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Abstract

Spoken Language Understanding aims at
mapping a natural language spoken sen-
tence into a semantic representation. In
the last decade two main approaches have
been pursued: generative and discrimi-
native models. The former is more ro-
bust to overfitting whereas the latter is
more robust to many irrelevant features.
Additionally, the way in which these ap-
proaches encode prior knowledge is very
different and their relative performance
changes based on the task. In this pa-
per we describe a machine learning frame-
work where both models are used: a gen-
erative model produces a list of ranked hy-
potheses whereas a discriminative model
based on structure kernels and Support
Vector Machines, re-ranks such list. We
tested our approach on the MEDIA cor-
pus (human-machine dialogs) and on a
new corpus (human-machine and human-
human dialogs) produced in the Euro-
pean LUNA project. The results show a
large improvement on the state-of-the-art
in concept segmentation and labeling.

1 Introduction

In Spoken Dialog Systems, the Language Under-
standing module performs the task of translating
a spoken sentence into its meaning representation
based on semantic constituents. These are the
units for meaning representation and are often re-
ferred to as concepts. Concepts are instantiated by
sequences of words, therefore a Spoken Language
Understanding (SLU) module finds the association
between words and concepts.

In the last decade two major approaches have
been proposed to find this correlation: (i) gener-
ative models, whose parameters refer to the joint

probability of concepts and constituents; and (ii)
discriminative models, which learn a classifica-
tion function to map words into concepts based
on geometric and statistical properties. An ex-
ample of generative model is the Hidden Vector
State model (HVS) (He and Young, 2005). This
approach extends the discrete Markov model en-
coding the context of each state as a vector. State
transitions are performed as stack shift operations
followed by a push of a preterminal semantic cat-
egory label. In this way the model can capture se-
mantic hierarchical structures without the use of
tree-structured data. Another simpler but effec-
tive generative model is the one based on Finite
State Transducers. It performs SLU as a transla-
tion process from words to concepts using Finite
State Transducers (FST). An example of discrim-
inative model used for SLU is the one based on
Support Vector Machines (SVMs) (Vapnik, 1995),
as shown in (Raymond and Riccardi, 2007). In
this approach, data are mapped into a vector space
and SLU is performed as a classification problem
using Maximal Margin Classifiers (Shawe-Taylor
and Cristianini, 2004).

Generative models have the advantage to be
more robust to overfitting on training data, while
discriminative models are more robust to irrele-
vant features. Both approaches, used separately,
have shown a good performance (Raymond and
Riccardi, 2007), but they have very different char-
acteristics and the way they encode prior knowl-
edge is very different, thus designing models able
to take into account characteristics of both ap-
proaches are particularly promising.

In this paper we propose a method for SLU
based on generative and discriminative models:
the former uses FSTs to generate a list of SLU hy-
potheses, which are re-ranked by SVMs. These
exploit all possible word/concept subsequences
(with gaps) of the spoken sentence as features (i.e.
all possible n-grams). Gaps allow for the encod-
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ing of long distance dependencies between words
in relatively small n-grams. Given the huge size
of this feature space, we adopted kernel methods
and in particular sequence kernels (Shawe-Taylor
and Cristianini, 2004) and tree kernels (Raymond
and Riccardi, 2007; Moschitti and Bejan, 2004;
Moschitti, 2006) to implicitly encode n-grams and
other structural information in SVMs.

We experimented with different approaches for
training the discriminative models and two dif-
ferent corpora: the well-known MEDIA corpus
(Bonneau-Maynard et al., 2005) and a new corpus
acquired in the European project LUNA1 (Ray-
mond et al., 2007). The results show a great
improvement with respect to both the FST-based
model and the SVM model alone, which are the
current state-of-the-art for concept classification
on such corpora. The rest of the paper is orga-
nized as follows: Sections 2 and 3 show the gener-
ative and discriminative models, respectively. The
experiments and results are reported in Section 4
whereas the conclusions are drawn in Section 5.

2 Generative approach for concept
classification

In the context of Spoken Language Understanding
(SLU), concept classification is the task of asso-
ciating the best sequence of concepts to a given
sentence,i.e. word sequence. A concept is a class
containing all the words carrying out the same se-
mantic meaning with respect to the application do-
main. In SLU, concepts are used as semantic units
and are represented with concept tags. The associ-
ation between words and concepts is learned from
an annotated corpus.

