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Abstract lation. Memory usage can be reduced in cube
pruning (Chiang, 2007) through smart memoiza-
tion, and spreading neighborhood exploration can
be used to reduce search errors. However, search
errors can still remain even when implementing
simple phrase-based translation. We describe a
‘shallow’ search through hierarchical rules which
greatly speeds translation without any effect on
quality. We then describe techniques to analyze
and reduce the set of hierarchical rules. We do
gies are then applied to assess the impact this based on the structural properties of rules and

on translation speed and quality. Results develop strategies to identify and remove redun-

are reported on the 2008 NIST Arabic-to- dant or harmful rules. We identify groupings of
rules based on non-terminals and their patterns and

) assess the impact on translation quality and com-
1 Introduction putational requirements for each given rule group.

Hierarchical phrase-based translation (Chiang\,Ne find that with appropriate filtering strategies
2005) has emerged as one of the dominant curule sets can be greatly reduced in size without im-
rent approaches to statistical machine translatior?@ct on translation performance.
Hiero translation systems incorporate many of
the strengths of phrase-based translation sys.tem%‘,l Related Work
such as feature-based translation and strong taf-he search and rule pruning techniques described
get language models, while also allowing flexi-in the following sections add to a growing lit-
ble translation and movement based on hierarchierature of refinements to the hierarchical phrase-
cal rules extracted from aligned parallel text. Thebased SMT systems originally described by Chi-
approach has been widely adopted and reported t#ng (2005; 2007). Subsequent work has addressed
be competitive with other large-scale data drivenmprovements and extensions to the search proce-
approaches, e.g. (Zollmann et al., 2008). dure itself, the extraction of the hierarchical rules
Large-scale hierarchical SMT involves auto-needed for translation, and has also reported con-
matic rule extraction from aligned parallel text, trastive experiments with other SMT architectures.
model parameter estimation, and the use of cube Hiero Search Refinementduang and Chiang
pruning k-best list generation in hierarchical trans{2007) offer several refinements to cube pruning
lation. The number of hierarchical rules extractedto improve translation speed. Venugopal et al.
far exceeds the number of phrase translations tyg2007) introduce a Hiero variant with relaxed con-
ically found in aligned text. While this may lead straints for hypothesis recombination during pars-
to improved translation quality, there is also theing; speed and results are comparable to those of
risk of lengthened translation times and increase@ube pruning, as described by Chiang (2007). Li
memory usage, along with possible search errorand Khudanpur (2008) report significant improve-
due to the pruning procedures needed in search. ments in translation speed by taking unseen n-
We describe several techniques to reduce mengrams into account within cube pruning to mini-
ory usage and search errors in hierarchical trangnize language model requests. Dyer et al. (2008)

We describe refinements to hierarchical
translation search procedures intended to
reduce both search errors and memory us-
age through modifications to hypothesis
expansion in cube pruning and reductions
in the size of the rule sets used in transla-
tion. Rules are put into syntactic classes
based on the number of non-terminals and
the pattern, and various filtering strate-

English evaluation task.
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extend the translation of source sentences to transdle set size. Finally, Section 4 concludes.

lation of input lattices following Chappelier et al.
(1999). 2 Two Refinements in Cube Pruning

isouse procedros 1o sombine dissriminatve 1gCi2Nd (2007) introduced cube pruning to apply
Tanguage models in pruning during the generation
tent models with hierarchical SMT. The Syntax- guag 'n pruning dunng J !

of k-best translation hypotheses via the application
Augmented Machine Translation system (Zoll- yp PP

d Vi | 2006) i tes 1t of hierarchical rules in the CYK algorithm. In the
mann and venugopal, = ) Incorporales a‘rgeﬁnplementation of Hiero described here, there is
language syntactic constituents in addition to th

synchronous grammars used in translation Shﬁhe parser itself, for which we use a variant of the
at al. (2008) make use of target dependenc.y treeBYK algorithm closely related to CYK+ (Chap-

' ~ pelier and Rajman, 1998); it employs hypothesis
and a target dependency language model durin

. . : combination, without pruning, while maintain-
decoding. Marton and Resnik (2008) exploit Shal'ing back pointers. Before k-best list generation

low correspon(_iences _of hierarchical rules W|thWith cube pruning, we apply amart memoiza-
source syntactic constituents extracted from par:

. ) P tion procedure intended to reduce memory con-
allel text, an approach also investigated by Chian P y

