
A Two-Stage Approach to Retrieving Answers for How-To

Questions

Ling Yin

CMIS, University of Brighton,

Brighton, BN2 4GJ, United Kingdom

Y.Ling@brighton.ac.uk

Abstract

This paper addresses the problem of
automatically retrieving answers for

how-to questions, focusing on those that

inquire about the procedure for
achieving a specific goal. For such

questions, typical information retrieval

methods, based on key word matching,

are better suited to detecting the content
of the goal (e.g., ‘installing a Windows

XP server’) than the general nature of the

desired information (i.e., procedural, a
series of steps for achieving this goal).

We suggest dividing the process of

retrieving answers for such questions

into two stages, with each stage focusing
on modeling one aspect of a how-to

question. We compare the two-stage

approach with two alternative
approaches: a baseline approach that

only uses the content of the goal to

retrieve relevant documents and another
approach that explores the potential of

automatic query expansion. The result of

the experiment shows that the two-stage

approach significantly outperforms the
baseline but achieves similar result with

the systems using automatic query

expansion techniques. We analyze the
reason and also present some future work.

1 Introduction

How-To questions constitute a large proportion

of questions on the Web. Many how-to questions
inquire about the procedure for achieving a

specific goal. For such questions, typical

information retrieval (IR) methods, based on key
word matching, are better suited to detecting the

content of the goal (e.g., installing a Windows

XP server) than the general nature of the desired

information (i.e., procedural, a series of steps for

achieving this goal). The reasons are given as
below.

First, documents that describe a procedure

often do not contain the word ‘procedure’ itself,
but we are able to abstract the concept

‘procedure’ from cues such as ‘first’, ‘next’ and

‘then’, all of which indicate sequential

relationships between actions. Secondly, We
expect that the word ‘procedure’ or the phrase

‘how to’ will occur in a much broader context

than the words in the goal. In other words, a
document that contains the words in the goal is

more likely to be relevant than a document that

contains the word ‘procedure’ or the phrase ‘how
to’. Without noticing this difference, treating the

two parts equally in the retrieving process will

get many noisy documents.

Many information requests seem to show such
a structure, with one part identifying a specific

topic and another part constraining the kind of

information required about this topic (Yin and
Power, 2005). The second part is often omitted

when selecting retrieval terms from the request to

construct an effective query for an IR system,
such as in Picard (1999).

The first point given above suggests that using

cues such as ‘first’ and ‘next’ to expand the

initial query may help in retrieving more relevant
documents. Expansion terms can be generated

automatically by query expansion techniques.

The typical process is: (1) use the initial query to
retrieve documents (referred to as the first round

of retrieval); (2) consider a few top ranked

documents as relevant and the rest irrelevant; (3)

compare the relevant set with the irrelevant set to
extract a list of most distinctive terms; (4) use the

extracted terms to retrieve documents (referred to

as the second round of retrieval).
However, query expansion may not constitute

a good solution, because its effectiveness largely

63

depends on the quality of the few top ranked

documents retrieved in the first round when the

aforementioned two problems are not yet

tackled.
Our solution is to divide the process of

retrieving answers for such questions into two

stages: (1) use typical IR approaches for
retrieving documents that are relevant to the

specific goal; (2) use a text categorization

approach to re-rank the retrieved documents
according to the proportion of procedural text

they contain. By ‘procedural text’ we refer to

ordered lists of steps, which are very common in

some instructional genres such as online manuals.
In this report, we will briefly introduce the

text categorization approach (details are

presented in (Yin and Power, 2006)) and will
explain in more concrete terms how it is

integrated into the two-stage architecture

proposed above. We will compare the
performance of our two-stage architecture with a

baseline system that uses only the content of the

goal to retrieve relevant documents (equivalent

to the first stage in the two-stage architecture).
We will also compare the two-stage approach

with systems that applies automatic query

expansion techniques.
This paper is organized as follows. Section 2

introduces some relevant work in IR and

question answering (QA). Section 3 talks about

the text categorization approach for ranking
procedural documents, covering issues such as

the features used, the training corpus, the design

of a classification model as well as some
experiments for evaluation. Section 4 talks about

integrating the text categorizer into the two-stage

architecture and presents some experiments on
retrieving relevant documents for how-to

questions. Section 5 provides a short summary

and presents some future work.

