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Abstract
Many different types of features have NP SBAR
been shown to improve accuracy in parse /‘\ m,
reranking. A class of features that thus far B /NP\
has not been considered is based on a pro- or N and T
jection of the syntactic structure of a trans- a  baby a  woman

lation of the text to be parsed. The intu-
ition for using this type ofbitext projec-
tion feature is that ambiguous structures
in one language often correspond to un-
ambiguous structures in another. We show
that reranking based on bitext projection
features increases parsing accuracy signif-
icantly.

Figure 1: English parse with high attachment

in another. This information can be used for syn-
tactic disambiguation. However, it is surprisingly
hard to do this well. We use parses and alignments
that are automatically generated and hence imper-
1 Introduction fect. German parse quality is considered to be
worse than English parse quality, and the annota-

Parallel text orbitext is an important knowledge tjon style is different, e.g., NP structure in German
source for solving many problems such as majs flatter.

chine translation, cross-language information re-
trieval, and the projection of linguistic resources We conduct our research in the framework of
from one language to another. In this paper, weN-best parse reranking, but apply it to bitext and
show that bitext-based features are effective in adadd only features based @yntactic projection
dressing another NLP problem, increasing the acfrom German to English. We test the idea that,
curacy of statistical parsing. We pursue this apgenerally, English parses with more isomorphism
proach for a number of reasons. First, one lim-with respect to the projected German parse are bet-
iting factor for syntactic approaches to statisticalter. The system takes as input (i) English sen-
machine translation is parse quality (Quirk andtences with a list of automatically generated syn-
Corston-Oliver, 2006). Improved parses of bi-tactic parses, (i) a translation of the English sen-
text should result in improved machine translationtences into German, (i) an automatically gen-
Second, as more and more texts are available igrated parse of the German translation, and (iv)
several languages, it will be increasingly the casein automatically generated word alignment. We
that a text to be parsed is itself part of a bitext.achieve a significant improvement of 0.6% (ab-
Third, we hope that the improved parses of bitextsolute) on test data.
will serve as higher quality training data for im-
proving monolingual parsing using a process sim- The paper is organized as follows. Section 2
ilar to self-training (McClosky et al., 2006). outlines our approach and section 3 introduces the
It is well known that different languages encodemodel. Section 4 describes training and section 5
different types of grammatical information (agree-presents the data and experimental results. In sec-
ment, case, tense etc.) and that what can be lefion 6, we discuss previous work. Section 7 ana-
unspecified in one language must be made explicliyzes our results and section 8 concludes.
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vergence between the German and English trees to
/I\ try to rank the English trees which have less diver-
gence higher. Our test set is 3718 sentences from

NP cC NP .
P o /\ the_ English Penn treepank (Marcus et al., 1993)
L by NP SBAR which were translated into German. We hold out
of WN m, these sentences, and train BitPar on the remain-
L wohan ing Penn treebank training sentences. The average

Iy parsing accuracy of BitPar on this test set is

87.89%, which is our baselile We implement

NS features based on projecting the German parse to
each of the English 100-best parses in turn via the
word alignment. By performing cross-validation

Figure 2: English parse with low attachment

/NP\ KON NP and measuring test performance within each fold,
ART N und Ams we compare our new system with the baseline on
e Baby R the 3718 sentence set. The overall test accuracy

_ _ we reach is 88.55%, a statistically significant im-

Given a word alignment of the bitext, the sys-
2 Approach tem performs the following steps for each English

Consider the Enalish “ bab sentence to be parsed:
onsiderthe English sentence “He saw a ba yanﬁ) run BitPar trained on English to generate 100-

a woman who had gray hair”. Suppose that _th_eoest parses for the English sentence

baseline parser generates two parses, containi ) run BitPar trained on German to generate the
the NPs shown in figures 1 and 2, respectively, an “best parse for the German sentence

f[haj[ the semantically more plausible second IOarSﬁii) calculate feature function values which mea-
in figure 2 is correct. How can we determine thatSure different kinds of syntactic divergence

