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Abstract

In this paper we propose a new graph-
based method that uses the knowledge in
a LKB (based on WordNet) in order to
perform unsupervised Word Sense Disam-
biguation. Our algorithm uses the full
graph of the LKB efficiently, performing
better than previous approaches in English
all-words datasets. We also show that the
algorithm can be easily ported to other lan-
guages with good results, with the only re-
quirement of having a wordnet. In addi-
tion, we make an analysis of the perfor-
mance of the algorithm, showing that it is
efficient and that it could be tuned to be

Traditional knowledge-based WSD systems as-
sign a sense to an ambiguous word by comparing
each of its senses with those of the surrounding
context. Typically, some semantic similarity met-
ric is used for calculating the relatedness among
senses (Lesk, 1986; McCarthy et al., 2004). One
of the major drawbacks of these approaches stems
from the fact that senses are compared in a pair-
wise fashion and thus the number of computa-
tions can grow exponentially with the number of
words. Although alternatives like simulated an-
nealing (Cowie et al., 1992) and conceptual den-
sity (Agirre and Rigau, 1996) were tried, most of
past knowledge based WSD was done in a subop-
timal word-by-word process, i.e., disambiguating
words one at a time.

faster. Recently, graph-based methods for knowledge-

based WSD have gained much attention in the
NLP community (Sinha and Mihalcea, 2007; Nav-

Word Sense Disambiguation (WSD) is a keyigli and Lapata, 2007; Mihalcea, 2005; Agirre

enabling-technology that automatically choose@nd Soroa, 2008). These methods use well-known
the intended sense of a word in context. Superd'aph-based techniques to find and exploit the
vised WSD systems are the best performing irﬁtructural properties of the graph _underlylng apar-
public evaluations (Palmer et al., 2001; Snydett'CUIar LKB. Becau_se the graph is analyzed as a
and Palmer, 2004: Pradhan et al., 2007) but they?nole, these techniques have the remarkable prop-

need large amounts of hand-tagged data, which €Y Of being able to find globally optimal solu-
typically very expensive to build. Given the rela- iONS, given the relations between entities. Graph-

tively small amount of training data available, cur-Pased WSD methods are particularly suited for

rent state-of-the-art systems only beat the simpléiSambiguating word sequences, and they man-
most frequent sense (MFS) baseling a small a9€e to exploit the interrelations among the senses
margin. As an alternative to supervised systemd the given context. In this sense, they provide

knowledge-based WSD systems exploit the infor prmupleo_l solution to the exponential explosion

mation present in a lexical knowledge base (LKB)Problem, with excellent performance.

to perform WSD, without using any further corpus  Graph-based WSD is performed over a graph
evidence. composed by senses (nodes) and relations between

— e _ _ _ pairs of senses (edges). The relations may be of
This baseline consists of tagging all occurrences in the | t lexi fi |
test data with the sense of the word that occurs more often ir€VEral types (lexico-semantic, coocurrence rela-

the training data tions, etc.) and may have some weight attached to

1 Introduction
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them. The disambiguation is typically performed N x N transition probability matrix, wherg/;; =
by applying a ranking algorithm over the graph,dii if a link from i to j exists, and zero otherwise.
and then assigning the concepts with highest rankhen, the calculation of thBageRank vector Pr
to the corresponding words. Given the compu-over(G is equivalent to resolving Equation (1).
tational cost of using large graphs like WordNet,

many researchers use smaller subgraphs built on- Pr=cMPr+ (1 -c)v (1)
line for each target context.

In this paper we present a novel graph-based In the equationy is aN x 1 vector whose ele-
WSD algorithm which uses the full graph of ments are}V andc is the so calledlamping factor,
WordNet efficiently, performing significantly bet- & Scalar value betweénand1. The first term of
ter that previously published approaches in Enihe sum on the equation models the voting scheme
glish all-words datasets. We also show that th&lescribed in the beginning of the section. The sec-
algorithm can be easily ported to other language§nd term represents, loosely speaking, the proba-
with good results, with the only requirement of Pility of a surfer randomly jumping to any node,
having a wordnet. The algorithm is publicly avail- €-9- Without following any paths on the graph.
able and can be applied easily to sense invento] "€ damping factor, usually set in tfs5..0.95]
ries and knowledge bases different from WordNetfange, models the way in which these two terms
Our analysis shows that our algorithm is efficient@reé combined at each step.
compared to previously proposed alternatives, and The second term on Eq. (1) can also be seen as
that a good choice of WordNet versions and rela@ Smoothing factor that makes any graph fulfill the
tions is fundamental for good performance. property of being aperiodic and irreducible, and

