuhlmann and Möhl, 2007). We introduce some
terminology. A component of a node u in a de-
pendency tree is either a block B of some child u0

of u, or the singleton interval that contains u; this
interval will represent the position in the string that
is occupied by the lexical item corresponding to u.
We say that u0 contributes B , and that u contrib-
utes Œu; u� to u. Notice that the number of com-
ponents that u0 contributes to its parent u equals
the block-degree of u0. Our goal is to construct
for u a production of an LCFRS that specifies how
each block of u decomposes into components, and
how these components are ordered relative to one
another. These productions will make an adequate
LCFRS, in the sense defined above.

3.2 Annotating the Components

The core of our extraction procedure is an efficient
algorithm that annotates each node u of a given de-
pendency tree with the list of its components, sor-
ted by their left endpoints. It is helpful to think of
this algorithm as of two independent parts, one that

1: Function Annotate-L.D/
2: for each u of D, from left to right do
3: if u is the first node of D then
4: b WD the root node of D
5: else
6: b WD the lca of u and its predecessor
7: for each u0 on the path b � � �u do
8: leftŒu0� WD leftŒu0� � u

Figure 1: Annotation with components

annotates each node u with the list of the left end-
points of its components (Annotate-L) and one
that annotates the corresponding right endpoints
(Annotate-R). The list of components can then
be obtained by zipping the two lists of endpoints
together in linear time.

Figure 1 shows pseudocode for Annotate-L;
the pseudocode for Annotate-R is symmetric. We
do a single left-to-right sweep over the nodes of the
input treeD. In each step, we annotate all nodes u0

that have the current node u as the left endpoint of
one of their components. Since the sweep is from
left to right, this will get us the left endpoints of u0

in the desired order. The nodes that we annotate are
the nodes u0 on the path between u and the least
common ancestor (lca) b of u and its predecessor,
or the path from the root node to u, in case that u
is the leftmost node of D.

Example 3 For the dependency tree in Figure 2,
Annotate-L constructs the following lists leftŒu�
of left endpoints, for u D 1; : : : ; 8:

1; 1 � 2 � 5; 1 � 3 � 4 � 5 � 8; 4 � 8; 5 � 6; 6; 6 � 7; 8

The following Lemma establishes the correctness
of the algorithm:

Lemma 1 Let D be a dependency tree, and let u
and u0 be nodes of D. Let b be the least common
ancestor of u and its predecessor, or the root node
in case that u is the leftmost node of D. Then u is
the left endpoint of a component of u0 if and only
if u0 lies on the path from b to u. �

Proof It is clear that u0 must be an ancestor of u.
If u is the leftmost node of D, then u is the left
endpoint of the leftmost component of all of its
ancestors. Now suppose that u is not the leftmost
node of D, and let Ou be the predecessor of u. Dis-
tinguish three cases: If u0 is not an ancestor of Ou,
then Ou does not belong to any component of u0;
therefore, u is the left endpoint of a component

480

of u0. If u0 is an ancestor of Ou but u0 ¤ b, then Ou
and u belong to the same component of u0; there-
fore, u is not the left endpoint of this component.
Finally, if u0 D b, then Ou and u belong to different
components of u0; therefore, u is the left endpoint
of the component it belongs to. �

We now turn to an analysis of the runtime of the
algorithm. Let n be the number of components
of D. It is not hard to imagine an algorithm that
performs the annotation task in time O.n logn/:
such an algorithm could construct the components
for a given node u by essentially merging the list of
components of the children of u into a new sorted
list. In contrast, our algorithm takes time O.n/.
The crucial part of the analysis is the assignment
in line 6, which computes the least common an-
cestor of u and its predecessor. Using markers for
the path from the root node to u, it is straightfor-
ward to implement this assignment in time O.j�j/,
where � is the path b � � �u. Now notice that, by our
correctness argument, line 8 of the algorithm is ex-
ecuted exactly n times. Therefore, the sum over the
lengths of all the paths � , and hence the amortized
time of computing all the least common ancest-
ors in line 6, is O.n/. This runtime complexity is
optimal for the task we are solving.

