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Abstract

Metonymy recognition is generally ap-
proached with complex algorithms that
rely heavily on the manual annotation of
training and test data. This paper will re-
lieve this complexity in two ways. First,
it will show that the results of the cur-
rent learning algorithms can be replicated
by the ‘lazy’ algorithm of Memory-Based
Learning. This approach simply stores all
training instances to its memory and clas-
sifies a test instance by comparing it to all
training examples. Second, this paper will
argue that the number of labelled training
examples that is currently used in the lit-
erature can be reduced drastically. This
finding can help relieve the knowledge ac-
quisition bottleneck in metonymy recog-
nition, and allow the algorithms to be ap-
plied on a wider scale.

1 Introduction

Metonymy is a figure of speech that uses “one en-
tity to refer to another that is related to it” (Lakoff
and Johnson, 1980, p.35). In example (1), for in-
stance, China and Taiwan stand for the govern-
ments of the respective countries:

)]

China has always threatened to use force
if Taiwan declared independence. (BNC)

Metonymy resolution is the task of automatically
recognizing these words and determining their ref-
erent. It is therefore generally split up into two
phases: metonymy recognition and metonymy in-
terpretation (Fass, 1997).

The earliest approaches to metonymy recogni-
tion identify a word as metonymical when it vio-
lates selectional restrictions (Pustejovsky, 1995).

Indeed, in example (1), China and Taiwan both
violate the restriction that threaten and declare
require an animate subject, and thus have to be
interpreted metonymically. However, it is clear
that many metonymies escape this characteriza-
tion. Nixon in example (2) does not violate the se-
lectional restrictions of the verb fo bomb, and yet,
it metonymically refers to the army under Nixon’s
command.

2)

This example shows that metonymy recognition
should not be based on rigid rules, but rather
on statistical information about the semantic and
grammatical context in which the target word oc-
curs.

This statistical dependency between the read-
ing of a word and its grammatical and seman-
tic context was investigated by Markert and Nis-
sim (2002a) and Nissim and Markert (2003;
2005). The key to their approach was the in-
sight that metonymy recognition is basically a sub-
problem of Word Sense Disambiguation (WSD).
Possibly metonymical words are polysemous, and
they generally belong to one of a number of pre-
defined metonymical categories. Hence, like WSD,
metonymy recognition boils down to the auto-
matic assignment of a sense label to a polysemous
word. This insight thus implied that all machine
learning approaches to WSD can also be applied to
metonymy recognition.

There are, however, two differences between
metonymy recognition and WSD. First, theo-
retically speaking, the set of possible readings
of a metonymical word is open-ended (Nunberg,
1978). In practice, however, metonymies tend to
stick to a small number of patterns, and their la-
bels can thus be defined a priori. Second, classic

Nixon bombed Hanoi.
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WSD algorithms take training instances of one par-
ticular word as their input and then disambiguate
test instances of the same word. By contrast, since
all words of the same semantic class may undergo
the same metonymical shifts, metonymy recogni-
tion systems can be built for an entire semantic
class instead of one particular word (Markert and
Nissim, 2002a).

To this goal, Markert and Nissim extracted
from the BNC a corpus of possibly metonymical
words from two categories: country names
(Markert and Nissim, 2002b) and organization
names (Nissim and Markert, 2005). All these
words were annotated with a semantic label
— either 1iteral or the metonymical cate-
gory they belonged to. For the country names,
Markert and Nissim distinguished between
place-for-people, place-for-event
and place-for-product. For the organi-
zation names, the most frequent metonymies
are organization-for-members and
organization-for-product. In addition,
Markert and Nissim used a label mixed for
examples that had two readings, and othermet
for examples that did not belong to any of the
pre-defined metonymical patterns.

For both categories, the results were promis-
ing. The best algorithms returned an accuracy of
87% for the countries and of 76% for the orga-
nizations. Grammatical features, which gave the
function of a possibly metonymical word and its
head, proved indispensable for the accurate recog-
nition of metonymies, but led to extremely low
recall values, due to data sparseness. Therefore
Nissim and Markert (2003) developed an algo-
rithm that also relied on semantic information, and
tested it on the mixed country data. This algo-
rithm used Dekang Lin’s (1998) thesaurus of se-
mantically similar words in order to search the
training data for instances whose head was sim-
ilar, and not just identical, to the test instances.
Nissim and Markert (2003) showed that a combi-
nation of semantic and grammatical information
gave the most promising results (87%).