The paper is structured as follows. We first dethus guarantees that PageRank calculation con-
scribe the PageRank and Personalized PageRaMRII€S t0 & unique stationary distribution.
algorithms. Section 3 introduces the graph based !nthe traditional PageRank formulation the vec-
methods used for WSD. Section 4 shows the extor v is a stochastic normalized vector whose ele-
perimental setting and the main results, and Sec¢hent values are alt,, thus assigning equal proba-
tion 5 compares our methods with related experDilities to all nodes in the graph in case of random
iments on graph-based WSD systems. Section Bmps. However, as pointed out by (Haveliwala,
shows the results of the method when applied t¢002), the vectov can be non-uniform and assign
a Spanish dataset. Section 7 analyzes the perfosironger probabilities to certain kinds of nodes, ef-

mance of the algorithm. Fina”y, we draw Somefectively biaSiI’lg the resulting PageRank vector to
conclusions in Section 8. prefer these nodes. For example, if we concen-

trate all the probability mass on a unique nade
2 PageRank and Personalized PageRank  all random jumps on the walk will return toand

h lebrated PageRank algorith Bri hus its rank will be high; moreover, the high rank
e celebrated PageRank algorithm (Brin an f i will make all the nodes in its vicinity also re-

Page, 1998) is a ”.‘eth"d for_rankin_g the vertice%eive a high rank. Thus, the importance of nede
n a graph accordmg t‘? their relative struptural iven by the initial distribution ofr spreads along
importance. The main idea of PageRank is th he graph on successive iterations of the algorithm.

wr][erllcever a I(;nktfromg 10 v eXéIStS '2 a g;aﬁ a0 this paper, we will uséraditional PageRank
vote from node 1o nodey IS produced, and hence to refer to the case when a unifornvector is used

the rank of nod@'.mcr(.eases. Besides, the strengthin Eq. (1); and whenever a modifiadis used, we
of the vote fromi to j also depends on the rank

f nodei- th . ant nodais. th will call it Personalized PageRank. The next sec-
Ot no th.'t € rtnore _|Ir|nr5)0r anAI?o '?’ | € PmoreR tion shows how we define a modified
strengih 1is votes will have. Allernatively, Fager- PageRank is actually calculated by applying an

ank can also be viewed as the result of a randon&erative algorithm which computes Eq. (1) suc-

walk process, wherg the final rank of nodeep- cessively until convergence below a given thresh-
resents the probability of a random walk over the

graph ending on nodeat a sufficiently large time. old is achieved, or, more typically, until a fixed

) : number of iterations are executed.
Let &' be a graph withV' verticesuy, ..., vy Regarding PageRank implementation details
and d; be the outdegree of node let M be a ’

we chose a damping value 085 and finish the
2http://ixa2.si.ehu. es/ ukb calculation afteB0 iterations. We did not try other
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damping factors. Some preliminary experiments e MCR16 + Xwn: The Multilingual Central

with higher iteration counts showed that although
sometimes the node ranks varied, the relative order
among particular word synsets remained stable af-
ter the initial iterations (cf. Section 7 for further
details). Note that, in order to discard the effect
of dangling nodes (i.e. nodes without outlinks) we
slightly modified Eq. (1). For the sake of brevity
we omit the details, which the interested reader
can check in (Langville and Meyer, 2003).