2 Related Work

The idea of applying text categorization

technology to help information retrieval is not
new. In particular, text categorization techniques

are widely adopted to filter a document source

according to specific information needs. For

example, Stricker et al. (2000) experiment on
several news resources to find news addressing

specific topics. They present a method for

automatically generating “discriminant terms”
(Stricker et al., 2000) for each topic that are then

used as features to train a neural network

classifier. Compared to these approaches, the

novelty of our study lies in the idea that an

information request consists of two different

parts that should be retrieved in different ways

and the whole retrieval process should adopt a
two-stage architecture.

A research area that is closely related to IR is

question answering (QA), the differences being
a) the input of a QA system is a question rather

than a few key words; b) a QA system aims to

extract answers to a question rather than
retrieving relevant documents only. Most QA

systems do adopt a two-stage architecture (if not

consider the initial question analysis stage), i.e.,

perform IR with a few content words extracted
from the query to locate documents likely to

contain an answer and then use information

extraction (IE) to find the text snippets that
match the question type (Hovy et al., 2001;

Elworthy, 2000). However, most question

answering systems target factoid questions – the
research of non-factoid questions started only a

few years ago but limited to several kinds, such

as definitional questions (Xu et al., 2003) and

questions asking for biographies (Tsur et al.,
2004).

Only a few studies have addressed procedural

questions. Murdok and Croft (2002) distinguish
between “task-oriented questions” (i.e., ask about

a process) and “fact-oriented questions” (i.e., ask

about a fact) and present a method to

automatically classify questions into these two
categories. Following this work, Kelly et al.

(2002) explore the difference between documents

that contain relevant information to the two
different types of questions. They conclude,

“lists and FAQs occur in more documents judged

relevant to task-oriented questions than those
judged relevant to fact-oriented questions” (Kelly

et al., 2002: 645) and suggest, “retrieval

techniques specific to each type of question

should be considered” (Kelly et al., 2002: 647).
Schwitter et al. (2004) present a method to

extract answers from technical documentations

for How-questions. To identify answers, they
match the logical form of a sentence against that

of the question and also explore the

typographical conventions in technical domains.
The work that most resembles ours is Takechi et

al. (2003), which uses word n-grams to classify

(as procedural or non-procedural) list passages

extracted using HTML tags. Our approach,
however, applies to whole documents, the aim

being to measure the degree of procedurality —

i.e., the proportion of procedural text they
contain.

64

3 Ranking Procedural Texts

Three essential elements of a text categorization

approach are the features used to represent the

document, the training corpus and the machine
learning method, which will be described in

section 3.1, 3.2 and 3.3 respectively. Section 3.4

presents experiments on applying the learned
model to rank documents in a small test set.

3.1 Feature Selection and Document

Representation

Linguistic Features and Cue Phrases

We targeted six procedural elements: actions,

times, sequence, conditionals, preconditions, and
purposes. These elements can be recognized

using linguistic features or cue phrases. For

example, an action is often conveyed by an
imperative; a precondition can be expressed by

the cue phrase ‘only if’. We used all the

syntactic and morphological tags defined in

Connexor’s syntax analyzer
1
. There are some

redundant tags in this set. For example, both the

syntactic tag ‘@INFMARK>’ and the

morphological tag ‘INFMARK>’ refer to the
infinitive marker ‘to’ and therefore always occur

together at the same time. We calculated the

Pearson’s product-moment correlation

coefficient (r) (Weisstein, 1999) between any
two tags based on their occurrences in sentences

of the whole training set. We removed one in

each pair of strongly correlated tags and finally
got 34 syntactic tags and 34 morphological tags.

