
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 238–245,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Effects of Word Confusion Networks on Voice Search
Junlan Feng, Srinivas Bangalore

AT&T Labs-Research
Florham Park, NJ, USA

junlan,srini@research.att.com

Abstract

Mobile voice-enabled search is emerging
as one of the most popular applications
abetted by the exponential growth in the
number of mobile devices. The automatic
speech recognition (ASR) output of the
voice query is parsed into several fields.
Search is then performed on a text corpus
or a database. In order to improve the ro-
bustness of the query parser to noise in the
ASR output, in this paper, we investigate
two different methods to query parsing.
Both methods exploit multiple hypotheses
from ASR, in the form of word confusion
networks, in order to achieve tighter cou-
pling between ASR and query parsing and
improved accuracy of the query parser. We
also investigate the results of this improve-
ment on search accuracy. Word confusion-
network based query parsing outperforms
ASR 1-best based query-parsing by 2.7%
absolute and the search performance im-
proves by 1.8% absolute on one of our data
sets.

1 Introduction

Local search specializes in serving geographi-
cally constrained search queries on a structured
database of local business listings. Most text-
based local search engines provide two text fields:
the “SearchTerm” (e.g. Best Chinese Restau-
rant) and the “LocationTerm” (e.g. a city, state,
street address, neighborhood etc.). Most voice-
enabled local search dialog systems mimic this
two-field approach and employ a two-turn dia-
log strategy. The dialog system solicits from the
user a LocationTerm in the first turn followed by a
SearchTerm in the second turn (Wang et al., 2008).

Although the two-field interface has been
widely accepted, it has several limitations for mo-
bile voice search. First, most mobile devices are
location-aware which obviates the need to spec-
ify the LocationTerm. Second, it’s not always
straightforward for users to be aware of the dis-
tinction between these two fields. It is com-

mon for users to specify location information in
the SearchTerm field. For example, “restaurants
near Manhattan” for SearchTerm and “NY NY”
for LocationTerm. For voice-based search, it is
more natural for users to specify queries in a sin-
gle utterance1. Finally, many queries often con-
tain other constraints (assuming LocationTerm is a
constraint) such as that deliver in restaurants that
deliver or open 24 hours in night clubs open 24
hours. It would be very cumbersome to enumerate
each constraint as a different text field or a dialog
turn. An interface that allows for specifying con-
straints in a natural language utterance would be
most convenient.

In this paper, we introduce a voice-based search
system that allows users to specify search requests
in a single natural language utterance. The out-
put of ASR is then parsed by a query parser
into three fields: LocationTerm, SearchTerm,
and Filler. We use a local search engine,
http://www.yellowpages.com/, which accepts the
SearchTerm and LocationTerm as two query fields
and returns the search results from a business list-
ings database. We present two methods for pars-
ing the voice query into different fields with par-
ticular emphasis on exploiting the ASR output be-
yond the 1-best hypothesis. We demonstrate that
by parsing word confusion networks, the accuracy
of the query parser can be improved. We further
investigate the effect of this improvement on the
search task and demonstrate the benefit of tighter
coupling of ASR and the query parser on search
accuracy.

The paper outline is as follows. In Section 2, we
discuss some of the related threads of research rel-
evant for our task. In Section 3, we motivate the
need for a query parsing module in voice-based
search systems. We present two different query
parsing models in Section 4 and Section 5 and dis-
cuss experimental results in Section 6. We sum-
marize our results in Section 7.

1Based on the returned results, the query may be refined
in subsequent turns of a dialog.

238



2 Related Work

The role of query parsing can be considered as
similar to spoken language understanding (SLU)
in dialog applications. However, voice-based
search systems currently do not have SLU as a
separate module, instead the words in the ASR
1-best output are directly used for search. Most
voice-based search applications apply a conven-
tional vector space model (VSM) used in infor-
mation retrieval systems for search. In (Yu et al.,
2007), the authors enhanced the VSM by deem-
phasizing term frequency in Listing Names and
using character level instead of word level uni/bi-
gram terms to improve robustness to ASR errors.
While this approach improves recall it does not
improve precision. In other work (Natarajan et
al., 2002), the authors proposed a two-state hidden
Markov model approach for query understanding
and speech recognition in the same step (Natarajan
et al., 2002).