3 Using PageRank for WSD

In this section we present the application of
PageRank to WSD. If we were to apply the tra-
ditional PageRank over the whole WordNet we
would get a context-independent ranking of word
senses, which is not what we want. Given an input
piece of text (typically one sentence, or a small set
of contiguous sentences), we want to disambiguate
all open-class words in the input taken the rest as
context. In this framework, we need to rank the

Repository (Atserias et al., 2004b) is a lexical
knowledge base built within the MEANING
projecB. This LKB comprises the original
WordNet 1.6 synsets and relations, plus some
relations from other WordNet versions auto-
matically mappetiinto version 1.6: WordNet
2.0relations and eXtended WordNet relations
(Mihalcea and Moldovan, 2001) (gold, silver
and normal relations). The resulting graph
has99, 632 vertices and37, 290 relations.

WNetl7 + Xwn: WordNet 1.7 synset and
relations and eXtended WordNet relations.
The graph has09, 359 vertices and20, 396
edges

e WNet30 + gloss. WordNet 3.0 synset and

relations, including manually disambiguated
glosses . The graph has7, 522 vertices and
525, 356 relations.

senses of the target words according to the other Gjyen an input text, we extract the ligt; i =

words in the context. Theare two main alternatives,

to achieve this:

.m of content words (i.e. nouns, verbs, ad-
jectives and adverbs) which have an entry in the

e To create a subgraph of WordNet which con-dictionary, and thus can be related to LKB con-
nects the senses of the words in the input textcePts.  LetConcepts; = {vi,...,v;,} be the
and then apply traditional PageRank over thém associated concepts of woid; in the LKB

subgraph.

graph. Note that monosemous words will be re-

lated to just one concept, whereas polysemous
e To use Personalized PageRank, initializing words may be attached to several. As a result
with the senses of the words in the input text of the disambiguation process, every concept in

The first method has been explored in the lit-
erature (cf. Section 5), and we also presented
variant in (Agirre and Soroa, 2008) but the secon

Concepts;, i = 1,...,m receives a score. Then,
for each target word to be disambiguated, we just
Gghoose its associated conceptGnwith maximal

method is novel in WSD. In both cases, the algo-SCOre

rithms return a list of ranked senses for each target
word in the context. We will see each of them in
turn, but first we will present some notation and
preliminary step.

3.1 Preliminary step

A LKB is formed by a set of concepts and relations
among them, and a dictionary, i.e., a list of words

In our experiments we build a context of at least

20 content words for each sentence to be disam-

abiguated, taking the sentences immediately before
and after it in the case that the original sentence
was too short.

3.2 Traditional PageRank over Subgraph

(Spr)

(typically, word lemmas) each of them linked to We follow the algorithm presented in (Agirre and
at least one concept of the LKB. Given any suchSoroa, 2008), which we explain here for complete-
LKB, we build an undirected grapi = (V, E) ness. The main idea of the subgraph method is to
where nodes represent LKB concepts)( and  extract the subgraph @k whose vertices and
each relation between conceptsandv; is rep-  relations are particularly relevant for a given input
resented by ap undirected edzgg. . 3http://nipadio.lsi.upc.es/nlp/meaning