The Generative model used in our work for con-
cept classification is the same used in (Raymond
and Riccardi, 2007). Given a sequence of words
as input, a translation process based on FST is
performed to output a sequence of concept tags.
The translation process involves three steps: (1)
the mapping of words into classes (2) the mapping
of classes into concepts and (3) the selection of the
best concept sequence.

The first step is used to improve the generaliza-
tion power of the model. The word classes at this
level can be both domain-dependent,e.g. ”Hotel”
in MEDIA or ”Software” in the LUNA corpus, or
domain-independent,e.g.numbers, dates, months

1Contract n. 33549

etc. The class of a word not belonging to any class
is the word itself.

In the second step, classes are mapped into con-
cepts. The mapping is not one-to-one: a class
may be associated with more than one concept,i.e.
more than one SLU hypothesis can be generated.

In the third step, the best or the m-best hy-
potheses are selected among those produced in the
previous step. They are chosen according to the
maximum probability evaluated by the Conceptual
Language Model, described in the next section.

2.1 Stochastic Conceptual Language Model
(SCLM)

An SCLM is an n-gram language model built on
semantic tags. Using the same notation proposed
in (Moschitti et al., 2007) and (Raymond and Ric-
cardi, 2007), our SCLM trains joint probability
P (W,C) of word and concept sequences from an
annotated corpus:

P (W,C) =

k
∏

i=1

P (wi, ci|hi),

where W = w1..wk, C = c1..ck and
hi = wi−1ci−1..w1c1. Since we use a 3-gram
conceptual language model, the historyhi is
{wi−1ci−1, wi−2ci−2}.

All the steps of the translation process described
here and above are implemented as Finite State
Transducers (FST) using the AT&T FSM/GRM
tools and the SRILM (Stolcke, 2002) tools. In
particular the SCLM is trained using SRILM tools
and then converted to an FST. This allows the use
of a wide set of stochastic language models (both
back-off and interpolated models with several dis-
counting techniques like Good-Turing, Witten-
Bell, Natural, Kneser-Ney, Unchanged Kneser-
Ney etc). We represent the combination of all the
translation steps as a transducerλSLU (Raymond
and Riccardi, 2007) in terms of FST operations:

λSLU = λW ◦ λW2C ◦ λSLM ,

whereλW is the transducer representation of the
input sentence,λW2C is the transducer mapping
words to classes andλSLM is the Semantic Lan-
guage Model (SLM) described above. The best
SLU hypothesis is given by

C = projectC(bestpath1(λSLU )),

wherebestpathn (in this case n is 1 for the 1-best
hypothesis) performs a Viterbi search on the FST
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and outputs the n-best hypotheses andprojectC
performs a projection of the FST on the output la-
bels, in this case the concepts.

2.2 Generation of m-best concept labeling

Using the FSTs described above, we can generate
m best hypotheses ranked by the joint probability
of the SCLM.

After an analysis of them-best hypotheses of
our SLU model, we noticed that many times the
hypothesis ranked first by the SCLM is not the
closest to the correct concept sequence,i.e. its er-
ror rate using the Levenshtein alignment with the
manual annotation of the corpus is not the low-
est among them hypotheses. This means that
re-ranking them-best hypotheses in a convenient
way could improve the SLU performance. The
best choice in this case is a discriminative model,
since it allows for the use of informative features,
which, in turn, can model easily feature dependen-
cies (also if they are infrequent in the training set).

3 Discriminative re-ranking

Our discriminative re-ranking is based on SVMs
or a perceptron trained with pairs of conceptually
annotated sentences. The classifiers learn to select
which annotation has an error rate lower than the
others so that them-best annotations can be sorted
based on their correctness.

3.1 SVMs and Kernel Methods

Kernel Methods refer to a large class of learning
algorithms based on inner product vector spaces,
among which Support Vector Machines (SVMs)
are one of the most well known algorithms. SVMs
and perceptron learn a hyperplaneH(~x) = ~w~x +
b = 0, where~x is the feature vector represen-
tation of a classifying objecto, ~w ∈ R

n (a
vector space) andb ∈ R are parameters (Vap-
nik, 1995). The classifying objecto is mapped
into ~x by a feature functionφ. The kernel trick
allows us to rewrite the decision hyperplane as
∑

i=1..l yiαiφ(oi)φ(o) + b = 0, whereyi is equal
to 1 for positive and -1 for negative examples,
αi ∈ R

+, oi∀i ∈ {1..l} are the training instances
and the productK(oi, o) = 〈φ(oi)φ(o)〉 is the ker-
nel function associated with the mappingφ. Note
that we do not need to apply the mappingφ, we
can useK(oi, o) directly (Shawe-Taylor and Cris-
tianini, 2004). For example, next section shows a
kernel function that counts the number of word se-

quences in common between two sentences, in the
space ofn-grams (for anyn).