There are two other threads of research liter-
ature relevant to our work. Named entity (NE)
extraction attempts to identify entities of interest
in speech or text. Typical entities include loca-
tions, persons, organizations, dates, times mon-
etary amounts and percentages (Kubala et al.,
1998). Most approaches for NE tasks rely on ma-
chine learning approaches using annotated data.
These algorithms include a hidden Markov model,
support vector machines, maximum entropy, and
conditional random fields. With the goal of im-
proving robustness to ASR errors, (Favre et al.,
2005) described a finite-state machine based ap-
proach to take as input ASR n-best strings and ex-
tract the NEs. Although our task of query segmen-
tation has similarity with NE tasks, it is arguable
whether the SearchTerm is a well-defined entity,
since a user can provide varied expressions as they
would for a general web search. Also, it is not
clear how the current best performing NE methods
based on maximum entropy or conditional ran-
dom fields models can be extended to apply on
weighted lattices produced by ASR.

The other related literature is natural language
interface to databases (NLIDBs), which had been
well-studied during 1960s-1980s (Androutsopou-
los, 1995). In this research, the aim is to map
a natural language query into a structured query
that could be used to access a database. However,
most of the literature pertains to textual queries,
not spoken queries. Although in its full general-

1−best
WCN

Query
Parsed

Query
Parser

Speech
SearchASR

Figure 1: Architecture of a voice-based search sys-
tem

ity the task of NLIDB is significantly more ambi-
tious than our current task, some of the challeng-
ing problems (e.g. modifier attachment in queries)
can also be seen in our task as well.

3 Voice-based Search System
Architecture

Figure 1 illustrates the architecture of our voice-
based search system. As expected the ASR and
Search components perform speech recognition
and search tasks. In addition to ASR and Search,
we also integrate a query parsing module between
ASR and Search for a number of reasons.

First, as can be expected the ASR 1-best out-
put is typically error-prone especially when a user
query originates from a noisy environment. How-
ever, ASR word confusion networks which com-
pactly encode multiple word hypotheses with their
probabilities have the potential to alleviate the er-
rors in a 1-best output. Our motivation to intro-
duce the understanding module is to rescore the
ASR output for the purpose of maximizing search
performance. In this paper, we show promising
results using richer ASR output beyond 1-best hy-
pothesis.

Second, as mentioned earlier, the query parser
not only provides the search engine “what” and
“where” information, but also segments the query
to phrases of other concepts. For the example we
used earlier, we segment night club open 24 hours
into night club and open 24 hours. Query seg-
mentation has been considered as a key step to
achieving higher retrieval accuracy (Tan and Peng,
2008).

Lastly, we prefer to reuse an existing local
search engine http://www.yellowpages.com/, in
which many text normalization, task specific tun-
ing, business rules, and scalability issues have
been well addressed. Given that, we need a mod-
ule to translate ASR output to the query syntax that
the local search engine supports.

In the next section, we present our proposed ap-
proaches of how we parse ASR output including
ASR 1-best string and lattices in a scalable frame-
work.

239



4 Text Indexing and Search-based Parser
(PARIS)

As we discussed above, there are many potential
approaches such as those for NE extraction we can
explore for parsing a query. In the context of voice
local search, users expect overall system response
time to be similar to that of web search. Con-
sequently, the relatively long ASR latency leaves
no room for a slow parser. On the other hand,
the parser needs to be tightly synchronized with
changes in the listing database, which is updated
at least once a day. Hence, the parser’s training
process also needs to be quick to accomodate these
changes. In this section, we propose a probabilis-
tic query parsing approach called PARIS (parsing
using indexing and search). We start by presenting
a model for parsing ASR 1-best and extend the ap-
proach to consider ASR lattices.
4.1 Query Parsing on ASR 1-best output

4.1.1 The Problem
We formulate the query parsing task as follows.
A 1-best ASR output is a sequence of words:
Q = q1, q2, . . . , qn. The parsing task is to
segment Q into a sequence of concepts. Each
concept can possibly span multiple words. Let
S = s1, s2, . . . , sk, . . . , sm be one of the possible
segmentations comprising of m segments, where
sk = qi

j = qi, . . . qj , 1 ≤ i ≤ j ≤ n + 1. The
corresponding concept sequence is represented as
C = c1, c2, . . . , ck, . . . , cm.