However, Nissim and Markert’s (2003) ap-
proach has two major disadvantages. The first of
these is its complexity: the best-performing al-
gorithm requires smoothing, backing-off to gram-
matical roles, iterative searches through clusters of
semantically similar words, etc. In section 2, I will
therefore investigate if a metonymy recognition al-

gorithm needs to be that computationally demand-
ing. In particular, I will try and replicate Nissim
and Markert’s results with the ‘lazy’ algorithm of
Memory-Based Learning.

The second disadvantage of Nissim and Mark-
ert’s (2003) algorithms is their supervised nature.
Because they rely so heavily on the manual an-
notation of training and test data, an extension of
the classifiers to more metonymical patterns is ex-
tremely problematic. Yet, such an extension is es-
sential for many tasks throughout the field of Nat-
ural Language Processing, particularly Machine
Translation. This knowledge acquisition bottle-
neck is a well-known problem in NLP, and many
approaches have been developed to address it. One
of these is active learning, or sample selection, a
strategy that makes it possible to selectively an-
notate those examples that are most helpful to the
classifier. It has previously been applied to NLP
tasks such as parsing (Hwa, 2002; Osborne and
Baldridge, 2004) and Word Sense Disambiguation
(Fujii et al., 1998). In section 3, I will introduce
active learning into the field of metonymy recog-
nition.

2 Example-based metonymy recognition

As I have argued, Nissim and Markert’s (2003)
approach to metonymy recognition is quite com-
plex. I therefore wanted to see if this complexity
can be dispensed with, and if it can be replaced
with the much more simple algorithm of Memory-
Based Learning. The advantages of Memory-
Based Learning (MBL), which is implemented in
the TIMBL classifier (Daelemans et al., 2004)!, are
twofold. First, it is based on a plausible psycho-
logical hypothesis of human learning. It holds
that people interpret new examples of a phenom-
enon by comparing them to “stored representa-
tions of earlier experiences” (Daelemans et al.,
2004, p.19). This contrasts to many other classi-
fication algorithms, such as Naive Bayes, whose
psychological validity is an object of heavy de-
bate. Second, as a result of this learning hypothe-
sis, an MBL classifier such as TiMBL eschews the
formulation of complex rules or the computation
of probabilities during its training phase. Instead
it stores all training vectors to its memory, together
with their labels. In the test phase, it computes the
distance between the test vector and all these train-

'This software package is freely available and can be
downloaded from http://ilk.uvt.nl/software.html.
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ing vectors, and simply returns the most frequent
label of the most similar training examples.

One of the most important challenges in
Memory-Based Learning is adapting the algorithm
to one’s data. This includes finding a represen-
tative seed set as well as determining the right
distance measures. For my purposes, however,
TiMBL’s default settings proved more than satis-
factory. TiMBL implements the 1B1 and 1B2 algo-
rithms that were presented in Aha et al. (1991), but
adds a broad choice of distance measures. Its de-
fault implementation of the 1B1 algorithm, which
is called 1B1-1G in full (Daelemans and Van den
Bosch, 1992), proved most successful in my ex-
periments. It computes the distance between two
vectors X and Y by adding up the weighted dis-
tances ¢ between their corresponding feature val-
ues z; and y;:

3) AX,Y) = wib(xi, i)
i=1

The most important element in this equation is the
weight that is given to each feature. In IBI-IG,
features are weighted by their Gain Ratio (equa-
tion 4), the division of the feature’s Information
Gain by its split info. Information Gain, the nu-
merator in equation (4), “measures how much in-
formation it [feature 7] contributes to our knowl-
edge of the correct class label [...] by comput-
ing the difference in uncertainty (i.e. entropy) be-
tween the situations without and with knowledge
of the value of that feature” (Daelemans et al.,
2004, p.20). In order not “to overestimate the rel-
evance of features with large numbers of values”
(Daelemans et al., 2004, p.21), this Information
Gain is then divided by the split info, the entropy
of the feature values (equation 5). In the following
equations, C'is the set of class labels, H(C') is the
entropy of that set, and V; is the set of values for
feature <.