I_n our expe_rlments we have tried our algorithms  syye se the freely available WordNet mappings from
using three different LKBs: http://iwww.lsi.upc.es/nip/tools/download-map.php
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context. Such a subgraph is called a “disambiguaank of the graphGG by concentrating the initial
tion subgraph'Gp, and it is built in the following  probability mass uniformly over the newly intro-
way. For each wordV; in the input context and duced word nodes. As the words are linked to
each concept; € Concepts;, a standard breath- the concepts by directed edges, they act as source
first search (BFS) ovefkg is performed, start- nodes injecting mass into the concepts they are as-
ing at nodev;. Each run of the BFS calculates the sociated with, which thus become relevant nodes,
minimum distance paths betweerand the rest of and spread their mass over the LKB graph. There-
concepts of5kp . In particular, we are interested fore, the resulting personalized PageRank vector
in the minimum distance paths betwegrand the can be seen as a measure of the structural rele-
concepts associated to the rest of the words in theance of LKB concepts in the presence of the input
context,v; € U;; Concepts;. Letmdp,, be the context.
set of these shortest paths. One problem with Personalized PageRank is
This BFS computation is repeated for everythat if one of the target words has two senses
concept of every word in the input context, stor-which are related by semantic relations, those
ing mdp,, accordingly. At the end, we obtain a senses reinforce each other, and could thus
set of minimum length paths each of them hav-dampen the effect of the other senses in the con-
ing a different concept as a source. The disamtext. With this observation in mind we devised
biguation graphip is then just the union of the a variant (dubbedPpr_w2w), where we build the
vertices and edges of the shortest patig, =  graph for each target word in the context: for each
Uiz {mdp,,/vj € Concepts}. target wordl¥;, we concentrate the initial proba-
The disambiguation graptip is thus a sub- bility mass in the senses of the words surrounding
graph of the originalxg graph obtained by com- W;, but not in the senses of the target word itself,
puting the shortest paths between the concepts 6P that context words increase its relative impor-
the words co-occurring in the context. Thus, wetance in the graph. The main idea of this approach
hypothesize that it captures the most relevant coris to avoid biasing the initial score of concepts as-
cepts and relations in the knowledge base for th&ociated to target worth;, and let the surround-
particular input context. ing words decide which concept associatedifp
Once the&p graph is built, we compute the tra- has more relevance. Contrary to the other two ap-
ditional PageRank algorithm over it. The intuition ProachesPpr-w2w does not disambiguate all tar-
behind this step is that the vertices representing€t words of the context in a single run, which
the correct concepts will be more relevantdn, ~ Makes it less efficient (cf. Section 7).
than the rest of the possible concepts of the context )
words, which should have less relations on averagé EVvaluation framework and results

and be more |solgted. i i ) In this paper we will use two datasets for com-
As u_sugl, the disambiguation step is performecbaring graph-based WSD methods, namely, the

by assigning 0 each_ word; the as sociated con- Senseval-2 (S2AW) and Senseval-3 (S3AW) all

cept in Concepts; which has maximum rank. In- o 4¢ gatasets (Snyder and Palmer, 2004; Palmer

case of ties we assign all the concepts W_'th maXlst al., 2001), which are both labeled with WordNet
mum rank. Note that the standard evaluation scrlpi 7 tags. We did not use the Semeval dataset, for

provided in the Senseval competitions treats ml_"fhe sake of comparing our results to related work,

tiple SENses as if one was chosen a’_[ randc_)m, -Bone of which used Semeval data. Table 1 shows
for evalqaﬂo_n purposes our method is equwalen{he results as recall of the graph-based WSD sys-
to breaking ties at random. tem over these datasets on the different LKBs. We
. detail overall results, as well as results per PoS,
3.3 Personalized PageRank (Ppr and and the confidence interval for the overall results.
Ppr_w2w) The interval was computed using bootstrap resam-
As mentioned before, personalized PageRank apling with 95% confidence.
lows us to use the full LKB. We first insert the  The table shows tha®pr_w2w is consistently
context words into the grapf as nodes, and link the best method in both datasets and for all LKBs.
them with directed edges to their respective conPpr and Sor obtain comparable results, which is
cepts. Then, we compute the personalized PageRemarkable, given the simplicity of tHepr algo-
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Senseval-2 All Words dataset

LKB Method All N Y Adj. Adv. Conf. interval
MCR16 + Xwn  Ppr 511 649 381 574 475 [49.3,52.6]
MCR16 + Xwn  Pptw2w 53.3 645 38.6 583 481 [52.0,55.0]
MCR16 + Xwn  Spr 52.7 648 353 56.8 50.2 [51.3,54.4]
WNetl7 + Xwn  Ppr 56.8 71.1 334 559 67.1 [55.0,58.7]
WNetl7 + Xwn  Ppw2w 586 704 389 583 70.1 [56.7,60.3]
WNetl7 + Xwn  Spr 56.7 66.8 37.7 57.670.8 [55.0,58.2]
WNet30 + gloss  Ppr 535 700 286 539 551 [51.8,55.2]
WNet30 + gloss Ppw2w 558 719 344 538 575 [54.1,57.8]
WNet30 + gloss  Spr 548 689 351 552 565 [53.2,56.3]
MFS 60.1 712 39.0 611 754 [58.6,61.9]
SMUaw 686 780 529 699 817