? Sj .
the s_ecogd parse shouldbbe favo;edé Since we afﬁ/) apply a model that combines the feature func-
parsing bitext, we can observe the German trang;,, 5)yes to score each of the 100-best parses

lation which is “Er sah ein Baby und eine Frau : :
' (v) pick the best parse according to the model
die graue Haare hatte” (glossed: “he saw a bab>(/ )P P J

and a woman, who gray hair had”). The singular
verb in the subordinate clause (“hatte”: “had”) in-
dicates that the subordinate S must be attached lo

3 Model

P o e . o We use a log-linear model to choose the best En-
to “woman” (“Frau”) as shown in figure 3. . . .
glish parse. The feature functions are functions

We follow Collins’ (2000) approach to discrim- ) .
inative reranking (see also (Riezler et al., 2002)).On the hypothesized English parsethe German

. . arseg, and the word alignment, and they as-
Given a new sentence to parse, we first select thltoa 9 g ’ y

. . ign re (varyin tween nd infinity) that

best N parse trees according to a generative mode?.g a score ( arying between 0 a d y) tha
.o Theasuresyntactic divergence. The alignment of

Then we use new features to learn discriminatively

how to rerank the parses in this N-best list. Wea sentence pair is a function that, for each English

: . L word, returns a set of German words that the En-
use features derived using projections of the 1-best,. L :
lish word is aligned with as shown here for the

German parse onto the hypothesized English par ontence pair from section 2:

under consideration. Er sah ein Baby und eine Frau , die graue Haare
In more detail, we take the 100 best Englishha,[,[e Y 1 ’

parses from the BitPar parser (Schmid, 2004) an
rerank them. We have a good chance of finding thgie{l} sam2} af3} baby4} and(S} a6}

optimal parse among the 100-bestn automati- woman{7} who{9} had{12} gray{10} hair{11}

cally generated word alignment determines trans- Eeature functi_on values are ca_1|_cu|ated either by
lational correspondence between German and Er]i'-ak'ng the negativing of a probability, or by using
glish. We use features which meassystactic di- & heuristic function which scales in a similar fash-

1Using an oracle to select the best parse results ifan 2The test set is very challenging, containing English sen-
of 95.90, an improvement 08.01 absolute over the baseline. tences of up to 99 tokens.
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ion®. The form of the log-linear model is shown in words aligned with a German word at positibn

eq. 1. There aré/ feature functionsy, ..., hjs. f'~1(7) returns the leftmost word position of the
The vector) is used to control the contribution of English words aligned with a German word at po-
each feature function. sition ¢, or zero if the German word is unaligned.
We overload the above functions to allow the ar-
cap(— S, Aihie, g, a)) gumenti to be a set, in which case union is used,

pa(elg,a) = (1) for example, f(i) = U f(j). Positions in a
cexp(— S Aihi(e', g, ’ e .
2 erp(= 2 (¢'.9,a)) tree are denoted with integers. First, the POS tags
Given a vector of weights\, the best English are numbered from 1 to the length of the sentence

parseé can be found by So|ving eq. 2. The model (i.e., the same as the word pOSitionS). Constituents

is trained by finding the weight vector which  higher in the tree are also indexed using consecu-
maximizes accuracy (see section 4). tive integers. We refer to the constituent that has

been assigned indéxn the treet as “constituent
in treet” or simply as “constituent”. The follow-
é = argmax py(e|g, a) ing functions have the English and German trees
¢ _ as an implicit argument; it should be obvious from
= argmil eﬂfp(Z Aihi(e,9,a))  (2)  the argument to the function whether the index
! i refers to the German tree or the English tree.
3.1 Feature Functions When we say “constituents”, we include nodes

on the POS level of the tree. Our syntactic trees

The basic idea behind our feature functions is thaf, ., _ = t-ted with a syntactic head for each con-
any constituent in a sentence should play aPPrOXstityent. Finally, the tag at position 0 is NULL.

imately tr,:ﬁ same syntagfuc role a?? ha}[/(? a S'tm”armidZSit(i) returnsO if 7 is 0, returnsl if ¢ has
Ispf’:m aslf icorrgspon 'Qg conzl uentin a rar_]se'xactly two siblings, one on the left éfand one
ation. there is an obvious disagreement, it . o right, and otherwise returfis

is probably caused by wrong attachment or other headi) returns the index of the head &f The
syntactic mistakes in parsing. Sometimes in transg . 4 of a POS tag is its own position.

lation the syntactic role of a given semantic consti- tag(i) returns the tag of.

f[utent changes; vye assume that our mode_l penal'left(z’) returns the index of the leftmost sibling of
izes all hypothesized parses equally in this case.
For the initial experiments, we used a set of 34"
probabilistic and heuristic feature functions.