H(C) = Yey, P(v) x H(Cv)

@) wi= 5i(3)

%) si(i) = — Y P(v)loga P(v)
veV;

The 1B2 algorithm was developed alongside 1B 1
in order to reduce storage requirements (Aha et
al., 1991). It iteratively saves only those instances
that are misclassified by 1B 1. This is because these

will likely lie close to the decision boundary, and
hence, be most informative to the classifier. My
experiments showed, however, that 1B2’s best per-
formance lay more than 2% below that of IB1. It
will therefore not be treated any further here.

2.1 Experiments with grammatical
information only

In order to see if Memory-Based Learning is able
to replicate Nissim and Markert’s (2003; 2005) re-
sults, I used their corpora for a number of experi-
ments. These corpora consist of one set with about
1000 mixed country names, another with 1000 oc-
currences of Hungary, and a final set with about
1000 mixed organization names.> Evaluation was
performed with ten-fold cross-validation.

The first round of experiments used only gram-
matical information. The experiments for the lo-
cation data were similar to Nissim and Mark-
ert’s (2003), and took the following features into
account:

e the grammatical function of the word (subj,
obj, iobj, pp, gen, premod, passive subj,
other);

e its head;
e the presence of a second head;
o the second head (if present).

The experiments for the organization names used
the same features as Nissim and Markert (2005):

o the grammatical function of the word;
e its head;

e its type of determiner (if present) (def, indef,
bare, demonst, other);

e its grammatical number (sing, plural);
e its number of grammatical roles (if present).

The number of words in the organization name,
which Nissim and Markert used as a sixth and fi-
nal feature, led to slightly worse results in my ex-
periments and was therefore dropped.

The results of these first experiments clearly
beat the baselines of 79.7% (countries) and 63.4%
(organizations). Moreover, despite its extremely

This data is publicly available and can be downloaded
from http://homepages.inf.ed.ac.uk/mnissim/mascara.

73



Acc P R F
86.6% | 80.2% | 49.5% | 61.2%
87.0% | 81.4% | 51.0% | 62.7%

TiMBL
N&M

Table 1: Results for the mixed country data.
TiMBL: my TiMBL results
N&M: Nissim and Markert’s (2003) results

simple learning phase, TIMBL is able to replicate
the results from Nissim and Markert (2003; 2005).
As table 1 shows, accuracy for the mixed coun-
try data is almost identical to Nissim and Mark-
ert’s figure, and precision, recall and F-score for
the metonymical class lie only slightly lower.3
TiMBL’s results for the Hungary data were simi-
lar, and equally comparable to Markert and Nis-
sim’s (Katja Markert, personal communication).
Note, moreover, that these results were reached
with grammatical information only, whereas Nis-
sim and Markert’s (2003) algorithm relied on se-
mantics as well.

Next, table 2 indicates that TIMBL’s accuracy
for the mixed organization data lies about 1.5% be-
low Nissim and Markert’s (2005) figure. This re-
sult should be treated with caution, however. First,
Nissim and Markert’s available organization data
had not yet been annotated for grammatical fea-
tures, and my annotation may slightly differ from
theirs. Second, Nissim and Markert used several
feature vectors for instances with more than one
grammatical role and filtered all mixed instances
from the training set. A test instance was treated as
mixed only when its several feature vectors were
classified differently. My experiments, in contrast,
were similar to those for the location data, in that
each instance corresponded to one vector. Hence,
the slightly lower performance of TiMBL is prob-
ably due to differences between the two experi-
ments.

These first experiments thus demonstrate that
Memory-Based Learning can give state-of-the-art
performance in metonymy recognition. In this re-
spect, it is important to stress that the results for
the country data were reached without any se-
mantic information, whereas Nissim and Mark-
ert’s (2003) algorithm used Dekang Lin’s (1998)
clusters of semantically similar words in order
to deal with data sparseness. This fact, together

3Precision, recall and F-score are given for the metonymi-
cal class only, since this is the category that metonymy recog-
nition is concerned with.