For a given Q, we are interested in searching
for the best segmentation and concept sequence
(S∗, C∗) as defined by Equation 1, which is rewrit-
ten using Bayes rule as Equation 2. The prior
probability P (C) is approximated using an h-
gram model on the concept sequence as shown
in Equation 3. We model the segment sequence
generation probability P (S|C) as shown in Equa-
tion 4, using independence assumptions. Finally,
the query terms corresponding to a segment and
concept are generated using Equations 5 and 6.

(S∗, C∗) = argmax
S,C

P (S, C) (1)

= argmax
S,C

P (C) ∗ P (S|C) (2)

P (C) = P (c1) ∗
m∏
i

P (ci|ci−h+1
i−1 ) (3)

P (S|C) =
m∏

k=1

P (sk | ck) (4)

P (sk|ck) = P (qi
j |ck) (5)

P (qi
j |ck) = Pck

(qi) ∗
j∏

l=i+1

Pck
(ql | ql−k+1

l−1 ) (6)

To train this model, we only have access to text
query logs from two distinct fields (SearchTerm,
LocationTerm) and the business listing database.
We built a SearchTerm corpus by including valid
queries that users typed to the SearchTerm field
and all the unique business listing names in the
listing database. Valid queries are those queries
for which the search engine returns at least one
business listing result or a business category. Sim-
ilarly, we built a corpus for LocationTerm by con-
catenating valid LocationTerm queries and unique
addresses including street address, city, state, and
zip-code in the listing database. We also built a
small corpus for Filler, which contains common
carrier phrases and stop words. The generation
probabilities as defined in 6 can be learned from
these three corpora.

In the following section, we describe a scalable
way of implementation using standard text indexer
and searcher.

4.1.2 Probabilistic Parsing using Text Search
We use Apache-Lucene (Hatcher and Gospod-
netic, 2004), a standard text indexing and search
engines for query parsing. Lucene is an open-
source full-featured text search engine library.
Both Lucene indexing and search are efficient
enough for our tasks. It takes a few milliseconds
to return results for a common query. Indexing
millions of search logs and listings can be done
in minutes. Reusing text search engines allows
a seamless integration between query parsing and
search.

We changed the tf.idf based document-term
relevancy metric in Lucene to reflect P (qi

j |ck) us-
ing Relevancy as defined below.

P (qi
j |ck) = Relevancy(qi

j , dk) =
tf(qi

j , dk) + σ

N
(7)

where dk is a corpus of examples we collected for
the concept ck; tf(qi

j , dk) is referred as the term
frequency, the frequency of qi

j in dk; N is the num-
ber of entries in dk; σ is an empirically determined
smoothing factor.

240



0 1

gary/0.323

cherry/4.104

dairy/1.442

jerry/3.956

2

crites/0.652

christ/2.857

creek/3.872

queen/1.439

kreep/4.540

kersten/2.045

3
springfield/0.303

in/1.346
4

springfield/1.367

_epsilon/0.294
5/1

missouri/7.021

Figure 2: An example confusion network for ”Gary crities Springfield Missouri”

Inputs:

• A set of K concepts:C = c1, c2, . . . , cK ,
in this paper, K = 3, c1 =
SearchTerm, c2 = LocationTerm,
c3 = Filler

• Each concept ck associates with a text
corpus: dk. Corpora are indexed using
Lucene Indexing.

• A given query: Q = q1, q2, . . . , qn

• A given maximum number of words in a
query segment: Ng

Parsing:

• Enumerate possible segments in Q up to
Ng words long: qi

j = qi, qi+1, . . . , qj ,
j >= i, |j − i| < Ng

• Obtain P (qi
j |ck)) for each pair of ck and

qi
j using Lucene Search

• Boost P (qi
j |ck)) based on the position of

qi
j in the query P (qi

j |ck) = P (qi
j |ck) ∗

boostck
(i, j, n)

• Search for the best segment sequence
and concept sequence using Viterbi
search

Fig.3. Parsing procedure using Text Indexer and
Searcher

pck
(qi

j) =
tf(qi

i ∼ dis(i, j), dk) + σ

N ∗ shift
(8)

When tf(qi
j , dk) is zero for all concepts, we

loosen the phrase search to be proximity search,
which searches words in qi

j within a specific dis-
tance. For instance, ”burlington west virginia” ∼

5 will find entries that include these three words
within 5 words of each other. tf(qi

j , dk) is dis-
counted for proximity search. For a given qi

j , we
allow a distance of dis(i, j) = (j − i + shift)
words. shift is a parameter that is set empirically.
The discounting formula is given in 8.