BitParLogProb (the only monolingual feature)
is the negative log probability assigned by BitParZ.
to the English parse. If we st = 1 and); =0
for all i # 1 and evaluate eq. 2, we will select the
parse ranked best by BitPar.

In order to define our feature functions, we first
introduce auxiliary functions operating on indi-
vu_zlual word po§|t|ons or sets _Of word positions. punctuation and excluding spaces) covered by the
Alignment functions tgk_e an alignmemtas anar .onstituents in sef..
gument. In the descriptions of these functions we [x] is 1if = is true, and O otherwise.
omita as itis held constant for a sentence pair (i.e.i andm are the lengths in words of the English and
an English sentence and its German translation). German sentences, respectively.

f (@) returns the set of word positions of German
words aligned with an English word at position  3.1.1 Count Feature Functions

f'(é) returns the leftmost word position of the FeatureCrdBin counts binary events involving
German words aligned with an English word at po-the heads of coordinated phrases. If in the English
sition, or zero if the English word is unaligned.  harse we have a coordination where the English

f71(i) retums the set of positions of English cc is aligned only with a German KON, and both
~ 3For example, a probability of 1 is a feature value of 0, Nave two siblings, then the value contributed to
while a low probability is a feature value whichs 0. CrdBin is 1 (indicating a constraint violation) un-

right(¢) returns the index of the rightmost sibling.
up() returns the index of's parent.

A(i) returns the set of word positions covered by
. If i is a set A returns all word positions between
the leftmost position covered by any constituent in
the set and the rightmost position covered by any
constituent in the set (inclusive).

n(A) returns the size of the set

c(A) returns the number of characters (including
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less the head of the English left conjunct is alignedight conjunct has 20. In the German parse (fig-
with the head of the German left conjunct and like-ure 3) the left conjunct has 7 characters and the
wise the right conjuncts are aligned. Eq. 3 calcu+ight conjunct has 27. Finally, = 33 ands = 42.
lates the value ofrdBin. Thus, the value o€rdPrj is 0.48 for the first hy-
pothesized parse and 0.05 for the second, which
! captures the higher divergence of the first English
Z[(tag(z‘) = CC][(n(f(i)) =1] mid2siki) parse from the German parse.
i=1 POSParentPrjis based on computing the span
mid2sik(f’(i)) [tag(f'(i)) = KON-CD] difference between all the parent constituents of

[[headleft(f'(i))) # f'(headleft(i)))] OR POS tags in a German parse and their respective
. ' y . ‘ coverage in the corresponding hypothesized parse.
[headright(f())) # f(headright(:)))]]  (3) The feature value is the sum of all the differences.
FeatureQ simply captures a mismatch betweenPOSPafi) is true.if z’limm_edia.tely. dominates a
questions and statements. If an English sentence ROS tag. The projection direction is from German

parsed as a question but the parallel German sef English, and the feature computes a percentage
tence is not, or vice versa, the feature valug:is difference which is character-based. The value of

otherwise the value i8. the feature is calculated in eq. 5, whevé s the
number of constituents (including POS tags) in the

3.1.2 Span Projection Feature Functions German tree.

Span projection features calculate the percentage

difference between a constituent’s span and the m . 1A

span of its projection. Span size is measured inZ[[POSPa(ri)]]\C(A(Z)) _dAl (A(z))>)|

characters or words. To project a constituent in i=1 5 r

a parse, we use the word alignment to project all ) ] o ) (5)

word positions covered by the constituent and then 11€ ight conjunct in figure 3 is a POSParent

look for the smallest covering constituent in thetNat corresponds to the coordination NP in fig-
parse of the parallel sentence. ure 1, contributing a score of 0.21, and to the right