Senseval-3 All Words dataset
LKB Method All N V Adj. Adv.
MCR16 + Xwn  Ppr 543 609 454 565929 [52.3,56.1]
MCR16 + Xwn  Pprw2w  55.8 63.2 46.2 575929 [53.7,57.7]
MCR16 + Xwn  Static 53.7 59.5 45.0 57.8929 [51.8,55.7]
WNetl7 + Xwn  Ppr 56.1 62.6 46.0 60.8929 [54.0,58.1]
WNetl7 + Xwn  Ppw2w 574 641 469 626 929 [55.5,59.3]
WNetl7 + Xwn  Spr 56.20 61.6 47.3 61.8 929 [54.8,58.2]
WNet30 + gloss  Ppr 485 522 415 542 786 [46.7,50.6]
WNet30 + gloss Ppw2w 516 59.0 40.2 57.2 78.6 [49.9,53.3]
WNet30 + gloss  Spr 454 541 314 525 78.6 [43.7,47.4]
MFS 62.3 69.3 53.6 637 929 [60.2,64.0]
GAMBL 65.2 70.8 59.3 653 100

Table 1: Results (as recall) on Senseval-2 and Senseval-3 all wokds tA& also include the MFS
baseline and the best results of supervised systems at competition time (SFAMBL).

rithm, compared to the more elaborate algorithrmered a difficult competitor for unsupervised sys-
to construct the graph. The differences betweetems, which rarely come close to it. In this case
methods are not statistically significant, which is athe MFS baseline was computed using previously
common problem on this relatively small datasetsavailabel training data like SemCor. Our best re-
(Snyder and Palmer, 2004; Palmer et al., 2001). sults are close to the MFS in both Senseval-2 and

Regarding LKBs, the best results are obtainedenseval-3 datasets. The results for the supervised
using WordNet 1.7 and eXtended WordNet. Heresystem are given for reference, and we can see that
the differences are in many cases significantthe gap is relatively small, specially for Senseval-
These results are surprising, as we would ex3.

ect that the manually disambiguated gloss re- .

IF;tions from WordNetyS.O Woul% lead 9':0 bet- 5 Comparison to Related work

ter results, compared to the automatically disamin this section we will briefly describe some
biguated gloss relations from the eXtended Wordgraph-based methods for knowledge-based WSD.
Net (linked to version 1.7). The lower perfor- The methods here presented cope with the prob-
mance of WNet30+gloss can be due to the facfem of sequence-labeling, i.e., they disambiguate
that the Senseval all words data set is tagged usingll the words coocurring in a sequence (typically,
WordNet 1.7 synsets. When using a different LKBall content words of a sentence). All the meth-
for WSD, a mapping to WordNet 1.7 is required. ods rely on the information represented on some
Although the mapping is cited as having a correct{_ KB, which typically is some version of Word-
ness on the high 90s (Daude et al., 2000), it couldNet, sometimes enriched with proprietary rela-
have introduced sufficient noise to counteract thejons. The results on our datasets, when available,
benefits of the hand-disambiguated glosses.  are shown in Table 2. The table also shows the
Table 1 also shows the most frequent sensperformance of supervised systems.

(MFS), as well as the best supervised sys- The TexRank algorithm (Mihalcea, 2005) for
tems (Snyder and Palmer, 2004; Palmer eWSD creates a complete weighted graph (e.g. a
al., 2001) that participated in each competitiongraph where every pair of distinct vertices is con-
(SMUaw and GAMBL, respectively). The MFS is nected by a weighted edge) formed by the synsets
a baseline for supervised systems, but it is considef the words in the input context. The weight
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Senseval-2 All Words dataset

In (Navigli and Velardi, 2005) the authors de-

System All N Y Adj.  Adv.