3.3 Extraction Procedure

We now describe how to extend the annotation al-
gorithm into a procedure that extracts an LCFRS
from a given dependency tree D. The basic idea is
to transform the list of components of each node u
of D into a production p. This transformation will
only rename and relabel nodes, and therefore yield
an adequate derivation tree. For the construction
of the production, we actually need an extended
version of the annotation algorithm, in which each
component is annotated with the node that contrib-
uted it. This extension is straightforward, and does
not affect the linear runtime complexity.

Let D be a dependency tree for a sentence w.
Consider a single node u of D, and assume that u
has r children, and that the block-degree of u is f .
We construct for u a production p with rank r
and fan-out f . For convenience, let us order the
children of u, say by their leftmost descendants,
and let us write ui for the i th child of u according
to this order, and fi for the block-degree of ui ,
i 2 Œr�. The production p has the form

L! g.L1; : : : ; Lr/ I g.Ex1; : : : ; Exr/ D Ę ;

where L is the label of the incoming edge of u
(or the special label root in case that u is the root
node of D) and for each i 2 Œr�: Li is the label of
the incoming edge of ui ; Exi is a fi -tuple of vari-
ables of the form xi;j , where j 2 Œfi �; and Ę is
an f -tuple that is constructed in a single left-to-
right sweep over the list of components computed
for u as follows. Let k 2 Œfi � be a pointer to a cur-
rent segment of Ę; initially, k D 1. If the current
component is not adjacent (as an interval) to the
previous component, we increase k by one. If the
current component is contributed by the child ui ,
i 2 Œr�, we add the variable xi;j to ˛k , where j
is the number of times we have seen a component
contributed by ui during the sweep. Notice that
j 2 Œfi �. If the current component is the (unique)
component contributed by u, we add the token cor-
responding to u to ˛k . In this way, we obtain a
complete specification of how the blocks of u (rep-
resented by the segments of the tuple Ę) decompose
into the components of u, and of the relative order
of the components. As an example, Figure 2 shows
the productions extracted from the tree above.

3.4 Parsing the Extracted Grammar

Once we have extracted the grammar for a depend-
ency treebank, we can apply any parsing algorithm
for LCFRS to non-projective dependency parsing.
The generic chart-parsing algorithm for LCFRS
runs in timeO.jP j � jwjf .rC1//, where P is the set
of productions of the input grammar G, w is the in-
put string, r is the maximal rank, and f is the max-
imal fan-out of a production inG (Seki et al., 1991).
For a grammar G extracted by our technique, the
number f equals the maximal block-degree per
node. Hence, without any further modification, we
obtain a parsing algorithm that is polynomial in the
length of the sentence, but exponential in both the
block-degree and the rank. This is clearly unaccept-
able in practical systems. The relative frequency
of analyses with a block-degree � 2 is almost neg-
ligible (Havelka, 2007); the bigger obstacle in ap-
plying the treebank grammar is the rank of the res-
ulting LCFRS. Therefore, in the remainder of the
paper, we present an algorithm that can transform
the productions of the input grammar G into an
equivalent set of productions with rank at most 2,
while preserving the fan-out. This transformation,
if it succeeds, yields a parsing algorithm that runs
in time O.jP j � r � jwj3f /.