. ._sumption during k-best list expansion. Within the
(2005). Zhang and Gildea (2006) propose blna-Cube pruning algorithm we usspreading neigh-

géﬁtlzrl]sfg;zﬁngg;?néii g;ig?a;;ﬁ]sr{?o?ee?g; tBorhood exploratiorto improve robustness in the
piexity 9 face of search errors.

plex, syntactic, hierarchical rules sets.
Hierarchical rule extractiorzhang et al. (2008) 2.1 Smart Memoization
de_scrlbe a linear algorithm, a mo_d|f|ed version OfEach cell in the chart built by the CYK algorithm
shift-reduce, to extract phrase pairs organized intg . . .2
. . . . contains all possible derivations of a span of the
a tree from which hierarchical rules can be directly

extracted. Lopez (2007) extracts rules On_the_ﬂysource sentence being translated. After the parsing

from the training bitext during decoding, search-s.ta.‘gle 's completed, itis possible FO make a very ef-
. - . . ficient sweep through the backpointers of the CYK
ing efficiently for rule patterns using suffix arrays.

Vs q _ , I grid to count how many times each cell will be ac-
Analysis and Contrastive Expenmerﬂe_ man — cessed by the k-best generation algorithm. When
etal. (2008) compare phrase-based, hIerarChICi'*J—best list generation is running, the number of

and §ynta>§-augmented decpders for_ translation 0Jmes each cell is visited is logged so that, as each
Arabic, Chinese, and Urdu into English, and theyq s yisited for the last time, the k-best list as-

find that attempts 'to expedite translation by Simpléy,cjareq with each cell is deleted. This continues
s_chemes which discard rules also degrade translas ) the one k-best list remaining at the top of the
tion performance. Lopez (2008) explores whethe,, . spans the entire sentence. Memory reduc-

lexical _reo_rdering_ or the phrase_dis_contiguity in'tions are substantial for longer sentences: for the
herent in hierarchical rules expla.lns |mp.rovements7‘Ongest sentence in the tuning set described later
over phrase-based systems. Hlerarch_lcal trar?SIﬁOS words in length), smart memoization reduces
t!on h"_is also been use_d to gregt ok Comb'_n%emory usage during the cube pruning stage from
tion with other translation architectures (e.g. (Slm2 1GB to 0.7GB. For average length sentences of
etal., 2007; Rosti et al., 2007)). approx. 30 words, memory reductions of 30% are

typical.
1.2 Outline yp

The paper proceeds as follows. Section 2 de2-2 SpPreading Neighborhood Exploration

scribes memoization and spreading neighborhooth generation of a k-best list of translations for

exploration in cube pruning intended to reducea source sentence span, every derivation is trans-
memory usage and search errors, respectively. formed into a cube containing the possible trans-
detailed comparison with a simple phrase-basethtions arising from that derivation, along with

system is presented. Section 3 describes pattertheir translation and language model scores (Chi-
based rule filtering and various procedures to seang, 2007). These derivations may contain non-
lect rule sets for use in translation with an aimterminals which must be expanded based on hy-
to improving translation quality while minimizing potheses generated by lower cells, which them-
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HIERO MJ1 HIERO HIERO SHALLOW
X — <V2V11V1V2> X — <’7’a> X — <’7510¢s>
X —(V,V) v,a e ({XIuT)* X —(V,V)
V — (s,t) V — (s,t)
s,t € TT s, t € TT; vs,a5 € {VIUT)T

Table 1: Hierarchical grammars (not including glue rulés)s the set of terminals.

selves may contain non-terminals. For efficienc
each cube maintains a queue of hypotheses, call
here thefrontier queue ranked by translation and
language model score; it is from these frontier
queues that hypotheses are removed to create t
k-best list for each cell. When a hypothesis is ex;
tracted from a frontier queue, that queue is update
by searching through the neighborhood of the ex-_ _ _ _

tracted item to find novel hypotheses to add: if no 19uré 1. Spreading neighborhood exploration
novel hypotheses are found, that queue necessa!thin @ cube, just before and after extraction

ily shrinks. This shrinkage can lead to search er®f the ittm C. Grey squares represent the fron-

rors. We therefore require that, when a hypothell€" queue; black squares are candidates already
tracted. Chiang (2007) would only consider

sis is removed, new candidates must be added b‘?}( T /
exploring a neighborhood which spreads from th@ddmg items X to the frontier queue, so the queue

last extracted hypothesis. Each axis of the cubd/ould shrink. — Spreading neighborhood explo-
is searched (here, to a depth of 20) until a novelation adds candidates S to the frontier queue.