CrdPrj is a feature that measures the diver_conjunct in figure 2, contributing a score of 0.04.

gence in the size of coordination constituents and©" the two parses of the full sentences contain-
their projections. If we have a constituent (xP1Nd the NPs in figure 1 and figure 2, we sum over
CC XP2) in English that is projected to a German’ POSParents and get a value of 0.27 for parse 1
coordination, we expect the English and Germa/fnd 0-11 for parse 2. The lower value for parse
left conjuncts to span a similar percentage of thei® COeCtly captures the fact that the first English
respective sentences, as should the right conjunct@@rse has higher divergence than the second due to

The feature computes a character-based percerficorrect high attachment. _
age difference as shown in eq. 4. AbovePOSPrjis similar toPOSParentPrj, but

it is word-based and the projection direction is
z from English to German. Unlik€OSParentPrj
. , the feature value is calculated over all constituents
tagi) = CC =1 4 : .
z;[[ g lln(7(®) =11 @ above the POS level in the English tree.
Another span projection feature function is
DTNNPrj, which projects English constituents of

E[;ag(f’(i)) = KON-CD]

mid2sik(i)mid2sit(f' (1)) y the form (NP(DT)(NN)). DTNNG) is true if i
(’C(A(left(l))) ~c(Aleft(f (Z))))’ is an NP immediately dominating only DT and
r ' s . NN. The feature computes a percentage difference
HC(A(r'ght(l)))  c(A(right(f(7)))) ) which is word-based, shown in eq. 6.
T S
r ands are the lengths in characters of the En- £ (A1) n(Af(A(D))))
glish and German sentences, respectively. In theZﬂDTNN(Z)M T m | (6)

English parse in figure 1, the left conjunct has 5 =!
characters and the right conjunct has 6, while in L is the number of constituents in the English
figure 2 the left conjunct has 5 characters and théree. This feature is designed to disprefer parses
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where constituents starting with “DT NN”, e.g., the probability that for an English word at posi-
(NP (DT NN NN NN)), are incorrectly split into tion ¢, the parent of its POS tag has a particular
two NPs, e.g., (NP (DT NN)) and (NP (NN NN)). label. The feature value is calculated in eq. 10.
This feature fires in this case, and projects the (NP

(DT NN)) into German. If the German projection o . , _

is a surprisingly large number of words (as should (% j) = p(tag(up(i))[tag(s), tag(up(s)))  (9)

be the case if the German also consists of a deter-

miner followed by several nouns) then the penalty

paid by this feature is large. This feature is impor- <~ . ,_ ez — 10810(¢(3, 7))
tant as (NP (DT NN)) is a very common construc- ; min(s, n(f(i))

tion.
o ) Consider (S(NP(NN fruit))(VP(V flies))) and

3.1.3 Probabilistic Feature Functions (NP(NN fruit)(NNS flies)) with the translation
We use Europarl (Koehn, 2005), from which we (NP(NNS Fruchtfliegen)). Assume that “fruit”
extract a parallel corpus of approximately 1.22and “flies” are aligned with the German com-
million sentence pairs, to estimate the probabilispound noun “Fruchtfliegen”. In the incorrect En-
tic feature functions described in this section. glish parse the parent of the POS of “fruit” is