481

1A 2hearing 3is 4scheduled 5on 6the 7issue 8today

nmod sbj

root node

vc

pp

nmod

np

tmp

nmod! g1 g1 D hAi
sbj! g2.nmod; pp/ g2.hx1;1i; hx2;1i/ D hx1;1 hearing; x2;1i

root! g3.sbj; vc/ g3.hx1;1; x1;2i; hx2;1; x2;2i/ D hx1;1 is x2;1 x1;2 x2;2i

vc! g4.tmp/ g4.hx1;1i/ D hscheduled; x1;1i

pp! g5.np/ g5.hx1;1i/ D hon x1;1i

nmod! g6 g6 D hthei
np! g7.nmod/ g7.hx1;1i/ D hx1;1 issuei

tmp! g8 g8 D htodayi

Figure 2: A dependency tree, and the LCFRS extracted for it

4 Adjacency

In this section we discuss a method for factorizing
an LCFRS into productions of rank 2. Before start-
ing, we get rid of the ‘easy’ cases. A production p
is connected if any two strings ˛i , j̨ in p’s defini-
tion share at least one variable referring to the same
nonterminal. It is not difficult to see that, when p is
not connected, we can always split it into new pro-
ductions of lower rank. Therefore, throughout this
section we assume that LCFRS only have connec-
ted productions. We can split p into its connected
components using standard methods for finding the
strongly connected components of an undirected
graph. This can be implemented in time O.r � f /,
where r and f are the rank and the fan-out of p,
respectively.

4.1 Adjacency Graphs
Let p be a production with length n and fan-out f ,
associated with function a g. The set of positions
of p is the set Œn�. Informally, each position rep-
resents a variable or a lexical element in one of the
components of the definition of g, or else a ‘gap’
between two of these components. (Recall that n
also accounts for the f � 1 gaps in the body of g.)
Example 4 The set of positions of the production
for hearing in Figure 2 is Œ4�: 1 for variable x1, 2
for hearing, 3 for the gap, and 4 for y1. �

Let i1; j1; i2; j2 2 Œn�. An interval Œi1; j1� is ad-
jacent to an interval Œi2; j2� if either j1 D i2 � 1

(left-adjacent) or i1 D j2 C 1 (right-adjacent). A
multi-interval, or m-interval for short, is a set v of
pairwise disjoint intervals such that no interval in v
is adjacent to any other interval in v. The fan-out
of v, written f .v/, is defined as jvj.

We use m-intervals to represent the nonterminals
and the lexical element heading p. The i th nonter-
minal on the right-hand side of p is represented by
the m-interval obtained by collecting all the pos-
itions of p that represent a variable from the i th
argument of g. The head of p is represented by the
m-interval containing the associated position. Note
that all these m-intervals are pairwise disjoint.

Example 5 Consider the production for is in
Figure 2. The set of positions is Œ5�. The
first nonterminal is represented by the m-inter-
val f Œ1; 1�; Œ4; 4� g, the second nonterminal by
f Œ3; 3�; Œ5; 5� g, and the lexical head by f Œ2; 2� g. �

For disjoint m-intervals v1; v2, we say that v1 is
adjacent to v2, denoted by v1 ! v2, if for every
interval I1 2 v1, there is an interval I2 2 v2 such
that I1 is adjacent to I2. Adjacency is not symmet-
ric: if v1 D f Œ1; 1�; Œ4; 4� g and v2 D f Œ2; 2� g, then
v2 ! v1, but not vice versa.

Let V be some collection of pairwise disjoint
m-intervals representing p as above. The ad-
jacency graph associated with p is the graph
G D .V;!G/ whose vertices are the m-intervals
in V , and whose edges!G are defined by restrict-
ing the adjacency relation! to the set V .

For m-intervals v1; v2 2 V , the merger of v1

and v2, denoted by v1 ˚ v2, is the (uniquely
determined) m-interval whose span is the union
of the spans of v1 and v2. As an example, if
v1 D f Œ1; 1�; Œ3; 3� g and v2 D f Œ2; 2� g, then
v1 ˚ v2 D f Œ1; 3� g. Notice that the way in which
we defined m-intervals ensures that a merging oper-
ation collapses all adjacent intervals. The proof of
the following lemma is straightforward and omitted
for space reasons:

482

1: Function Factorize.G D .V;!G//

2: R WD ;;
3: while!G ¤ ; do
4: choose .v1; v2/ 2 !G ;
5: R WD R [f .v1; v2/ g;
6: V WD V � f v1; v2 g [f v1 ˚ v2 g;
7: !G WD f .v; v

0/ j v; v0 2 V; v ! v0 g;
8: if jV j D 1 then
9: output R and accept;

10: else
11: reject;

Figure 3: Factorization algorithm

Lemma 2 If v1 ! v2, then f .v1 ˚ v2/ � f .v2/.