hypothesis is found. In this way, up to three new
candidates are added for each entry extracted fropy, nt features inspired by Bender et al. (2007).
afron.tler queue. _ o MET (Och, 2003) iterative parameter estimation
Chiang (2007) describes an initialization pro-ynder IBM BLEU is performed on the develop-
cedure in which these frontier queues are seedggent set. The English language used model is a
with a single candidate per axis; we initialize €achs_gram estimated over the parallel text and a 965
frontier queue to a depth ‘bfv"_tﬂ’ where Ny IS million word subset of monolingual data from the
the number of non-terminals in the derivation andEninsh Gigaword Third Edition. In addition to the
b is a search parameter set throughout to 10. ByT0g set itself, we use a development s&D2-
starting with deep frontier queues and by forcingps.tuneformed from the odd numbered sentences
them to grow during search we attempt to avoidof the NIST MTO2 through MTO5 evaluation sets;
search errors by ensuring that the universe of ittMghe even numbered sentences form the validation

within the frontier queues does not decrease as thg,tmt02-05-test The mt02-05-tuneset has 2,075
k-best lists are filled. sentences.

We first compare the cube pruning decoder to
the TTM (Kumar et al., 2006), a phrase-based
SMT system implemented with Weighted Finite-
Experiments reported in this paper are basetate Tansducers (Allauzen et al., 2007). The sys-
on the NIST MTO08 Arabic-to-English transla- tem implements either a monotone phrase order
tion task. Alignments are generated over all altranslation, or an MJ1 (maximum phrase jump of
lowed parallel data,150M words per language). 1) reordering model (Kumar and Byrne, 2005).
Features extracted from the alignments and useRelative to the complex movement and translation
in translation are in common use: target lan-allowed by Hiero and other models, MJ1 is clearly
guage model, source-to-target and target-to-sourdeferior (Dreyer et al., 2007); MJ1 was developed
phrase translation models, word and rule penaltiesyith efficiency in mind so as to run with a mini-
number of usages of the glue rule, source-to-targainum of search errors in translation and to be eas-
and target-to-source lexical models, and three ruldy and exactly realized via WFSTs. Even for the

2.3 A Study of Hiero Search Errors in
Phrase-Based Translation
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large models used in an evaluation task, the TTM Monotone MJ1 MJ1+MET
system is reported to run largely without pruning BLEU | SE | BLEU | SE | BLEU | SE
(Blackwood et al., 2008). a| 44.7 - 47.2 - 49.1 -
The Hiero decoder can easily be made tob | 445 | 342| 46.7 | 555| 48.4 | 822
implement MJ1 reordering by allowing only a|c | 44.7 | 77 | 47.1 | 191| 48.9 | 360
restricted set of reordering rules in addition to
the usual glue rule, as shown in left-hand colummnTable 2: Phrase-based TTM and Hiero perfor-
of Table 1, whereT is the set of terminals. mance onmt02-05-tunefor TTM (a), Hiero (b),
Constraining Hiero in this way makes it possible Hiero with spreading neighborhood exploration
to compare its performance to the exact WFST(c). SE is the number of Hiero hypotheses with
TTM implementation and to identify any search search errors.
errors made by Hiero.

we call elements In the source, a maximum of

) two non-adjacent non-terminals is allowed (Chi-
scores obtained by the systems ft02-05-tune ang, 2007). Leaving aside rules without non-

with monotone and reordered search, and wit . g . .
MET-optimised parameters for MJ1 reordering erminals (.. phrase pairs as used in phrase-
‘based translation), rules can be classed by their

For Hiero, an N-best list depth of 10,000 is usednumber of non-terminals, N. and their number

throughout. In the monotone case, all phrase- ) )
based systems perform similarly although Hieromc elements, M. There are 5 possible classes:
y P Y 9 N, No=1.2,1.3,2.3, 2.4, 2.5.

does make search errors. For simple MJ1 re- During rule extraction w rch hel
ordering, the basic Hiero search procedure makes uring rule extraction we search each class sep
ately to control memory usage. Furthermore, we

many search errors and these lead to degradatior?ét tf i " v th I hich
in BLEU. Spreading neighborhood expansion re-exI fac tr?m algn'ments otnyt (f)se ru eSV\; ;C ar?
duces the search errors and improves BLEU scorg cvant to our given test set, Tor computation o

significantly but search errors remain a problem.baCkW‘F’erI franslation probabiliies we log general