For the PDepth feature, we estimate English NP and the parent of the POS of “flies” is VP,
parse depth probability conditioned on Germanwhile in the correct parse the parent of the POS of
parse depth from Europarl by calculating a sim-“fruit” is NP and the parent of the POS of “flies”
ple probability distribution over the 1-best parseis NP. In the German parse the compound noun
pairs for each parallel sentence. A very deep Geris POS-tagged as an NNS and the parent is an
man parse is unlikely to correspond to a flat En-NP. The probabilities considered for the two En-
glish parse and we can penalize such a parse usingish parses arg(NP|NNS, NP) for “fruit” in both
PDepth. The index: refers to a sentence pair in parsesp(VP|NNS, NP) for “flies” in the incorrect
Europarl, as doeg. Letl; andm; be the depths parse, anch(NP|NNS, NP) for “flies” in the cor-
of the top BitPar ranked parses of the English andect parse. A German NNS in an NP has a higher
German sentences, respectively. We calculate therobability of being aligned with a word in an En-
probability of observing an English tree of depth glish NP than with a word in an English VP, so the
I’ given German tree of depthn/ as the maxi- second parse will be preferred.
mum likelihood estimate, shown in eq. 7, where As with the PDepth feature, we use relative
d(z,2') = 1if z = 2/ and 0 otherwise. To avoid frequency to estimate this feature. When an En-
noisy feature values due to outliers and parse emlish word is aligned with two words, estimation is
rors, we bound the value #fDepthat 5 as shown more complex. We heuristically give each English
ineq. &. and German pair one count. The value calculated

S S0 1) my) by the feature function is the geometric mearf
p(l'|m/) = =" T (7) the pairwise probabilities, see eq. 10.

>_;0(m!,my)

) (10)

3.1.4 Other Features

min(5, —log;o(p(I'|m’))) (8)  Our best system uses the nine features we have

described in detail so far. In addition, we imple-

The full parse of the sentence containing the En'mented the following 25 other features, which did

glish high attachment has a parse depth of 8 whll%ot improve performance (see section 7): (i) 7

the full parse of the sentence containing the En; » e
. . tag” feat lar td®TagEP tGPOSG-
glish low attachment has a depth of 9. Their fea- plag fea’lres simuar ag=raren

ture values given the German parse depth of 6 argarent but predicting and conditioning on differ-
nt combinations of tags (POS tag, parent of POS,
—log;((0.12) = 0.93 and— log;,(0.14) = 0.84. gs ( ap

. . ) %randparent of POS)
The wrong parse is assigned a higher feature valu (ii) 10 “prj’ features similar toPOSParentPrj
indicating its higher divergence.

measuring different combinations of character and
The featurd®TagEParentGPOSGParenmea-

L ) -~ word percentage differences at the POS parent and
sures tagging inconsistency based on estimating

- SEach English word has the same weight regardless of
“Throughout this paper, assurhug(0) = —oo. whether it was aligned with one or with more German words.
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POS grandparent levels, projecting from both En; 1: Algorithm TRAIN())
; 2: repeat
g“_fcfh and _German . 3. add\ to the sefs
(iii) 3 variants of theDTNN feature function 4: lett be a set of 1000 randomly generated vectors
(iv) A NPPP feature function, similar to the | 5 letA =argmax, ¢y F1(p)
DTNN feature function but trying to counteract a| & '6t\" =2
. . 7 repeat
bias towards (NP (NP) (PP)) units 8: repeatedly run one-dimensional error minimiza-
(v) A feature function which penalizes aligning tion step (updating a single scalar of the vectpr
; ; until no further error reduction
C'afjsa' unl'FS to non-clausal units 9: adjust each scalar ofin turn towards) such that
(vi) The BitPar rank there is no increase in error (if possible)
10: until no scalar in\ changes in last two steps (8 and
4 Training 9 .
11: until A=A\
Log-linear models are often trained using the 12 "eturn

Maximum Entropy criterion, but we train our ) o _
model directly to maximizeF;. We scoreF; by Figure 4: Sketch of the training algorithm
comparing hypothesized parses for the discrimi-

hative training set with the gold standard. To tytences by a translation bureau. We withheld these
to find the optimal vector, we perform direct ac- 3718 English sentences (and an additional 1000
curacy maximization, meaning that we search foteseryved sentences) when we trained BitPar on the
the \ vector which directly optimized”; on the  pgnn treebank.