3.2 String Kernels

The String Kernels that we consider count the
number of substrings containing gaps shared by
two sequences,i.e. some of the symbols of the
original string are skipped. Gaps modify the
weight associated with the target substrings as
shown in the following.

LetΣ be a finite alphabet,Σ∗ =
⋃∞

n=0 Σn is the
set of all strings. Given a strings ∈ Σ∗, |s| denotes
the length of the strings andsi its compounding
symbols, i.es = s1..s|s|, whereass[i : j] selects
the substringsisi+1..sj−1sj from the i-th to the
j-th character. u is a subsequence ofs if there
is a sequence of indexes~I = (i1, ..., i|u|), with
1 ≤ i1 < ... < i|u| ≤ |s|, such thatu = si1 ..si|u|

or u = s[~I] for short.d(~I) is the distance between
the first and last character of the subsequenceu in
s, i.e. d(~I) = i|u| − i1 + 1. Finally, givens1, s2

∈ Σ∗, s1s2 indicates their concatenation.
The set of all substrings of a text corpus forms a

feature space denoted byF = {u1, u2, ..} ⊂ Σ∗.
To map a strings in R

∞ space, we can use the
following functions: φu(s) =

P

~I:u=s[~I] λ
d(~I) for

someλ ≤ 1. These functions count the num-
ber of occurrences ofu in the strings and assign
them a weightλd(~I) proportional to their lengths.
Hence, the inner product of the feature vectors for
two stringss1 ands2 returns the sum of all com-
mon subsequences weighted according to their
frequency of occurrences and lengths,i.e.

SK(s1, s2) =
X

u∈Σ∗

φu(s1) ·φu(s2) =
X

u∈Σ∗

X

~I1:u=s1[~I1]

λ
d( ~I1)

X

~I2:u=s2[~I2]

λ
d( ~I2) =

X

u∈Σ∗

X

~I1:u=s1[~I1]

X

~I2:u=s2[~I2]

λ
d( ~I1)+d( ~I2)

,

whered(.) counts the number of characters in the
substrings as well as the gaps that were skipped in
the original string. It is worth noting that:

(a) longer subsequences receive lower weights;

(b) some characters can be omitted,i.e. gaps;
and

(c) gaps determine a weight since the exponent
of λ is the number of characters and gaps be-
tween the first and last character.
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Characters in the sequences can be substituted
with any set of symbols. In our study we pre-
ferred to use words so that we can obtain word
sequences. For example, given the sentence:How
may I help you ?sample substrings, extracted by
the Sequence Kernel (SK), are:How help you ?,
How help ?, help you, may help you, etc.

3.3 Tree kernels

Tree kernels represent trees in terms of their sub-
structures (fragments). The kernel function de-
tects if a tree subpart (common to both trees) be-
longs to the feature space that we intend to gen-
erate. For such purpose, the desired fragments
need to be described. We consider two important
characterizations: the syntactic tree (STF) and the
partial tree (PTF) fragments.

3.3.1 Tree Fragment Types

An STF is a general subtree whose leaves can be
non-terminal symbols. For example, Figure 1(a)
shows 10 STFs (out of 17) of the subtree rooted in
VP (of the left tree). The STFs satisfy the con-
straint that grammatical rules cannot be broken.
For example,[VP [V NP]] is an STF, which
has two non-terminal symbols,V andNP, as leaves
whereas[VP [V]] is not an STF. If we relax
the constraint over the STFs, we obtain more gen-
eral substructures calledpartial trees fragments
(PTFs). These can be generated by the application
of partial production rules of the grammar, con-
sequently[VP [V]] and[VP [NP]] are valid
PTFs. Figure 1(b) shows that the number of PTFs
derived from the same tree as before is still higher
(i.e. 30 PTs).