Search errors are even more apparent after ME.Founts of target-side rules but discard unneeded
This is not surprising, given thant02-05-tundis rules. Even with this restriction, our initial ruleset
the set over which MET is run: MET drives up the forl m(;[()eszz-&s-tunegxcleedﬁ 175M rules, of which
likelihood of good hypotheses at the expense oPY ©- are S'r_np € phrase pairs.

poor hypotheses, but search errors often increase 1€ duestion is whether all these rules are

due to the expanded dynamic range of the hypothr-‘eeded for translation. If the rule set can be re-
esis scores. duced without reducing translation quality, both

Our aim in these experiments was to demon-T€MOTY efficiency and translation speed can be

strate that spreading neighborhood exploration Cag\crfeased. Prewously published appro aches t_o_re-
aid in avoiding search errors. We emphasize tha ucing the rule set include: enforc[ng a mink-
we are not proposing that Hiero should be used tnum spar? of two words per non-terminal (Lopez,
implement reordering models such as MJ1 WhiCHZOOS)’ ,W,h'Ch would redupe our setto 115M rules;
were created for completely different search pro—Or a minimum count (m_lncount) threshold (Zoll-
cedures (e.g. WFST composition). However thesd@NN et 6,"" 2008), which wou_ld reduce our set
experiments do suggest that search errors may 878M (mincount=2) or 57M (mincount=3) ruI_es.
an issue, particularly as the search space grow hen et al. (_2098) describe the rgsult of filter-
to include the complex long-range movement aling rules by insisting that target—glde rules are
lowed by the hierarchical rules. We next Studywell—formed dependency trees. This reduces their

various filtering procedures to reduce hierarchi-rUIe set from 140M to 26M rules. This filtering

cal rule sets to find a balance between translatio)eeads to a degradation in translation performance

speed, memory usage, and performance. see Table 2 qf Shen et al. (2008)), which they
counter by adding a dependency LM in translation.

As another reference point, Chiang (2007) reports
Chinese-to-English translation experiments based
Hierarchical rulesX — (v,«) are composed of on 5.5M rules.

sequences of terminals and non-terminals, which Zollmann et al. (2008) report that filtering rules

Table 2 shows the lowercased IBM BLEU

3 Rule Filtering by Pattern
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en masse leads to degradation in translation petinct rules. Additionally, patterns with two non-
formance. Rather than apply a coarse filteringterminals which also have a monotonic relation-
such as a mincount for all rules, we follow a moreship between source and target non-terminals are
syntactic approach and further classify our ruleamuch more diverse than their reordered counter-
according to theipatternand apply different fil- parts.

ters to each pattern depending on its value in trans-

. . Some examples of extracted rules and their cor-
lation. The premise is that some patterns are moer ndin ttern follow. where Arabic is shown
important than others. espo g patiern follow, where Arabic IS sho

in Buckwalter encoding.

3.1 Rule Patterns
Pattern (wX; , wXiw) :

Class Rule Pattern (w+ gAl Xy, the X;said
Noe.N, (source, target) Types | Pattern (WX;w, wXy) :
WX1, WX,) 1185028 (fy X1kAnwn Al>wl , on december X)
1.2 <WX1 ’ WX1W> 153130 Pattern <WX1WX2 , WX1WX2W> :
(WX, X1w) 97889 (HI X1l1Azmp X3 , a X;solution to the Xcrisis)
1.3 (WX W, WX W) 32903522
(WX W, WX1) 989540
2.3 (XqwXy , X1WXg) 1554656 3.2 Building an Initial Rule Set
<X2WX1 , X1WX2> 39163

wXi1wXs , WX1WX2> 26901823
X1WXaw , X;WXow) 26053969

2 We describe a greedy approach to building a rule
2.4 (WX1wXs , WX1WXow) | 2534510

(

(

set in which rules belonging to a pattern are added
to the rule set guided by the improvements they
yield on mt02-05-tunerelative to the monotone
Hiero system described in the previous section.
We find that certain patterns seem not to con-
tribute to any improvement. This is particularly
significant as these patterns often encompass large
numbers of rules, as with patterns with match-
ing source and target patterns. For instance, we
_ _ found no improvement when adding the pattern
Table 3: Hierarchical rule patterns classed by(Xlw,X1w>, of which there were 1.2M instances

number of non-terminals, M, number of ele- _(Table 3). Since concatenation is already possible
ments N, source and target patterns, and types i qer the general glue rule, rules with this pattern
the rule set extracted fant02-05-tune are redundant. By contrast, the much less frequent
reordered counterpart, i.e. théwX;,X;w) pat-
tern (0.01M instances), provides substantial gains.
The situation is analogous for rules with two non-
terminals (N,;=2).