Acc P R F
TiMBL | 74.63% | 78.65% | 55.53% | 65.10%
N&M | 76.0% — — —

Table 2: Results for the mixed organization data.
TiMBL: my TiMBL results
N&M: Nissim and Markert’s (2005) results

with the psychological plausibility and the simple
learning phase, adds to the attractivity of Memory-
Based Learning.

2.2 Experiments with semantic and
grammatical information

It is still intuitively true, however, that the inter-
pretation of a possibly metonymical word depends
mainly on the semantics of its head. The ques-
tion is if this information is still able to improve
the classifier’s performance. I therefore performed
a second round of experiments with the location
data, in which I also made use of semantic infor-
mation. In this round, I extracted the hypernym
synsets of the head’s first sense from WordNet.
WordNet’s hierarchy of synsets makes it possible
to quantify the semantic relatedness of two words:
the more hypernyms two words share, the more
closely related they are. I therefore used the ten
highest hypernyms of the first head as features 5
to 14. For those heads with fewer than ten hyper-
nyms, a copy of their lowest hypernym filled the
‘empty’ features. As a result, TIMBL would first
look for training instances with ten identical hy-
pernyms, then with nine, etc. It would thus com-
pare the test example to the semantically most sim-
ilar training examples.

However, TIMBL did not perform better with
this semantic information. Although F-scores for
the metonymical category went up slightly, the
system’s accuracy hardly changed. This result was
not due to the automatic selection of the first (most
frequent) WordNet sense. By manually disam-
biguating all the heads in the training and test set
of the country data, I observed that this first sense
was indeed often incorrect, but that choosing the
correct sense did not lead to a more robust system.
Clearly, the classifier did not benefit from Word-
Net information as Nissim and Markert’s (2003)
did from Lin’s (1998) thesaurus.

The learning curves for the country set allow
us to compare the two types of feature vectors
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- grammatical and semantic features —— grammatical features

Figure 1: Accuracy learning curves for the mixed
country data with and without semantic informa-
tion.

in more detail.* As figure 1 indicates, with re-
spect to overall accuracy, semantic features have
a negative influence: the learning curve with both
features climbs much more slowly than that with
only grammatical features. Hence, contrary to my
expectations, grammatical features seem to allow
a better generalization from a limited number of
training instances. With respect to the F-score on
the metonymical category in figure 2, the differ-
ences are much less outspoken. Both features give
similar learning curves, but semantic features lead
to a higher final F-score. In particular, the use of
semantic features results in a lower precision fig-
ure, but a higher recall score. Semantic features
thus cause the classifier to slightly overgeneralize
from the metonymic training examples.

There are two possible reasons for this inabil-
ity of semantic information to improve the clas-
sifier’s performance. First, WordNet’s synsets do
not always map well to one of our semantic la-
bels: many are rather broad and allow for several
readings of the target word, while others are too
specific to make generalization possible. Second,
there is the predominance of prepositional phrases
in our data. With their closed set of heads, the
number of examples that benefits from semantic
information about its head is actually rather small.

Nevertheless, my first round of experiments has
indicated that Memory-Based Learning is a sim-
ple but robust approach to metonymy recogni-
tion. It is able to replace current approaches that
need smoothing or iterative searches through a the-
saurus, with a simple, distance-based algorithm.

*These curves were obtained by averaging the results of
10 experiments. They show performance on a test set of 40%
of the data, with the other 60% as training data.

70%
65% - |
60% -
55% -
50% -
45% 4
a0% | |
35% -
30% +4——————
0 50 100 150 200 250 300 350 400 450 500 550
Number of training instances

F-score

------- grammatical and semantic features —— grammatical features

Figure 2: F-score learning curves for the mixed
country data with and without semantic informa-
tion.

Moreover, in contrast to some other successful
classifiers, it incorporates a plausible hypothesis
of human learning.