3.4 Counting Shared SubTrees

The main idea of tree kernels is to compute the
number of common substructures between two
treesT1 andT2 without explicitly considering the
whole fragment space. To evaluate the above ker-
nels between twoT1 andT2, we need to define a
setF = {f1, f2, . . . , f|F|}, i.e. a tree fragment
space and an indicator functionIi(n), equal to 1
if the targetfi is rooted at noden and equal to 0
otherwise. A tree-kernel function overT1 andT2

is TK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2
∆(n1, n2),

where NT1 and NT2 are the sets of theT1’s
and T2’s nodes, respectively and∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the num-
ber of common fragments rooted in then1 and
n2 nodes. In the following sections we report the

equation for the efficient evaluation of∆ for ST
and PT kernels.

3.5 Syntactic Tree Kernels (STK)

The∆ function depends on the type of fragments
that we consider asbasic features. For example,
to evaluate the fragments of type STF, it can be
defined as:

1. if the productions atn1 andn2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 and n2 are the
same, andn1 andn2 have only leaf children
(i.e. they are pre-terminals symbols) then
∆(n1, n2) = 1;

3. if the productions atn1 andn2 are the same,
andn1 andn2 are not pre-terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(σ + ∆(cj
n1

, cj
n2

)) (1)

whereσ ∈ {0, 1}, nc(n1) is the number of chil-
dren of n1 and c

j
n is the j-th child of the node

n. Note that, since the productions are the same,
nc(n1) = nc(n2). ∆(n1, n2) evaluates the num-
ber of STFs common ton1 andn2 as proved in
(Collins and Duffy, 2002).

Moreover, a decay factorλ can be added by
modifying steps (2) and (3) as follows2:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ
∏nc(n1)

j=1 (σ + ∆(cj
n1 , c

j
n2)).

The computational complexity of Eq. 1 is
O(|NT1 | × |NT2 |) but as shown in (Moschitti,
2006), the average running time tends to be lin-
ear, i.e. O(|NT1 | + |NT2 |), for natural language
syntactic trees.

3.6 The Partial Tree Kernel (PTK)

PTFs have been defined in (Moschitti, 2006).
Their computation is carried out by the following
∆ function:

1. if the node labels ofn1 andn2 are different
then∆(n1, n2) = 0;

2. else∆(n1, n2) =

1+
∑

~I1,~I2,l(~I1)=l(~I2)

∏l(~I1)
j=1 ∆(cn1(

~I1j), cn2(
~I2j))

2To have a similarity score between 0 and 1, we also apply
the normalization in the kernel space,i.e.:
K′(T1, T2) = TK(T1 ,T2)

√
TK(T1 ,T1)×TK(T2 ,T2)

.
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Figure 1: Examples of different classes of tree fragments.

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 =
〈k1, k2, k3, ..〉 are index sequences associated with
the ordered child sequencescn1 of n1 andcn2 of
n2, respectively,~I1j and~I2j point to thej-th child
in the corresponding sequence, and, again,l(·) re-
turns the sequence length,i.e. the number of chil-
dren.

Furthermore, we add two decay factors:µ for
the depth of the tree andλ for the length of the
child subsequences with respect to the original se-
quence,i.e. we account for gaps. It follows that
∆(n1, n2) =

µ
(

λ2+
∑

~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)
∏

j=1

∆(cn1(
~I1j), cn2(

~I2j))
)

,

(2)
whered(~I1) = ~I1l(~I1)

− ~I11 andd(~I2) = ~I2l(~I2)
−

~I21. This way, we penalize both larger trees and
child subsequences with gaps. Eq. 2 is more gen-
eral than Eq. 1. Indeed, if we only consider the
contribution of the longest child sequence from
node pairs that have the same children, we imple-
ment the STK kernel.

3.7 Re-ranking models using sequences

The FST generates them most likely concept an-
notations. These are used to build annotation
pairs,

〈

si, sj
〉

, which are positive instances ifsi

has a lower concept annotation error thansj, with
respect to the manual annotation in the corpus.
Thus, a trained binary classifier can decide ifsi

is more accurate thansj. Each candidate anno-
tation si is described by a word sequence where
each word is followed by its concept annotation.
For example, given the sentence:

ho (I have) un (a) problema (problem) con
(with) la (the) scheda di rete (network card) ora
(now)

a pair of annotations
〈

si, sj
〉

could be

si: ho NULL un NULL problemaPROBLEM-B con
NULL la NULL schedaHW-B di HW-I rete HW-I ora
RELATIVETIME-B

sj: ho NULL un NULL problema ACTION-B con

NULL la NULL schedaHW-B di HW-B rete HW-B ora

RELATIVETIME-B

where NULL , ACTION , RELATIVETIME ,
andHW are the assigned concepts whereasB and
I are the usual begin and internal tags for concept
subparts. The second annotation is less accurate
than the first sinceproblemais annotated as an ac-
tion and”scheda di rete” is split in three different
concepts.