WXQWXl ) WX1WX2> 349176
XowX W , X1WX2W> 259459

(WX;wXow , WX;wXow) | 61704299
(WX1WXoW , WX XoW) 3149516
25 (WX1WXow , X1WXowW) 2330797
(WXoWX 1w , WX WX W) 275810
(WX WX W , WX XoW) 205801

Given a rule set, we defirsmource patternaind
target patternsby replacing every sequence of
non-terminals by a single symbol ‘w’ (indicating
word, i.e. terminal stringw € T™). Each hierar-
chical rule has a unique source and target pattern Based on exploratory analyses (not reported
which together define theile pattern here, for space) an initial rule set was built by

By ignoring the identity and the number of ad- excluding patterns reported in Table 4. In to-
jacent terminals, the rule pattern represents a natal, 171.5M rules are excluded, for a remaining
ural generalization of any rule, capturing its struc-set of 4.2M rules, 3.5M of which are hierarchi-
ture and the type of reordering it encodes. In to-cal. We acknowledge that adding rules in this way,
tal, there are 66 possible rule patterns. Table By greedy search, is less than ideal and inevitably
presents a few examples extracted fot02-05- raises questions with respect to generality and re-
tune showing that some patterns are much morgeatability. However in our experience this is a
diverse than others. For example, patterns witliobust approach, mainly because the initial trans-
two non-terminals (N;=2) are richer than pat- lation system runs very fast; it is possible to run
terns with N,,=1, as they cover many more dis- many exploratory experiments in a short time.
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Excluded Rules Types e Number of translations (NT). We keep the
al (XawXjw)y, (wXq,wXq) 2332604 NT most frequenty, i.e. eachy is allowed to
b (X1WXg,%) 2121594 have at mosNT rules.

<X1WX2W,X1WX2W> )
¢ (WX WX 2, WX WX5) 52955792 e Number of reordered translations (NRT).
d (WX WX oW, ) 69437146 We keep theNRT most frequenta with
e | N,,.N.= 1.3 w mincount=5| 32394578 monotonic non-terminals and tiMRT most
f | N,..N.= 2.3 w mincount=5| 166969 frequenta with reordered non-terminals.
0 | Npt.Ne=2.4 w mincount=10| 11465410
h T N,..N.= 2.5 W mincount=5 638804 e Count percentage (CP) We keep the most

frequenta until their aggregated number of
Table 4: Rules excluded from the initial rule set. counts reaches a certain percentageof the
total counts ofX — (v,x). Somey’s are al-

lowed to have more’s than others, depend-
3.3 Shallow versus Fully Hierarchical ing on their count distribution.

Translation

In measuring the effectiveness of rules in transla- Results applying these filters with various
tion, we also investigate whether a ‘fully hierarchi- thresholds are given in Table 6, including num-
cal’ search is needed or whether a shallow searcher of rules and decoding time. As shown, all
is also effective. In constrast to full Hiero, in the filters achieve at least a 50% speed-up in decod-
shallow search, only phrases are allowed to be sudtg time by discarding 15% to 25% of the base-
stituted into non-terminals. The rules used in eactine rules. Remarkably, performance is unaffected
case can be expressed as shown in the 2nd and 3phen applying the simpleNT and NRT filters
columns of Table 1. Shallow search can be conWith a threshold of 20 translations. Finally, the
sidered (loosely) to be a form of rule filtering. CM filter behaves slightly worse for thresholds of
As can be seen in Table 5 there is no impact or$0% for the same decoding time. For this reason,
BLEU, while translation speed increases by a facWe SelecNRT=20 as our general filter.
tor of 7. Of course, these results are specific to this
Arabic-to-English translation task, and need not L Mt02-05-] -tune | test |
be expected to carry over to other language pairs| Filter Time | Rules | BLEU | BLEU
such as Chinese-to-English translation. However, baseline | 2.0 | 4.20 | 52.1 | 51.4
the impact of this search simplification is easy to | NT=10 08 | 325 | 520 | 513
measure, and the gains can be significant enough, NT=15 08 | 343 | 520 | 513
that it may be worth investigation even for lan- | NT=20 08 | 356 | 521 | 514