training set. _ o Parses. We use the BitPar parser (Schmid,
Och (2003) hasdescrlbedaneff|C|entexactonezoo4) which is based on a bit-vector im-

dimensional accuracy maximization teChniq“eforplementation (cf. (Graham et al., 1980)) of

a similar search problem in machine trans,lation,[he Cocke-Younger-Kasami algorithm (Kasami,
The technique involves calculating an explicit 1965; Younger, 1967). It computes a compact
representgtion of the piecewise constant f“nCtiO'E)arse forest for all possible analyses. As all pos-
gm(x) which evaluates the accuracy of the hy-gjhje analyses are computed, any number of best
potheses which would be picked by eq. 2 from a),ses can be extracted. In contrast, other treebank
set of hypotheses if we hold all weights constant,,sers yse sophisticated search strategies to find
except for the weight,,, which is set tar. This  the most probable analysis without examining the
is calculated in one pass over the data. set of all possible analyses (Charniak et al., 1998;
The algorithm for training is initialized with a k/ein and Manning, 2003). BitPar is particularly

choice forA and is described in figure 4. The func- | ;seful for N-best parsing as the N-best parses can
tion F1(A) returnsF; of the parses selected using o computed efficiently.

A. Due to space we do not describe step 8 in detail £ the 3718 sentences in the translated set, we

(see (Och, 2003)). In step 9 the algorithm per- o taq 100-best English parses and 1-best Ger-

forms approximate normalization, where featureman parses. The German parser was trained on

weights are forced towards zero. The implemeny,q 1yGER treebank. For the Europarl corpus, we
tatlo.n.of step 9is stralght-fon/yard given thd created 1-best parses for both languages.

explicit functionsg,, (x) created in step 8. Word Alignment. We use a word alignment
of the translated sentences from the Penn tree-
bank, as well as a word alignment of the Europarl
We used the subset of the Wall Street Journatorpus. We align these two data sets together
investigated in (Atterer and Satze, 2007) for with data from the JRC Acquis (Steinberger et al.,
our experiments, which consists of all sentence2006) to try to obtain better quality alignments (it
that have at least one prepositional phrase attaclis well known that alignment quality improves as
ment ambiguity. This difficult subset of sentenceshe amount of data increases (Fraser and Marcu,
seems particularly interesting when investigating2007)). We aligned approximately 3.08 million
the potential of information in bitext for improv- sentence pairs. We tried to obtain better alignment
ing parsing performance. The first 500 sentencegquality as alignment quality is a problem in many
of this set were translated from English to Germarcases where syntactic projection would otherwise
by a graduate student and an additional 3218 semwork well (Fossum and Knight, 2008).

5 Data and Experiments

287



System Train | +base| Test| +base| greedy feature selection helps with this (see also
1 || Baseline 87.89 87.89

2 || Contrastive §8.70| 082 8845/ 056 Section?).
(5 trials/fold)
3 || Contrastive 88.82| 093|8855| 066| 6 Previous Work