Figure 3 shows the procedure we use for pars-
ing. It enumerates possible segments qi

j of a given
Q. It then obtains P (qi

j |ck) using Lucene Search.
We boost pck

(qi
j)) based on the position of qi

j in
Q. In our case, we simply set: boostck

(i, j, n) = 3
if j = n and ck = LocationTerm. Other-
wise, boostck

(i, j, n) = 1. The algorithm searches
for the best segmentation using the Viterbi algo-
rithm. Out-of-vocabulary words are assigned to c3

(Filler).

4.2 Query Parsing on ASR Lattices

Word confusion networks (WCNs) is a compact
lattice format (Mangu et al., 2000). It aligns a
speech lattice with its top-1 hypothesis, yielding
a ”sausage”-like approximation of lattices. It has
been used in applications such as word spotting
and spoken document retrieval. In the following,
we present our use of WCNs for query parsing
task.

Figure 2 shows a pruned WCN example. For
each word position, there are multiple alternatives
and their associated negative log posterior proba-
bilities. The 1-best path is “Gary Crites Spring-
field Missouri”. The reference is “Dairy Queen
in Springfield Missouri”. ASR misrecognized
“Dairy Queen” as “Gary Crities”. However, the
correct words “Dairy Queen” do appear in the lat-
tice, though with lower probability. The challenge
is to select the correct words from the lattice by
considering both ASR posterior probabilities and
parser probabilities.

The hypotheses in WCNs have to be reranked

241



by the Query Parser to prefer those that have
meaningful concepts. Clearly, each business name
in the listing database corresponds to a single con-
cept. However, the long queries from query logs
tend to contain multiple concepts. For example, a
frequent query is ”night club for 18 and up”. We
know ”night club” is the main subject. And ”18
and up” is a constraint. Without matching ”night
club”, any match with ”18 and up” is meaning-
less. The data fortunately can tell us which words
are more likely to be a subject. We rarely see ”18
and up” as a complete query. Given these observa-
tions, we propose calculating the probability of a
query term to be a subject. ”Subject” here specif-
ically means a complete query or a listing name.
For the example shown in Figure 2, we observe the
negative log probability for ”Dairy Queen” to be a
subject is 9.3. ”Gary Crites” gets 15.3. We refer
to this probability as subject likelihood. Given a
candidate query term s = w1, w2, ..wm, we repre-
sent the subject likelihood as Psb(s). In our exper-
iments, we estimate Psb using relative frequency
normorlized by the length of s. We use the follow-
ing formula to combine it with posterior probabil-
ities in WCNs Pcf (s):

P (s) = Pcf (s) ∗ Psb(s)λ

Pcf (s) =
∏

j=1,...,nw

Pcf (wi)

where λ is used to flatten ASR posterior proba-
bilities and nw is the number of words in s. In
our experiments, λ is set to 0.5. We then re-rank
ASR outputs based on P (s). We will report ex-
perimental results with this approach. ”Subject”
is only related to SearchTerm. Considering this,
we parse the ASR 1-best out first and keep the
Location terms extracted as they are. Only word
alternatives corresponding to the search terms are
used for reranking. This also improves speed,
since we make the confusion network lattice much
smaller. In our initial investigations, such an ap-
proach yields promising results as illustrated in the
experiment section.

Another capability that the parser does for both
ASR 1-best and lattices is spelling correction. It
corrects words such as restaurants to restaurants.
ASR produces spelling errors because the lan-
guage model is trained on query logs. We need
to make more efforts to clean up the query log
database, though progresses had been made.

5 Finite-state Transducer-based Parser

In this section, we present an alternate method for
parsing which can transparently scale to take as in-
put word lattices from ASR. We encode the prob-
lem of parsing as a weighted finite-state transducer
(FST). This encoding allows us to apply the parser
on ASR 1-best as well as ASR WCNs using the
composition operation of FSTs.

We formulate the parsing problem as associat-
ing with each token of the input a label indicating
whether that token belongs to one of a business
listing (bl), city/state (cs) or neither (null). Thus,
given a word sequence (W = w1, . . . , wn) output
from ASR, we search of the most likely label se-
quence (T = t1, . . . , tn), as shown in Equation 9.
We use the joint probability P (W,T ) and approx-
imate it using an k-gram model as shown in Equa-
tions 10,11.