M>i/h05 515 575 365 5(13_7 209 velop a knowledge-based WSD method based on
Sihna07  56.4 656 323614 60.2 lexical chains called structural semantic intercon-
Tsatsa07 492 - - - - nections (SSI). Although the system was first de-
Spr 56.6 66.7 37.5 57.6 70.8 . : . i

Ppr 568 711 334 559 671 signed to find the meaning of the words in Word-
Pprw2w 586 70.4 389 583 70.1 Net glosses, the authors also apply the method for
MFS 601 /1.2 390 611 754 labeling text sequences. Given a text sequence,
SyeEm Se’f”e"a"zp‘" W‘\)/rds da:\%?et A SSi first identifies monosemous words and assigns
Miho5 522 : — the corresponding synset to them. Then, it iter-
Sihna07 ~ 52.4 605 40.6 54.1100.0 atively disambiguates the rest of terms by select-
Navo7 619 361 628 ing the senses that get the strongest interconnec-
Spr 56.2 61.6 473 61.8 929 Ing the senses that get the strongest interconnec
Ppr 561 62.6 460 608 929 tion with the synsets selected so far. The inter-
Pprw2w 574 641 469 626 929 connection is calculated by searching for paths on
'\N"g\%s %%‘i 6_39'3 _53'6 _63'7 _92'9 the LKB, constrained by some hand-made rules of

possible semantic patterns. The method was eval-
Table 2: Comparison with related work. Note thatuated on the Senseval-3 dataset, as shown in row
Nav05 uses the MFS. Nav05 on Table 2. Note that the method labels

an instance with the most frequent sense of the

word if the algorithm produces no output for that
of the links joining two synsets is calculated by . g g g

: , : instance, which makes comparison to our system
executing Lesk’s algorithm (Lesk, 1986) betWeenunfair, specially given the fact that the MFS per-

them, €. by calculating the overlap be_tween thq‘orms better than SSI. In fact it is not possible to
words in the glosses of the correspongind senseE

. . eparate the effect of SSI from that of the MFS.

Onge th? complete graph. is built, the PageRa_nk aor this reason we place this method close to the
gorithm is executed over it and Wo_rds are as&gneﬁmzs baseline in Table 2.
to the most relevant synset. In this sense, PageR-
ank is used an alternative to simulated annealing In (Navigli and Lapata, 2007), the authors per-
to find the optimal pairwise combinations. Theform atwo-stage process for WSD. Given an input
method was evaluated on the Senseval-3 datas@ontext, the method first explores the whole LKB
as shown in row Mih05 on Table 2. in order to find a subgraph which is particularly

(Sinha and Mihalcea, 2007) extends their pre€lévant for the words of the context. Then, they
vious work by using a collection of semantic sim- Study different graph-based centrality algorithms

ilarity measures when assigning a weight to thdor deciding the relevance of the nodes on the sgb-
links across synsets. They also compare differd"@Ph. As a result, every word of the context is
ent graph-based centrality algorithms to rank théttached to the highest ranking concept among its
vertices of the complete graph. They use differPOSSible senses. Trgor method is very similar
ent similarity metrics for different POS types and!© (Navigli and Lapata, 2007), the main differ-
a voting scheme among the centrality algorithm€"Cce lying on the initial method for_ extractlng the
ranks. Here, the Senseval-3 corpus was used &£9ntext subgraph. Whereas (Navigli and Lapata,

a development data set, and we can thus see thod807) apply a depth-first search algorithm over the
results as the upper-bound of their method. LKB graph —and restrict the depth of the subtree

We can see in Table 2 that the methods preEO a value of3—, Jr relies on shortest paths be-

sented in this paper clearly outperform both MihOStWeen word synsets. Navigli and Lapata don't re-

and Sin07. This result suggests that analyzing thgort overall results and.theref'ore, we can't directly
compare our results with theirs. However, we can

LKB structure as a whole is preferable than com- . .
puting pairwise similarity measures over synsets?c'ee t_hat on a PoS-basis evaluation our results are
The results of various in-house made experiment onsistently better for nouns and _ve_rbs (espe_C|aIIy

replicating (Mihalcea, 2005) also confirm this ob-t. ePpr.w2w method) and rather similar for adjec-
servation. Note also that our methods are simple?ves'

than the combination strategy used in (Sinha and (Tsatsaronis et al., 2007) is another example of
Mihalcea, 2007), and that we did not perform anya two-stage process, the first one consisting on

parameter tuning as they did. finding a relevant subgraph by performing a BFS
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Spanish Semeval07 Method  Time

LKB Method Acc.