4.2 The Adjacency Algorithm

Let G D .V;!G/ be some adjacency graph, and
let v1!G v2. We can derive a new adjacency
graph from G by merging v1 and v2. The resulting
graph G0 has vertices V 0 D V �f v1; v2 g[f v1˚

v2 g and set of edges!G0 obtained by restricting
the adjacency relation ! to V 0. We denote the
derive relation as G).v1;v2/ G

0.
Informally, ifG represents some LCFRS produc-

tion p and v1; v2 represent nonterminals A1; A2,
thenG0 represents a production p0 obtained from p

by replacing A1; A2 with a fresh nonterminal A. A
new production p00 can also be constructed, expand-
ing A into A1; A2, so that p0; p00 together will be
equivalent to p. Furthermore, p0 has a rank smaller
than the rank of p and, from Lemma 2, A does not
increase the overall fan-out of the grammar.

In order to simplify the notation, we adopt the
following convention. Let G).v1;v2/ G

0 and
let v!G v1, v ¤ v2. If v!G0 v1 ˚ v2, then
edges .v; v1/ and .v; v1 ˚ v2/ will be identified,
and we say that G0 inherits .v; v1 ˚ v2/ from G.
If v 6!G0 v1˚v2, then we say that .v; v1/ does not
survive the derive step. This convention is used for
all edges incident upon v1 or v2.

Our factorization algorithm is reported in Fig-
ure 3. We start from an adjacency graph repres-
enting some LCFRS production that needs to be
factorized. We arbitrarily choose an edge e of the
graph, and push it into a set R, in order to keep
a record of the candidate factorization. We then
merge the two m-intervals incident to e, and we
recompute the adjacency relation for the new set
of vertices. We iterate until the resulting graph has
an empty edge set. If the final graph has one one

vertex, then we have managed to factorize our pro-
duction into a set of productions with rank at most
two that can be computed from R.

Example 6 Let V D f v1; v2; v3 g with v1 D

f Œ4; 4� g, v2 D f Œ1; 1�; Œ3; 3� g, and v3 D

f Œ2; 2�; Œ5; 5� g. Then !G D f .v1; v2/ g. After
merging v1; v2 we have a new graph G with V D
f v1 ˚ v2; v3 g and!G D f .v1 ˚ v2; v3/ g. We
finally merge v1 ˚ v2; v3 resulting in a new graph
G with V D f v1 ˚ v2 ˚ v3 g and!G D ;. We
then accept and stop. �

4.3 Mathematical Properties
We have already argued that, if the algorithm ac-
cepts, then a binary factorization that does not
increase the fan-out of the grammar can be built
from R. We still need to prove that the algorithm
answers consistently on a given input, despite of
possibly different choices of edges at line 4. We do
this through several intermediate results.

A derivation for an adjacency graph G is a se-
quence of edges d D he1; : : : ; eni, n � 1, such
that G D G0 and Gi�1)ei

Gi for every i with
1 � i � n. For short, we write G0)d Gn.
Two derivations for G are competing if one is a
permutation of the other.

Lemma 3 If G)d1
G1 and G)d2

G2 with d1

and d2 competing derivations, then G1 D G2.

Proof We claim that the statement of the lemma
holds for jd1j D 2. To see this, let G)e1

G01)e2
G1 and G)e2

G02)e1
G2 be valid

derivations. We observe that G1 and G2 have the
same set of vertices. Since the edges of G1 and G2

are defined by restricting the adjacency relation to
their set of vertices, our claim immediately follows.

The statement of the lemma then follows from
the above claim and from the fact that we can al-
ways obtain the sequence d2 starting from d1 by
repeatedly switching consecutive edges. �

We now consider derivations for the same adja-
cency graph that are not competing, and show that
they always lead to isomorphic adjacency graphs.
Two graphs are isomorphic if they become equal
after some suitable renaming of the vertices.

Lemma 4 The out-degree of G is bounded by 2.

Proof Assume v!G v1 and v!G v2, with v1 ¤

v2, and let I 2 v. I must be adjacent to some in-
terval I1 2 v1. Without loss of generality, assume
that I is left-adjacent to I1. I must also be adja-
cent to some interval I2 2 v2. Since v1 and v2

483

are disjoint, I must be right-adjacent to I2. This
implies that I cannot be adjacent to an interval in
any other m-interval v0 of G. �

A vertex v of G such that v!G v1 and v!G v2

is called a bifurcation.