T ∗ = argmax
T

P (T |W ) (9)

= argmax
T

P (W,T ) (10)

= argmax
T

n∏
i

P (wi, ti | wi−k+1
i−1 , ti−k+1

i−1 )

(11)

A k-gram model can be encoded as a weighted
finite-state acceptor (FSA) (Allauzen et al., 2004).
The states of the FSA correspond to the k-gram
histories, the transition labels to the pair (wi, ti)
and the weights on the arcs are −log(P (wi, ti |
wi−k+1

i−1 , ti−k+1
i−1 )). The FSA also encodes back-off

arcs for purposes of smoothing with lower order k-
grams. An annotated corpus of words and labels is
used to estimate the weights of the FSA. A sample
corpus is shown in Table 1.

1. pizza bl hut bl new cs york cs new cs
york cs

2. home bl depot bl around null
san cs francisco cs

3. please null show null me null indian bl
restaurants bl in null chicago cs

4. pediatricians bl open null on null
sundays null

5. hyatt bl regency bl in null honolulu cs
hawaii cs

Table 1: A Sample set of annotated sentences

242



The FSA on the joint alphabet is converted into
an FST. The paired symbols (wi, ti) are reinter-
preted as consisting of an input symbol wi and
output symbol ti. The resulting FST (M ) is used
to parse the 1-best ASR (represented as FSTs
(I)), using composition of FSTs and a search for
the lowest weight path as shown in Equation 12.
The output symbol sequence (π2) from the lowest
weight path is T ∗.

T ∗ = π2(Bestpath(I ◦M)) (12)

Equation 12 shows a method for parsing the 1-
best ASR output using the FST. However, a simi-
lar method can be applied for parsing WCNs. The
WCN arcs are associated with a posterior weight
that needs to be scaled suitably to be comparable
to the weights encoded in M . We represent the re-
sult of scaling the weights in WCN by a factor of
λ as WCNλ. The value of the scaling factor is de-
termined empirically. Thus the process of parsing
a WCN is represented by Equation 13.

T ∗ = π2(Bestpath(WCNλ ◦M)) (13)

6 Experiments

We have access to text query logs consisting of 18
million queries to the two text fields: SearchTerm
and LocationTerm. In addition to these logs, we
have access to 11 million unique business listing
names and their addresses. We use the combined
data to train the parameters of the two parsing
models as discussed in the previous sections. We
tested our approaches on three data sets, which in
total include 2686 speech queries. These queries
were collected from users using mobile devices
from different time periods. Labelers transcribed
and annotated the test data using SearchTerm and
LocationTerm tags.

Data Sets Number of WACC
Speech Queries

Test1 1484 70.1%
Test2 544 82.9%
Test3 658 77.3%

Table 2: ASR Performance on three Data Sets

We use an ASR with a trigram-based language
model trained on the query logs. Table 2 shows the
ASR word accuracies on the three data sets. The
accuracy is the lowest on Test1, in which many

users were non-native English speakers and a large
percentage of queries are not intended for local
search.

We measure the parsing performance in terms
of extraction accuracy on the two non-filler slots:
SearchTerm and LocationTerm. Extraction accu-
racy computes the percentage of the test set where
the string identified by the parser for a slot is ex-
actly the same as the annotated string for that slot.

Table 3 reports parsing performance using the
PARIS approach for the two slots. The “Tran-
scription” columns present the parser’s perfor-
mances on human transcriptions (i.e. word ac-
curacy=100%) of the speech. As expected, the
parser’s performance heavily relies on ASR word
accuracy. We achieved lower parsing perfor-
mance on Test1 compared to other test sets due
to lower ASR accuracy on this test set. The
promising aspect is that we consistently improved
SearchTerm extraction accuracy when using WCN
as input. The performance under “Oracle path”
column shows the upper bound for the parser us-
ing the oracle path2 from the WCN. We pruned
the WCN by keeping only those arcs that are
within cthresh of the lowest cost arc between
two states. Cthresh = 4 is used in our experi-
ments. For Test2, the upper bound improvement
is 7.6% (82.5%-74.9%) absolute. Our proposed
approach using pruned WCN achieved 2.7% im-
provement, which is 35% of the maximum poten-
tial gain. We observed smaller improvements on
Test1 and Test3. Our approach did not take advan-
tage of WCN for LocationTerm extraction, hence
we obtained the same performance with WCNs as
using ASR 1-best.