Given the above data, the sequence kernel
is used to evaluate the number of commonn-
grams betweensi and sj. Since the string ker-
nel skips some elements of the target sequences,
the countedn-grams include: concept sequences,
word sequences and any subsequence of words
and concepts at any distance in the sentence.

Such counts are used in our re-ranking function
as follows: letei be the pair

〈

s1
i , s

2
i

〉

we evaluate
the kernel:

KR(e1, e2) = SK(s1
1, s

1
2) + SK(s2

1, s
2
2) (3)

− SK(s1
1, s

2
2) − SK(s2

1, s
1
2)

This schema, consisting in summing four differ-
ent kernels, has been already applied in (Collins
and Duffy, 2002) for syntactic parsing re-ranking,
where the basic kernel was a tree kernel instead of
SK and in (Moschitti et al., 2006), where, to re-
rank Semantic Role Labeling annotations, a tree
kernel was used on a semantic tree similar to the
one introduced in the next section.

3.8 Re-ranking models using trees

Since the aim in concept annotation re-ranking is
to exploit innovative and effective source of infor-
mation, we can use the power of tree kernels to
generate correlation between concepts and word
structures.

Fig. 2 describes the structural association be-
tween the concept and the word level. This kind of
trees allows us to engineer new kernels and con-
sequently new features (Moschitti et al., 2008),
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Figure 2: An example of the semantic tree used for STK or PTK

Corpus Train set Test set
LUNA words concepts words concepts
Dialogs WOZ 183 67
Dialogs HH 180 -
Turns WOZ 1.019 373
Turns HH 6.999 -
Tokens WOZ 8.512 2.887 2.888 984
Tokens WOZ 62.639 17.423 - -
Vocab. WOZ 1.172 34 - -
Vocab. HH 4.692 49 - -
OOV rate - - 3.2% 0.1%

Table 1: Statistics on the LUNA corpus

Corpus Train set Test set
Media words concepts words concepts
Turns 12,922 3,518
# of tokens 94,912 43,078 26,676 12,022
Vocabulary 5,307 80 - -
OOV rate - - 0.01% 0.0%

Table 2: Statistics on the MEDIA corpus

e.g. their subparts extracted by STK or PTK, like
the tree fragments in figures 1(a) and 1(b). These
can be used in SVMs to learn the classification of
words in concepts.

More specifically, in our approach, we use tree
fragments to establish the order of correctness
between two alternative annotations. Therefore,
given two trees associated with two annotations, a
re-ranker based on tree kernel,KR, can be built
in the same way of the sequence-based kernel by
substituting SK in Eq. 3 with STK or PTK.

4 Experiments

In this section, we describe the corpora, param-
eters, models and results of our experiments of
word chunking and concept classification. Our
baseline relates to the error rate of systems based
on only FST and SVMs. The re-ranking models
are built on the FST output. Different ways of
producing training data for the re-ranking models
determine different results.

4.1 Corpora

We used two different speech corpora:
The corpus LUNA, produced in the homony-

mous European project is the first Italian corpus
of spontaneous speech on spoken dialog: it is
based on the help-desk conversation in the domain
of software/hardware repairing (Raymond et al.,
2007). The data are organized in transcriptions
and annotations of speech based on a new multi-
level protocol. Data acquisition is still in progress.
Currently, 250 dialogs acquired with a WOZ ap-
proach and 180 Human-Human (HH) dialogs are
available. Statistics on LUNA corpus are reported
in Table 1.

The corpus MEDIA was collected within
the French project MEDIA-EVALDA (Bonneau-
Maynard et al., 2005) for development and evalu-
ation of spoken understanding models and linguis-
tic studies. The corpus is composed of 1257 di-
alogs, from 250 different speakers, acquired with
a Wizard of Oz (WOZ) approach in the context
of hotel room reservations and tourist information.
Statistics on transcribed and conceptually anno-
tated data are reported in Table 2.