Example 7 Assume v D f Œ2; 2� g, v1 D

f Œ3; 3�; Œ5; 5� g, v2 D f Œ1; 1� g with v!G v1 and
v!G v2. The m-interval v˚ v1 D f Œ2; 3�; Œ5; 5� g

is no longer adjacent to v2. �

The example above shows that, when choosing one
of the two outgoing edges in a bifurcation for mer-
ging, the other edge might not survive. Thus, such
a choice might lead to distinguishable derivations
that are not competing (one derivation has an edge
that is not present in the other). As we will see (in
the proof of Theorem 1), bifurcations are the only
cases in which edges might not survive a merging.

Lemma 5 Let v be a bifurcation of G with outgo-
ing edges e1; e2, and let G)e1

G1, G)e2
G2.

Then G1 and G2 are isomorphic.

Proof (Sketch) Assume e1 has the form
v!G v1 and e2 has the form v!G v2. Let
also VS be the set of vertices shared by G1 and
G2. We show that the statement holds under the
isomorphism mapping v ˚ v1 and v2 in G1 to v1

and v ˚ v2 in G2, respectively.
When restricted to VS , the graphs G1 and G2

are equal. Let us then consider edges from G1 and
G2 involving exactly one vertex in VS . We show
that, for v0 2 VS , v0!G1

v ˚ v1 if and only if
v0!G2

v1. Consider an arbitrary interval I 0 2 v0.
If v0!G1

v˚v1, then I 0 must be adjacent to some
interval I1 2 v ˚ v1. If I1 2 v1 we are done.
Otherwise, I1 must be the concatenation of two
intervals I1v and I1v1

with I1v 2 v and I1v1
2

v1. Since v!G2
v2, I1v is also adjacent to some

interval in v2. However, v0 and v2 are disjoint.
Thus I 0 must be adjacent to I1v1

2 v1. Conversely,
if v0!G2

v1, then I 0 must be adjacent to some
interval I1 2 v1. Because v0 and v are disjoint, I 0

must also be adjacent to some interval in v ˚ v1.
Using very similar arguments, we can conclude

that G1 and G2 are isomorphic when restricted to
edges with at most one vertex in VS .

Finally, we need to consider edges from G1 and
G2 that are not incident upon vertices in VS . We
show that v ˚ v1!G1

v2 only if v1!G2
v ˚ v2;

a similar argument can be used to prove the con-
verse. Consider an arbitrary interval I1 2 v˚v1. If
v ˚ v1!G1

v2, then I1 must be adjacent to some

interval I2 2 v2. If I1 2 v1 we are done. Other-
wise, I1 must be the concatenation of two adjacent
intervals I1v and I1v1

with I1v 2 v and I1v1
2 v1.

Since I1v is also adjacent to some interval I 02 2 v2

(here I 02 might as well be I2), we conclude that
I1v1

2 v1 is adjacent to the concatenation of I1v

and I 02, which is indeed an interval in v˚ v2. Note
that our case distinction is exhaustive. We thus
conclude that v1!G2

v ˚ v2.
A symmetrical argument can be used to show

that v2!G1
v ˚ v1 if and only if v ˚ v2!G2

v1,
which concludes our proof. �

Theorem 1 Let d1 and d2 be derivations for G,
describing two different computations c1 and c2 of
the algorithm of Figure 3 on input G. Computation
c1 is accepting if and only if c2 is accepting.

Proof First, we prove the claim that if e is not an
edge outgoing from a bifurcation vertex, then in the
derive relation G)e G

0 all of the edges of G but
e and its reverse are inherited by G0. Let us write
e in the form v1!G v2. Obviously, any edge of
G not incident upon v1 or v2 will be inherited by
G0. If v!G v2 for some m-interval v ¤ v1, then
every interval I 2 v is adjacent to some interval
in v2. Since v and v1 are disjoint, I will also be
adjacent to some interval in v1˚v2. Thus we have
v!G0 v1 ˚ v2. A similar argument shows that
v!G v1 implies v!G0 v1 ˚ v2.