guages with complex long distance movement. | NRT=10| 0.9 | 3.29 | 52.0 | 513
NRT=15| 1.0 3.48 52.0 51.4

| mt02-05- | -tune | -test | NRT=20| 1.0 | 359 | 521 | 51.4
System Time | BLEU | BLEU CP=50 | 0.7 | 256 | 51.4 | 50.9
HIERO 140 | 521 | 515 CP=90 | 1.0 | 360 | 52.0 | 513

HIERO - shallow| 2.0 52.1 51.4

Table 6: Impact of general rule filters on transla-

Table 5: Translation performance and time (in section (IBM BLEU), time (in seconds per word) and
onds per word) for full vs. shallow Hiero. number of rules (in millions).

3.4 Individual Rule Filters 3.5 Pattern-based Rule Filters

We now filter rules individually (not by class) ac- In this section we first reconsider whether reintro-
cording to their number of translations. For eachducing the monotonic rules (originally excluded as
fixedy ¢ T (i.e. with at least 1 non-terminal), described in rows 'b’, ’c’, 'd’ in Table 4) affects
we define the following filters over ruleX —  performance. Results are given in the upper rows
(y,a): of Table 7. For all classes, we find that reintroduc-
ing these rules increases the total number of rules
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\ mt02-05- \ -tune | -test |
| Npe.Ne | Filter | Time | Rules | BLEU | BLEU |
baselinedNRT=20 1.0 | 359 | 52.1 51.4
2.3 +monotone 1.1 4.08 51.5 51.1
2.4 +monotone 2.0 | 11.52| 51.6 51.0
2.5 +monotone 1.8 6.66 51.7 51.2
1.3 mincount=3 1.0 5.61 52.1 51.3
2.3 mincount=1 1.2 | 3.70 | 52.1 51.4
2.4 mincount=5 1.8 4.62 52.0 51.3
2.4 mincount=15| 1.0 3.37 52.0 51.4
25 mincount=1 1.1 | 427 | 52.2 51.5
1.2 mincount=5 1.0 351 51.8 51.3
1.2 mincount=10| 1.0 3.50 51.7 51.2

Table 7: Effect of pattern-based rule filters. Time in secoper word. Rules in millions.

substantially, despite the NRT=20 filter, but leads list.
to degradation in translation performance.

We next reconsider the mincount threshold val-
ues for N,;.N,. classes 1.3, 2.3, 2.4 and 2.5 origi-
nally described in Table 4 (rows e’ to 'h’). Results
under various mincount cutoffs for each class are
given in Table 7 (middle five rows). For classes
2.3 and 2.5, the mincount cutoff can be reduced Tzpie 8 shows results font02-05-tune mt02-

to 1 (i.e. all rules are kept) with slight translation 05-test the NIST subsets from the MT06 evalu-
improvements. In contrast, reducing the cutoff forg4on (Mt06-nist-nwfor newswire data ancht06-

classes 1.3 and 2.4 to 3'and 5, rgspectlvely, adq‘ﬁst-ngfor newsgroup) antnt0§ as measured by
many more rules with no increase in performance,vercased IBM BLEU and TER (Snover et al.
We also find that increasing the cutoff to 15 for 2006). Mixed case NIST BLEU for this system on

class 2.4 yields the same results with a smaller ru'?ntOSis 42.5. This is directly comparable to offi-
set. Finally, we consider further filtering applied to 5| MT08 evaluation results

class 1.2 with mincount 5 and 10 (final two rows

in Table 7). The number of rules is largely un-4 Conclusions

changed, but translation performance drops con- . - .
sistently as more rules are removed. This paper focuses on efficient large-scale hierar-