In Table 4, we report the parsing performance
for the FST-based approach. We note that the
FST-based parser on a WCN also improves the
SearchTerm and LocationTerm extraction accu-
racy over ASR 1-best, an improvement of about
1.5%. The accuracies on the oracle path and the
transcription are slightly lower with the FST-based
parser than with the PARIS approach. The per-
formance gap, however, is bigger on ASR 1-best.
The main reason is PARIS has embedded a module
for spelling correction that is not included in the
FST approach. For instance, it corrects nieman to
neiman. These improvements from spelling cor-
rection don’t contribute much to search perfor-

2Oracle text string is the path in the WCN that is closest
to the reference string in terms of Levenshtein edit distance

243



Data Sets SearchTerm Extraction Accuracy LocationTerm Extraction Accuracy
Input ASR WCN Oracle Transcription ASR WCN Oracle Transcription

1-best Path 4 1best Path 4
Test1 60.0% 60.7% 67.9% 94.1% 80.6% 80.6% 85.2% 97.5%
Test2 74.9% 77.6% 82.5% 98.6% 89.0% 89.0% 92.8% 98.7%
Test3 64.7% 65.7% 71.5% 96.7% 88.8% 88.8% 90.5% 97.4%

Table 3: Parsing performance using the PARIS approach

Data Sets SearchTerm Extraction Accuracy LocationTerm Extraction Accuracy
Input ASR WCN Oracle Transcription ASR WCN Oracle Transcription

1-best Path 4 1best Path 4
Test1 56.9% 57.4% 65.6% 92.2% 79.8% 79.8% 83.8% 95.1%
Test2 69.5% 71.0% 81.9% 98.0% 89.4% 89.4% 92.7% 98.5%
Test3 59.2% 60.6% 69.3% 96.1% 87.1% 87.1% 89.3% 97.3%

Table 4: Parsing performance using the FST approach

mance as we will see below, since the search en-
gine is quite robust to spelling errors. ASR gen-
erates spelling errors because the language model
is trained using query logs, where misspellings are
frequent.

We evaluated the impact of parsing perfor-
mance on search accuracy. In order to measure
search accuracy, we need to first collect a ref-
erence set of search results for our test utter-
ances. For this purpose, we submitted the hu-
man annotated two-field data to the search engine
(http://www.yellowpages.com/ ) and extracted the
top 5 results from the returned pages. The re-
turned search results are either business categories
such as “Chinese Restaurant” or business listings
including business names and addresses. We con-
sidered these results as the reference search results
for our test utterances.

In order to evaluate our voice search system, we
submitted the two fields resulting from the query
parser on the ASR output (1-best/WCN) to the
search engine. We extracted the top 5 results from
the returned pages and we computed the Precision,
Recall and F1 scores between this set of results
and the reference search set. Precision is the ra-
tio of relevant results among the top 5 results the
voice search system returns. Recall refers to the
ratio of relevant results to the reference search re-
sult set. F1 combines precision and recall as: (2
* Recall * Precision) / (Recall + Precision) (van
Rijsbergen, 1979).

In Table 5 and Table 6, we report the search per-
formance using PARIS and FST approaches. The
overall improvement in search performance is not

Data Sets Precision Recall F1
ASR Test1 71.8% 66.4% 68.8%

1-best
Test2 80.7% 76.5% 78.5%
Test3 72.9% 68.8% 70.8%

WCN
Test1 70.8% 67.2% 69.0%
Test2 81.6% 79.0% 80.3%
Test3 73.0% 69.1% 71.0%

Table 5: Search performances using the PARIS ap-
proach

Data Sets Precision Recall F1
ASR Test1 71.6% 64.3% 67.8%

1-best
Test2 79.6% 76.0% 77.7%
Test3 72.9% 67.2% 70.0%

WCN
Test1 70.5% 64.7% 67.5%
Test2 80.3% 77.3% 78.8%
Test3 72.9% 68.1% 70.3%

Table 6: Search performances using the FST ap-
proach

as large as the improvement in the slot accura-
cies between using ASR 1-best and WCNs. On
Test1, we obtained higher recall but lower preci-
sion with WCN resulting in a slight decrease in
F1 score. For both approaches, we observed that
using WCNs consistently improves recall but not
precision. Although this might be counterintu-
itive, given that WCNs improve the slot accuracy
overall. One possible explanation is that we have
observed errors made by the parser using WCNs
are more “severe” in terms of their relationship to
the original queries. For example, in one particular

244



case, the annotated SearchTerm is “book stores”,
for which the ASR 1-best-based parser returned
“books” (due to ASR error) as the SearchTerm,
while the WCN-based parser identified “banks”
as the SearchTerm. As a result, the returned re-
sults from the search engine using the 1-best-based
parser were more relevant compared to the results
returned by the WCN-based parser.