If v2!G v for some v ¤ v1, then every in-
terval I 2 v2 is adjacent to some interval in v.
From v1!G v2 we also have that each interval
I12 2 v1 ˚ v2 is either an interval in v2 or else
the concatenation of exactly two intervals I1 2 v1

and I2 2 v2. (The interval I2 cannot be adjacent
to more than an interval in v1, because v2!G v).
In both cases I12 is adjacent to some interval in
v, and hence v1 ˚ v2!G0 v. This concludes the
proof of our claim.

Let d1, d2 be as in the statement of the the-
orem, with G)d1

G1 and G)d2
G2. If d1

and d2 are competing, then the theorem follows
from Lemma 3. Otherwise, assume that d1 and d2

are not competing. From our claim above, some
bifurcation vertices must appear in these deriva-
tions. Let us reorder the edges in d1 in such a way
that edges outgoing from a bifurcation vertex are
processed last and in some canonical order. The
resulting derivation has the form dd 01, where d 01
involves the processing of all bifurcation vertices.
We can also reorder edges in d2 to obtain dd 02,
where d 02 involves the processing of all bifurcation

484

not context-free 102 687 100.00%
not binarizable 24 0.02%
not well-nested 622 0.61%

Table 1: Properties of productions extracted from
the CoNLL 2006 data (3 794 605 productions)

vertices in exactly the same order as in d 01, but with
possibly different choices for the outgoing edges.

Let G)d Gd)d 0
1
G01 and G)d Gd)d 0

2

G02. Derivations dd 01 and d1 are competing. Thus,
by Lemma 3, we haveG01 D G1. Similarly, we can
conclude that G02 D G2. Since bifurcation vertices
in d 01 and in d 02 are processed in the same canonical
order, from repeated applications of Lemma 5 we
have that G01 and G02 are isomorphic. We then con-
clude that G1 and G2 are isomorphic as well. The
statement of the theorem follows immediately. �

We now turn to a computational analysis of the
algorithm of Figure 3. Let G be the representation
of an LCFRS production p with rank r . G has
r vertices and, following Lemma 4, O.r/ edges.
Let v be an m-interval of G with fan-out fv. The
incoming and outgoing edges for v can be detected
in time O.fv/ by inspecting the 2 � fv endpoints of
v. Thus we can compute G in time O.jpj/.

The number of iterations of the while cycle in the
algorithm is bounded by r , since at each iteration
one vertex of G is removed. Consider now an
iteration in which m-intervals v1 and v2 have been
chosen for merging, with v1!G v2. (These m-
intervals might be associated with nonterminals
in the right-hand side of p, or else might have
been obtained as the result of previous merging
operations.) Again, we can compute the incoming
and outgoing edges of v1˚v2 in time proportional
to the number of endpoints of such an m-interval.
By Lemma 2, this number is bounded by O.f /, f
the fan-out of the grammar. We thus conclude that
a run of the algorithm on G takes time O.r � f /.

5 Discussion

We have shown how to extract mildly context-
sensitive grammars from dependency treebanks,
and presented an efficient algorithm that attempts
to convert these grammars into an efficiently par-
seable binary form. Due to previous results (Ram-
bow and Satta, 1999), we know that this is not
always possible. However, our algorithm may fail
even in cases where a binarization exists—our no-
tion of adjacency is not strong enough to capture

all binarizable cases. This raises the question about
the practical relevance of our technique.

In order to get at least a preliminary answer to
this question, we extracted LCFRS productions
from the data used in the 2006 CoNLL shared task
on data-driven dependency parsing (Buchholz and
Marsi, 2006), and evaluated how large a portion
of these productions could be binarized using our
algorithm. The results are given in Table 1. Since it
is easy to see that our algorithm always succeeds on
context-free productions (productions where each
nonterminal has fan-out 1), we evaluated our al-
gorithm on the 102 687 productions with a higher
fan-out. Out of these, only 24 (0.02%) could not be
binarized using our technique. We take this number
as an indicator for the usefulness of our result.