4.2 Experimental setup

We defined two different training sets in the
LUNA corpus: one using only the WOZ train-
ing dialogs and one merging them with the HH
dialogs. Given the small size of LUNA corpus, we
did not carried out parameterization on a develop-
ment set but we used default or a priori parameters.

We experimented with LUNA WOZ and six re-
rankers obtained with the combination of SVMs
and perceptron (PCT) with three different types
of kernels: Syntactic Tree Kernel (STK), Partial
Tree kernels (PTK) and the String Kernel (SK) de-
scribed in Section 3.3.

Given the high number and the cost of these ex-
periments, we ran only one model,i.e. the one
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Corpus LUNA WOZ+HH MEDIA
Approach (STK) MT ST MT
FST 18.2 18.2 12.6
SVM 23.4 23.4 13.7
RR-A 15.6 17.0 11.6
RR-B 16.2 16.5 11.8
RR-C 16.1 16.4 11.7

Table 3: Results of experiments (CER) using FST
and SVMs with the Sytntactic Tree Kernel (STK)
on two different corpora: LUNA WOZ + HH, and
MEDIA.

based on SVMs and STK3 , on the largest datasets,
i.e. WOZ merged with HH dialogs and Media.
We trained all the SCLMs used in our experiments
with the SRILM toolkit (Stolcke, 2002) and we
used an interpolated model for probability esti-
mation with the Kneser-Ney discount (Chen and
Goodman, 1998). We then converted the model in
an FST as described in Section 2.1.

The model used to obtain the SVM baseline
for concept classification was trained using Yam-
CHA (Kudo and Matsumoto, 2001). For the re-
ranking models based on structure kernels, SVMs
or perceptron, we used the SVM-Light-TK toolkit
(available at dit.unitn.it/moschitti). Forλ (see Sec-
tion 3.2), cost-factor and trade-off parameters, we
used, 0.4, 1 and 1, respectively.

4.3 Training approaches

The FST model generates them-best annotations,
i.e. the data used to train the re-ranker based
on SVMs and perceptron. Different training ap-
proaches can be carried out based on the use of the
corpus and the method to generate them-best. We
apply two different methods for training:Mono-
lithic Training andSplit Training .

In the former, FSTs are learned with the whole
training set. Them-best hypotheses generated by
such models are then used to train the re-ranker
classifier. In Split Training, the training data are
divided in two parts to avoid bias in the FST gen-
eration step. More in detail, we train FSTs on part
1 and generate them-best hypotheses using part 2.
Then, we re-apply these procedures inverting part
1 with part 2. Finally, we train the re-ranker on the
mergedm-best data. At the classification time, we
generate them-best of the test set using the FST
trained on all training data.

3The number of parameters, models and training ap-
proaches make the exhaustive experimentation expensive in
terms of processing time, which approximately requires 2 or
3 months.

Monolithic Training
WOZ SVM PCT

STK PTK SK STK PTK SK
RR-A 18.5 19.3 19.1 24.2 28.3 23.3
RR-B 18.5 19.3 19.0 29.4 23.7 20.3
RR-C 18.5 19.3 19.1 31.5 30.0 20.2

Table 4: Results of experiments, in terms of Con-
cept Error Rate (CER), on the LUNA WOZ corpus
using Monolithic Training approach. The baseline
with FST and SVMs used separately are23.2%
and26.7% respectively.

Split Training
WOZ SVM PCT

STK PTK SK STK PTK SK
RR-A 20.0 18.0 16.1 28.4 29.8 27.8
RR-B 19.0 19.0 19.0 26.3 30.0 25.6
RR-C 19.0 18.4 16.6 27.1 26.2 30.3

Table 5: Results of experiments, in terms of Con-
cept Error Rate (CER), on the LUNA WOZ cor-
pus using Split Training approach. The baseline
with FST and SVMs used separately are23.2%
and26.7% respectively.

Regarding the generation of the training in-
stances

〈

si, sj
〉

, we setm to 10 and we choose one
of the 10-best hypotheses as the second element of
the pair,sj, thus generating 10 different pairs.

The first element instead can be selected accord-
ing to three different approaches:

(A): si is the manual annotation taken from the
corpus;

(B) si is the most accurate annotation, in terms
of the edit distance from the manual annotation,
among the 10-best hypotheses of the FST model;

(C) as above butsi is selected among the 100-
best hypotheses. The pairs are also inverted to
generate negative examples.