There are few directions that this observation
suggests. First, the weights on WCNs may need
to be scaled suitably to optimize the search per-
formance as opposed to the slot accuracy perfor-
mance. Second, there is a need for tighter cou-
pling between the parsing and search components
as the eventual goal for models of voice search is
to improve search accuracy and not just the slot
accuracy. We plan to investigate such questions in
future work.

7 Summary

This paper describes two methods for query pars-
ing. The task is to parse ASR output including 1-
best and lattices into database or search fields. In
our experiments, these fields are SearchTerm and
LocationTerm for local search. Our first method,
referred to as PARIS, takes advantage of a generic
search engine (for text indexing and search) for
parsing. All probabilities needed are retrieved on-
the-fly. We used keyword search, phrase search
and proximity search. The second approach, re-
ferred to as FST-based parser, which encodes the
problem of parsing as a weighted finite-state trans-
duction (FST). Both PARIS and FST successfully
exploit multiple hypotheses and posterior proba-
bilities from ASR encoded as word confusion net-
works and demonstrate improved accuracy. These
results show the benefits of tightly coupling ASR
and the query parser. Furthermore, we evaluated
the effects of this improvement on search perfor-
mance. We observed that the search accuracy im-
proves using word confusion networks. However,
the improvement on search is less than the im-
provement we obtained on parsing performance.
Some improvements the parser achieves do not
contribute to search. This suggests the need of
coupling the search module and the query parser
as well.

The two methods, namely PARIS and FST,
achieved comparable performances on search.
One advantage with PARIS is the fast training
process, which takes minutes to index millions

of query logs and listing entries. For the same
amount of data, FST needs a number of hours to
train. The other advantage is PARIS can easily
use proximity search to loosen the constrain of N-
gram models, which is hard to be implemented
using FST. FST, on the other hand, does better
smoothing on learning probabilities. It can also
more directly exploit ASR lattices, which essen-
tially are represented as FST too. For future work,
we are interested in ways of harnessing the bene-
fits of the both these approaches.

References
C. Allauzen, M. Mohri, M. Riley, and B. Roark. 2004.

A generalized construction of speech recognition
transducers. In ICASSP, pages 761–764.

I. Androutsopoulos. 1995. Natural language interfaces
to databases - an introduction. Journal of Natural
Language Engineering, 1:29–81.

B. Favre, F. Bechet, and P. Nocera. 2005. Robust
named entity extraction from large spoken archives.
In Proceeding of HLT 2005.

E. Hatcher and O. Gospodnetic. 2004. Lucene in Ac-
tion (In Action series). Manning Publications Co.,
Greenwich, CT, USA.

F. Kubala, R. Schwartz, R. Stone, and R. Weischedel.
1998. Named entity extraction from speech. In in
Proceedings of DARPA Broadcast News Transcrip-
tion and Understanding Workshop, pages 287–292.

L. Mangu, E. Brill, and A. Stolcke. 2000. Finding con-
sensus in speech recognition: Word error minimiza-
tion and other applications of confusion networks.
Computation and Language, 14(4):273–400, Octo-
ber.

P. Natarajan, R. Prasad, R.M. Schwartz, and
J. Makhoul. 2002. A scalable architecture for di-
rectory assistance automation. In ICASSP 2002.

B. Tan and F. Peng. 2008. Unsupervised query seg-
mentation using generative language models and
wikipedia. In Proceedings of WWW-2008.

C.V. van Rijsbergen. 1979. Information Retrieval.
Boston. Butterworth, London.

Y. Wang, D. Yu, Y. Ju, and A. Alex. 2008. An intro-
duction to voice search. Signal Processing Magzine,
25(3):29–38.

D. Yu, Y.C. Ju, Y.Y. Wang, G. Zweig, and A. Acero.
2007. Automated directory assistance system - from
theory to practice. In Interspeech.

245