It is interesting to compare our approach
with techniques for well-nested dependency trees
(Kuhlmann and Nivre, 2006). Well-nestedness is
a property that implies the binarizability of the
extracted grammar; however, the classes of well-
nested trees and those whose corresponding pro-
ductions can be binarized using our algorithm are
incomparable—in particular, there are well-nested
productions that cannot be binarized in our frame-
work. Nevertheless, the coverage of our technique
is actually higher than that of an approach that
relies on well-nestedness, at least on the CoNLL
2006 data (see again Table 1).

We see our results as promising first steps in a
thorough exploration of the connections between
non-projective and mildly context-sensitive pars-
ing. The obvious next step is the evaluation of our
technique in the context of an actual parser.

As a final remark, we would like to point out
that an alternative technique for efficient non-pro-
jective dependency parsing, developed by Gómez
Rodríguez et al. independently of this work, is
presented elsewhere in this volume.

Acknowledgements We would like to thank
Ryan McDonald, Joakim Nivre, and the anonym-
ous reviewers for useful comments on drafts of this
paper, and Carlos Gómez Rodríguez and David J.
Weir for making a preliminary version of their pa-
per available to us. The work of the first author
was funded by the Swedish Research Council. The
second author was partially supported by MIUR
under project PRIN No. 2007TJNZRE_002.

485

References
Giuseppe Attardi. 2006. Experiments with a mul-

tilanguage non-projective dependency parser. In
Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 166–170, New
York, USA.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency pars-
ing. In Tenth Conference on Computational Natural
Language Learning (CoNLL), pages 149–164, New
York, USA.

Eugene Charniak. 1996. Tree-bank grammars. In 13th
National Conference on Artificial Intelligence, pages
1031–1036, Portland, Oregon, USA.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In 16th In-
ternational Conference on Computational Linguist-
ics (COLING), pages 340–345, Copenhagen, Den-
mark.

Carlos Gómez-Rodríguez, David J. Weir, and John
Carroll. 2009. Parsing mildly non-projective de-
pendency structures. In Twelfth Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL), Athens, Greece.

Jan Hajič, Barbora Vidova Hladka, Jarmila Panevová,
Eva Hajičová, Petr Sgall, and Petr Pajas. 2001.
Prague Dependency Treebank 1.0. Linguistic Data
Consortium, 2001T10.

Keith Hall and Václav Novák. 2005. Corrective mod-
elling for non-projective dependency grammar. In
Ninth International Workshop on Parsing Technolo-
gies (IWPT), pages 42–52, Vancouver, Canada.

Jiří Havelka. 2007. Beyond projectivity: Multilin-
gual evaluation of constraints and measures on non-
projective structures. In 45th Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 608–615, Prague, Czech Republic.

Marco Kuhlmann and Mathias Möhl. 2007. Mildly
context-sensitive dependency languages. In 45th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 160–167, Prague, Czech
Republic.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. In 21st In-
ternational Conference on Computational Linguist-
ics and 44th Annual Meeting of the Association for
Computational Linguistics (COLING-ACL), Main
Conference Poster Sessions, pages 507–514, Sydney,
Australia.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Eleventh Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL), pages 81–88, Trento, Italy.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Tenth International Conference on Pars-
ing Technologies (IWPT), pages 121–132, Prague,
Czech Republic.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Human Lan-
guage Technology Conference (HLT) and Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 523–530, Vancouver,
Canada.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In 43rd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 99–106, Ann Arbor, USA.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Eighth International
Workshop on Parsing Technologies (IWPT), pages
149–160, Nancy, France.

Joakim Nivre. 2007. Incremental non-projective
dependency parsing. In Human Language Tech-
nologies: The Conference of the North American
Chapter of the Association for Computational Lin-
guistics (HLT-NAACL), pages 396–403, Rochester,
NY, USA.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems. Theoretical Computer Science, 223(1–2):87–
120.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On Multiple Context-
Free Grammars. Theoretical Computer Science,
88(2):191–229.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions pro-
duced by various grammatical formalisms. In 25th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 104–111, Stanford,
CA, USA.

486