Spanish Wnet + Xn&t Ppr 784 Ppr 26m46
Spanish Wnet + Xnét Pprw2w  79.3 Spr 119m7
- MFS 84.6 Pprw2w 164m4

- Supervised 85.10

O‘Eable 4: Elapsed time (in minutes) of the algo-

Table 3: Results (accuracy) on Spanish Semeval chms when applied to the Senseval-2 dataset,

dataset, including MFS and the best supervise
system in the competition.
ally annotated with Spanish WordNet synsets. It

search over the LKB. The authors apply a spreadi-s split into a trgin apd test par.t, and has an “all
ing activation algorithm over the subgraph forWorOIS shape i.e. input consists on sentences,

node ranking. Edges of the subgraph are WeighteaaCh one having at least one occurrence of a tar-
according to its type, following a tf.idf like ap- get noun. We ran the experiment over the test part

proach. The results show that our methods cIearI)(/792 _mstances), and use d the train part for cal-
outperform Tsatsa07. The fact that e method _CLLIatlnthe MFS basellne_. hV\ge u_sﬁd the Sdpiin_
works better suggests that the traditional PageRSD WordNet as LKB, enriched with eXtende

ank algorithm is a superior method for ranking theWordNet rtlalgtlons. ILcontalrIﬂSI)?, 501b|nodes and
subgraph nodes. 623, 316 relations. The results in Table 3 are con-

As stated before, all methods presented heraistent WiFh those for English, with our algorithm
use some LKB for performing WSD. (Mihalcea, approaching MFS performan.ce. Note that for thIS
2005) and (Sinha and Mihalcea, 2007) use Wordgataset the supervised algorlt'hm could bargly im-
Net relations as a knowledge source, but neitheP Ve OVer the MFS_’ sugg_estlng that for this par-
of them specify which particular version did they Bicular dataset MFS is particularly strong.
use. (Tsatsaronis et al., 2007) uses WordNet 1.
enriched with eXtended WordNet relations, just

as we do. Both (Navigli and Velardi, 2005; Nav- Taple 4 shows the time spent by the different al-
igli and Lapata, 2007) use WordNet 2.0 as the unyorithms when applied to the Senseval-2 all words
derlying LKB, albeit enriched with several new dataset, using the WNet17 + Xwn as LKB. The
relations, which are manually created. Unfor-gataset consists 02473 word instances appear-
tunately, those manual relations are not publiclyIng on 476 different sentences. The experiments
available, so we can't directly compare their re-\yere done on a computer with four 2.66 Ghz pro-
sults with the rest of the methods. In (Agirre and.essors and 16 Gb memory. The table shows that
Soroa, 2008) we experiment with different LKBS the time elapsed by the algorithms varies between
formed by combining relations of different MCR 34 minutes for thePpr method (which thus dis-
versions along with relations extracted from Sem‘ambiguates circa 82 instances per minute) to al-
Cor, which we call supervised and unsupervisetyost3 hours spent by thBpr_w2w method (circa
relations, respectively. The unsupervised relationgg instances per minute). THRr method lies
that yielded bests results are also used in this papgq between, requirin@ hours for completing the
(c.f Section 3.1). task, but its overall performance is well below the
PageRank basdepr_ w2w method. Note that the
algorithm is coded in C++ for greater efficiency,
Our WSD algorithm can be applied over non-and uses the Boost Graph Library.
english texts, provided that a LKB for this partic- Regarding PageRank calculation, we have tried
ular language exists. We have tested the grapldifferent numbers of iterations, and analyze the
algorithms proposed in this paper on a Spanishate of convergence of the algorithm. Figure 1 de-
dataset, using the Spanish WordNet as knowledggicts the performance of tHepr_w2w method for
source (Atserias et al., 2004a). different iterations of the algorithm. As before, the
We used the Semeval-2007 Task 09 dataset adgorithm is applied over the MCR17 + Xwn LKB,
evaluation gold standard @iquez et al., 2007). and evaluated on the Senseval-2 all words dataset.
The dataset contains examples of tH# most The algorithm converges very quickly: one sole it-
frequent nouns in the CESS-ECE corpus, manueration suffices for achieving a relatively high per-

; Performance analysis
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