(greedy selection

As we mentioned in section 2, work on parse
Table 1: Averagd+ of 7-way cross-validation  reranking is relevant, but a vital difference is that
we use features based only gymtactic projection
_ of the two languages in a bitext. For an overview
To generate the alignments, we used Model 4y gitferent types of features that have been used in
(Brown et al., 1993), as implemented in GIZA++ 5rse reranking see Charniak and Johnson (2005).
(Och and Ney, 2003). As is standard practice, W§ jke Collins (2000) we use cross-validation to
trained Model 4 with English as the source lan-y4in our model, but we have access to much less
guage, and then trained Model 4 with German agj514 (3718 sentences total, which is less than 1/10
the source language, resulting in two Viterbi align-uf the data Collins used). We use rich feature func-
ments. These were combined using@rew Diag  tjons which were designed by hand to specifically
Final And symmetrization heuristic (Koehn et al., 54qress problems in English parses which can be
2003). disambiguated using the German translation.
Experiments. ~ We perform 7-way cross-  Syntactic projection has been used to bootstrap
validation on 3718 sentences. In each fold of thereebanks in resource poor languages. Some ex-
cross-validation, the training set is 3186 sentencesimples of projection of syntactic parses from En-
while the test set is 532 sentences. Our results aiglish to a resource poor language for which no
shown in table 1. In row 1, we take the hypothesisparser is available are the works of Yarowsky and
ranked best by BitPar. In row 2, we train using theNgai (2001), Hwa et al. (2005) and Goyal and
algorithm outlined in section 4. To cancel out anyChatterjee (2006). Our work differs from theirs
effect caused by a particularly effective or ineffec-in that we are performing a parse reranking task
tive starting\ value, we perform 5 trials each time. in English using knowledge gained from German
Columns 3 and 5 report the improvement over theparses, and parsing accuracy is generally thought
baseline on train and test respectively. We reackp be worse in German than in English.
an improvement of 0.56 over the baseline using Hopkins and Kuhn (2006) conducted research
the algorithm as described in section 4. with goals similar to ours. They showed how to
Our initial experiments used many highly cor- build a powerful generative model which flexibly
related features. For our next experiment we uséncorporates features from parallel text in four lan-
greedy feature selection. We start withhaector  guages, but were not able to show an improvement
that is zero for all features, and then run the errotin parsing performance. After the submission of
minimization without the random generation of our paper for review, two papers outlining relevant
vectors (figure 4, line 4). This means that we addvork were published. Burkett and Klein (2008)
one feature at a time. This greedy algorithm windsdescribe a system for simultaneously improving
up producing a vector with many zero weights. InChinese and English parses of a Chinese/English
row 3 of table 1, we used the greedy feature selechitext. This work is complementary to ours. The
tion algorithm and trained using}, resulting in  system is trained using gold standard trees in both
a performance of 0.66 over the baseline which iChinese and English, in contrast with our system
our best result. We performed a planned one-tailedvhich only has access to gold standard trees in En-
paired t-test on thé’ scores of the parses selectedglish. Their system uses a tree alignment which
by the baseline and this system for the 3718 senvaries within training, but this does not appear to
tences (parses were taken from the test portiomake a large difference in performance. They use
of each fold). We found that there is a signifi- coarsely defined features which are language in-
cant difference with the baseling8717) = 6.42,  dependent. We use several features similar to their
p < .01). We believe that using the full set of 34 two best performing sets of features, but in con-
features (many of which are very similar to onetrast with their work, we also define features which
another) made the training problem harder with-are specifically aimed at English disambiguation
out improving the fit to the training data, and thatproblems that we have observed can be resolved
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using German parses. They use an in-domain We also tried to see if our results depended
Chinese parser and out-of-domain English parsestrongly on the log-linear model and training algo-
while for us the English parser is in-domain andrithm, by using the SVM-Light ranker (Joachims,
the German parser is out-of-domain, both of which2002). In order to make the experiment tractable,
make improving the English parse more difficult. we limited ourselves to the 8-best parses (rather
Their Maximum Entropy training is more appro- than 100-best). Our training algorithm and model
priate for their numerous coarse features, whilevas 0.74 better than the baseline on train and 0.47
we use Minimum Error Rate Training, which is better on test, while SVM-Light was 0.54 better
much faster. Finally, we are projecting from a sin-than baseline on train and 0.49 better on test (us-
gle German parse which is a more difficult prob-ing linear kernels). We believe that the results are
lem. Fossum and Knight (2008) outline a systermot unduly influenced by the training algorithm.

for using Chinese/English word alignments to de-

termine ambiguous English PP-attachments. The§ ~Conclusion

f'.rSt use an oracle tq choos_e PP-attac_:hme_nt Clec\'/'\/e have shown that rich bitext projection features
sions which are amblguous in the Enghsh side _O.f %an improve parsing accuracy. This confirms the
Chinese/English bitext, and then build a Class'f'e%ypothesisthat the divergence in what information

Whllfh gls:,)est[[nfor:matl(t)r;lfrqm a wolr\tlj agiﬂme”t to different languages encode grammatically can be
{nat_e_ f-a atc. mgn eglsg)nsv.v 0 |nfse Stme'xploited for syntactic disambiguation. Improved
actic information 1S required. VVe use automat- arsing due to bitext projection features should be

cally ggneratepl German parses to improve En_gl'sﬁelpful in syntactic analysis of bitexts (by way of
s_ynf[actlc parsing, and have_not been able to _fmd utual syntactic disambiguation) and in comput-
S|m|Itar ph:ednorr;fgnon for which only a word align- ing syntactic analyses of texts that have transla-
ment would sutlice. tions in other languages available.
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