Based on these experiments, we conclude that %h!cal tran.slatlon while ma!nta!nlng good traqs—
ation quality. Smart memoization and spreading

is better to apply separate mincount thresholds t0" . . ) .
PPYY Sep eighborhood exploration during cube pruning are

the classes to obtain optimal performance with ag ived and sh o red
minimum size rule set. escribed and shown to reduce memory consump-

tion and Hiero search errors using a simple phrase-

3.6 Large Language Models and Evaluation ~ based system as a contrast.

Finallv. in thi i . its of We then define a general classification of hi-
nafy, in this section we report Tesults of our o chical rules, based on their number of non-

shall?xvl hler?rchlctgl sfystemT Vgllth7theﬂ 2'5 rlmg'terminals, elements and their patterns, for refined
count=1 configuration from Table 7, after includ- extraction and filtering.

ing the following N-best list rescoring steps. For a large-scale Arabic-to-English task, we
show that shallow hierarchical decoding is as good

e Minimum Bayes Risk (MBRJVe then rescore
the first 1000-best hypotheses with MBR,
taking the negative sentence level BLEU
score as the loss function to minimise (Ku-
mar and Byrne, 2004).

e Large-LM rescoring We build sentence-
specific zero-cutoff stupid-backoff (Brants et  *rull MTO8  results are  available at
al., 2007) 5-gram language models, estimatedttp://www.nist.gov/speech/tests/mt/2008/. It is worth

. . . noting that many of the top entries make use of system
using~4.7B words of Eng“Sh newswire text, combination; the results reported here are for single syste
and apply them to rescore each 10000-bestanslation.
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mt02-05-tune| mt02-05-testf mt06-nist-nw| mt06-nist-ng mt08
HIERO+MET | 52.2/41.6 | 51.5/42.2 | 48.4/43.6 | 35.3/53.2 || 42.5/48.6
+rescoring 53.2/40.8 | 52.6/41.4 | 49.4/429 | 36.6/53.5 || 43.4/48.1

Table 8: Arabic-to-English translation results (lowesed IBM BLEU / TER) with large language mod-
els and MBR decoding.

as fully hierarchical search and that decoding time machine translation with weighted finite state trans-
is dramatically decreased. In addition, we describe ducers. IrProceedings of FSMNLpages 27-35.
individual rule filters based on the distribution of phj| Blunsom, Trevor Cohn, and Miles Osborne. 2008.
translations with further time reductions at no cost A discriminative latent variable model for statistical
in translation scores. This is in direct contrast Machine translation. IRProceedings of ACL-HLT
to recent reported results in which other filtering P29€s 200-208.
strategies lead to degraded performance (Shen @horsten Brants, Ashok C. Popat, Peng Xu, Franz J.
al., 2008; Zollmann et al., 2008). Och, and Jeffrey Dean. 2007. Large language
We find that certain patterns are of much greater E&?\Fﬂ%_‘gg&a;:égi gggfg‘é'?n' Proceedings of
value in translation than others and that separate '
minimum count filters should be applied accord-Jeggh%érfglf_iCegthpﬁegleéofihtgn':ﬂ?gtrinpsfsj_f:gar;mlc%%zt _ ?
ingly. Some patterns were found to be redundant 12 . : : :
or harmful, in particular those with two monotonic CFG. InProceedings of TAP[pages 133-137.
non-terminals. Moreover, we show that the valueJean-Cédric Chappelier, Martin Rajman, Ramon
of a pattern is not directly related to the number of Arag_uesf, and A”tﬁ'”e Roz_cta_nknog.r 1993' Lattf|ce
rules it encompasses, which can lead to discarding gzrfw%aggss%%iclorcogm on. foceedings o
large numbers of rules as well as to dramatic speed
improvements. David Chiang. 2005. A hi_erarchical phrase—based
Although reported experiments are only for modgl for statistical machine translation. Rvo-
ceedings of AClpages 263-270.
Arabic-to-English translation, we belleve the ap- avid Chiang. 2007. Hierarchical phrase-based trans
praach wil prove o be general. Paltem relevanceon. Computatonal ingusic63(2,201- 226

filtering strategies to be equally worth pursuing. Markus Dreyer, Keith Hall, and Sanjeev Khudanpur.
2007. Comparing reordering constraints for SMT

using efficient BLEU oracle computation. Fro-
ceedings of SSST, NAACL-HLT 2007 / AMTA Work-

This work was supported in part by the GALE pro-  shop on Syntax and Structure in Statistical Transla-
gram of the Defense Advanced Research Projects 0N
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Iglesias supported by Spanish Government re- Resnik. 2008. Generalizing word lattice translation.
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13694-C03-03). Liang Huang and David Chiang. 2007. Forest rescor-

ing: Faster decoding with integrated language mod-
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