3 Distance-based sample selection

The previous section has shown that a simple algo-
rithm that compares test examples to stored train-
ing instances is able to produce state-of-the-art re-
sults in the field of metonymy recognition. This
leads to the question of how many examples we
actually need to arrive at this performance. Af-
ter all, the supervised approach that we explored
requires the careful manual annotation of a large
number of training instances. This knowledge ac-
quisition bottleneck compromises the extrapola-
tion of this approach to a large number of seman-
tic classes and metonymical patterns. This section
will therefore investigate if it is possible to auto-
matically choose informative examples, so that an-
notation effort can be reduced drastically.

For this round of experiments, two small
changes were made. First, since we are focusing
on metonymy recognition, 1 replaced all specific
metonymical labels with the label met, so that
only three labels remain: 1it, met and mixed.
Second, whereas the results in the previous section
were obtained with ten-fold cross-validation, I ran
these experiments with a training and a test set.
On each run, I used a random 60% of the data for
training; 40% was set aside for testing. All curves
give the average of twenty test runs that use gram-
matical information only.

In general, sample selection proceeds on the
basis of the confidence that the classifier has in
its classification. Commonly used metrics are the
probability of the most likely label, or the entropy
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Figure 3: Accuracy learning curves for the coun-
try data with random and maximum-distance se-
lection of training examples.

over all possible labels. The algorithm then picks
those instances with the lowest confidence, since
these will contain valuable information about the
training set (and hopefully also the test set) that is
still unknown to the system.

One problem with Memory-Based Learning al-
gorithms is that they do not directly output prob-
abilities. Since they are example-based, they can
only give the distances between the unlabelled in-
stance and all labelled training instances. Never-
theless, these distances can be used as a measure
of certainty, too: we can assume that the system
is most certain about the classification of test in-
stances that lie very close to one or more of its
training instances, and less certain about those that
are further away. Therefore the selection function
that minimizes the probability of the most likely
label can intuitively be replaced by one that max-
imizes the distance from the labelled training in-
stances.

However, figure 3 shows that for the mixed
country instances, this function is not an option.
Both learning curves give the results of an algo-
rithm that starts with fifty random instances, and
then iteratively adds ten new training instances to
this initial seed set. The algorithm behind the solid
curve chooses these instances randomly, whereas
the one behind the dotted line selects those that
are most distant from the labelled training exam-
ples. In the first half of the learning process, both
functions are equally successful; in the second the
distance-based function performs better, but only
slightly so.

There are two reasons for this bad initial per-
formance of the active learning function. First, it
is not able to distinguish between informative and

86% -

85% -

Accuracy

84% -

83% 1 |

82% T T T T T T T T T 1
50 100 150 200 250 300 350 400 450 500 550

Number of training instances

—— random - max + min distance

Figure 4: Accuracy learning curves for the coun-
try data with random and maximum/minimum-
distance selection of training examples.

unusual training instances. This is because a large
distance from the seed set simply means that the
particular instance’s feature values are relatively
unknown. This does not necessarily imply that
the instance is informative to the classifier, how-
ever. After all, it may be so unusual and so badly
representative of the training (and test) set that the
algorithm had better exclude it — something that
is impossible on the basis of distances only. This
bias towards outliers is a well-known disadvantage
of many simple active learning algorithms. A sec-
ond type of bias is due to the fact that the data has
been annotated with a few features only. More par-
ticularly, the present algorithm will keep adding
instances whose head is not yet represented in the
training set. This entails that it will put off adding
instances whose function is pp, simply because
other functions (subj, gen, ...) have a wider
variety in heads. Again, the result is a labelled set
that is not very representative of the entire training
set.

There are, however, a few easy ways to increase
the number of prototypical examples in the train-
ing set. In a second run of experiments, I used an
active learning function that added not only those
instances that were most distant from the labelled
training set, but also those that were closest to it.
After a few test runs, I decided to add six distant
and four close instances on each iteration. Figure 4
shows that such a function is indeed fairly success-
ful. Because it builds a labelled training set that is
more representative of the test set, this algorithm
clearly reduces the number of annotated instances
that is needed to reach a given performance.