4.4 Re-ranking results

All the results of our experiments, expressed in
terms of concept error rate (CER), are reported in
Table 3, 4 and 5.

In Table 3, the corpora,i.e. LUNA (WOZ+HH)
and Media, and the training approaches,i.e.
Monolithic Training (MT) and Split Training (ST),
are reported in the first and second row. Column
1 shows the concept classification model used,i.e.
the baselines FST and SVMs, and the re-ranking
models (RR) applied to FST. A, B and C refer
to the three approaches for generating training in-
stances described above. As already mentioned
for these large datasets, SVMs only use STK.
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We note that our re-rankers relevantly improve
our baselines,i.e. the FST and SVM concept clas-
sifiers on both corpora. For example, SVM re-
ranker using STK, MT and RR-A improves FST
concept classifier of 23.2-15.6 = 7.6 points.

Moreover, the monolithic training seems the
most appropriate to train the re-rankers whereas
approach A is the best in producing training in-
stances for the re-rankers. This is not surprising
since method A considers the manual annotation
as a referent gold standard and it always allows
comparing candidate annotations with the perfect
one.

Tables 4 and 5 have a similar structure of Ta-
ble 3 but they only show experiments on LUNA
WOZ corpus with respect to the monolithic and
split training approach, respectively. In these ta-
bles, we also report the result for SVMs and per-
ceptron (PCT) using STK, PTK and SK. We note
that:

First, the small size of WOZ training set (only
1,019 turns) impacts on the accuracy of the sys-
tems, e.g. FST and SVMs, which achieved a
CER of 18.2% and 23.4%, respectively, using also
HH dialogs, with only the WOZ data, they obtain
23.2% and 26.7%, respectively.

Second, the perceptron algorithm appears to be
ineffective for re-ranking. This is mainly due to
the reduced size of the WOZ data, which clearly
prevents an on line algorithm like PCT to ade-
quately refine its model by observing many exam-
ples4.

Third, the kernels which produce higher number
of substructures,i.e. PTK and SK, improves the
kernel less rich in terms of features,i.e. STK. For
example, using split training and approach A, STK
is improved by 20.0-16.1=3.9. This is an interest-
ing result since it shows that (a) richer structures
do produce better ranking models and (b) kernel
methods give a remarkable help in feature design.

Next, although the training data is small, the re-
rankers based on kernels appear to be very effec-
tive. This may also alleviate the burden of anno-
tating a lot of data.

Finally, the experiments of MEDIA show a not
so high improvement using re-rankers. This is due
to: (a) the baseline,i.e. the FST model is very
accurate since MEDIA is a large corpus thus the
re-ranker can only”correct” small number of er-
rors; and (b) we could only experiment with the

4We use only one iteration of the algorithm.

less expensive but also less accurate models,i.e.
monolithic training and STK.

Media also offers the possibility to compare
with the state-of-the-art, which our re-rankers
seem to improve. However, we need to consider
that many Media corpus versions exist and this
makes such comparisons not completely reliable.
Future work on the paper research line appears
to be very interesting: the assessment of our best
models on Media and WOZ+HH as well as other
corpora is required. More importantly, the struc-
tures that we have proposed for re-ranking are
just two of the many possibilities to encode both
word/concept statistical distributions and linguis-
tic knowledge encoded in syntactic/semantic parse
trees.

5 Conclusions

In this paper, we propose discriminative re-
ranking of concept annotation to capitalize from
the benefits of generative and discriminative ap-
proaches. Our generative approach is the state-
of-the-art in concept classification since we used
the same FST model used in (Raymond and Ric-
cardi, 2007). We could improve it by 1% point
in MEDIA and 7.6 points (until 30% of relative
improvement) on LUNA, where the more limited
availability of annotated data leaves a larger room
for improvement.

It should be noted that to design the re-ranking
model, we only used two different structures,
i.e. one sequence and one tree. Kernel meth-
ods show that combinations of feature vectors, se-
quence kernels and other structural kernels,e.g.
on shallow or deep syntactic parse trees, appear
to be a promising research line (Moschitti, 2008).
Also, the approach used in (Zanzotto and Mos-
chitti, 2006) to define cross pair relations may be
exploited to carry out a more effective pair re-
ranking. Finally, the experimentation with auto-
matic speech transcriptions is interesting to test the
robustness of our models to transcription errors.
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