Despite its success, this function is obviously
not yet a sophisticated way of selecting good train-

76



Accuracy

67% T T T T T T T T T T
50 100 150 200 250 300 350 400 450 500 550 600

Number of training instances

Figure 5: Accuracy learning curves for the organi-
zation data with random and distance-based (AL)
selection of training examples with a random seed
set.

ing examples. The selection of the initial seed set
in particular can be improved upon: ideally, this
seed set should take into account the overall dis-
tribution of the training examples. Currently, the
seeds are chosen randomly. This flaw in the al-
gorithm becomes clear if it is applied to another
data set: figure 5 shows that it does not outper-
form random selection on the organization data,
for instance.

As I suggested, the selection of prototypical or
representative instances as seeds can be used to
make the present algorithm more robust. Again, it
is possible to use distance measures to do this: be-
fore the selection of seed instances, the algorithm
can calculate for each unlabelled instance its dis-
tance from each of the other unlabelled instances.
In this way, it can build a prototypical seed set
by selecting those instances with the smallest dis-
tance on average. Figure 6 indicates that such an
algorithm indeed outperforms random sample se-
lection on the mixed organization data. For the
calculation of the initial distances, each feature re-
ceived the same weight. The algorithm then se-
lected 50 random samples from the ‘most proto-
typical’ half of the training set.” The other settings
were the same as above.

With the present small number of features, how-
ever, such a prototypical seed set is not yet always
as advantageous as it could be. A few experiments
indicated that it did not lead to better performance
on the mixed country data, for instance. However,
as soon as a wider variety of features is taken into
account (as with the organization data), the advan-

*Of course, the random algorithm in fi gure 6 still ran-
domly selected its seeds from the entire training set.

5%
74% -
73% -
72%
71% -
70% -
69% -
68% 4
%+
50 100 150 200 250 300 350 400 450 500 550 600
Number of training instances

Accuracy

—— random -~ AL + proto

Figure 6: Accuracy learning curves for the organi-
zation data with random and distance-based (AL)
selection of training examples with a prototypical
seed set.

tages of a prototypical seed set will definitely be-
come more obvious.

In conclusion, it has become clear that a careful
selection of training instances may considerably
reduce annotation effort in metonymy recognition.
Functions that construct a prototypical seed set
and then use MBL’s distance measures to select in-
formative as well as typical samples are extremely
promising in this respect and can already consid-
erably reduce annotation effort. In order to reach
an accuracy of 85% on the country data, for in-
stance, the active learning algorithm above needs
44% fewer training instances than its random com-
petitor (on average). On the organisation data, re-
duction is typically around 30%. These relatively
simple algorithms thus constitute a good basis for
the future development of robust active learning
techniques for metonymy recognition. I believe
in particular that research in this field should go
hand in hand with an investigation of new infor-
mative features, since the present, limited feature
set does not yet allow us to measure the classifier’s
confidence reliably.

4 Conclusions and future work

In this paper I have explored an example-based ap-
proach to metonymy recognition. Memory-Based
Learning does away with the complexity of cur-
rent supervised metonymy recognition algorithms.
Even without semantic information, it is able to
give state-of-the-art results similar to those in the
literature. Moreover, not only is the complexity of
current learning algorithms unnecessary; the num-
ber of labelled training instances can be reduced
drastically, too. I have argued that selective sam-
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pling can help choose those instances that are most
helpful to the classifier. A few distance-based al-
gorithms were able to drastically reduce the num-
ber of training instances that is needed for a given
accuracy, both for the country and the organization
names.

If current metonymy recognition algorithms are
to be used in a system that can recognize all pos-
sible metonymical patterns across a broad variety
of semantic classes, it is crucial that the required
number of labelled training examples be reduced.
This paper has taken the first steps along this path
and has set out some interesting questions for fu-
ture research. This research should include the
investigation of new features that can make clas-
sifiers more robust and allow us to measure their
confidence more reliably. This confidence mea-
surement can then also be used in semi-supervised
learning algorithms, for instance, where the clas-
sifier itself labels the majority of training exam-
ples. Only with techniques such as selective sam-
pling and semi-supervised learning can the knowl-
edge acquisition bottleneck in metonymy recogni-
tion be addressed.
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