We also handcrafted a list of relevant cue

phrases (44), which were extracted from
documents by using the Flex tool

2
 for pattern

matching. Some sample cue phrases and the

matching patterns are shown in table 1.
Procedural
Element

Cue Phrase Pattern

Precondition ‘only if’ [Oo]nly[[:space:]]if[[:space:]]

Purpose ‘so that’ [sS]o[[:space:]]that[[:space:]]

Condition ‘as long as’ ([Aa]s) [[:space:]]long[[:space:]]as[[:space:]]

Sequence ‘first’ [fF]irst [[:space:][:punct:]]

Time ‘now’ [nN]ow[[:space:][:punct:]]

Table 1. Sample cue phrases and matching

patterns.

Modeling Inter-Sentential Feature Co-

occurrence

Some cue phrases are ambiguous and therefore

cannot reliably suggest a procedural element.

For example, the cue phrase ‘first’ can be used to

1 Refer to http://www.connexor.com/
2

Refer to http://www.gnu.org/software/flex/flex.html

represent a ranking order or a spatial relationship

as well as a sequential order. However, it is more

likely to represent a sequential order between

actions if there is also an imperative in the same
sentence. Indeed, sentences that contain both an

ordinal number and an imperative are very

frequent in procedural texts. We compared
between the procedural training set and the non-

procedural training set to extract distinctive

feature co-occurrence patterns, each of which has
only 2 features. The formulae used to rank

patterns with regard to their distinctiveness can

be found in (Yin and Power, 2006).

Document Representation

Each document was represented as a vector

{ }
Njjjj xxxd ,...,,

21
= , where

ij
x represents the

number of sentences in the document that
contains a particular feature normalized by the

document length. We compare the effectiveness

of using individual features (
ij

x refers to either a

single linguistic feature or a cue phrases) and of

using feature co-occurrence patterns (
ij

x refers to

a feature co-occurrence pattern).

3.2 Corpus Preparation

Pagewise
3

 provides a list of subject-matter
domains, ranging from household issues to arts

and entertainment. We downloaded 1536

documents from this website (referred to

hereafter as the Pagewise collection). We then
used some simple heuristics to select documents

from this set to build the initial training corpus.

Specifically, to build the procedural set we chose
documents with titles containing key phrases

‘how to’ and ‘how can I’ (209 web documents);

to build the non-procedural set, we chose

documents which did not include these phrases
in their titles, and which also had no phrases like

‘procedure’ and ‘recipe’ within the body of the

text (208 web documents).
Samples drawn randomly from the procedural

set (25) and non-procedural set (28) were

submitted to two human judges, who assigned
procedurality scores from 1 (meaning no

procedural text at all) to 5 (meaning over 90%

procedural text). The Kendall tau-b agreement

(Kendall, 1979) between the two rankings was
0.821. Overall, the average scores for the

procedural and non-procedural samples were

3.15 and 1.38. We used these 53 sample
documents as part of the test set and the

3 Refer to http://www.essortment.com

65

remaining documents as the initial training set

(184 procedural and 180 non-procedural).

This initial training corpus is far from ideal:

first, it is small in size; a more serious problem is
that many positive training examples do not

contain a major proportion of procedural text. In

our experiments, we used this initial training set
to bootstrap a larger training set.

3.3 Learning Method

Although shown to be not so effective in some

previous studies (Yang, 1999; Yang and Liu,
1999), Naive Bayes classifier is one of the most

commonly-used classifiers for text

categorization. Here we introduce a model

adapted from the Naive Bayes classifier from the
weka-3-4 package (Witten and Frank, 2000).

The Naive Bayes classifier scores a document

jd according to whether it is a typical member

of its set — i.e., the probability of randomly
picking up a document like it from the

procedural class (()proceduralCdp j =|). This

probability is estimated from the training corpus.

As mentioned before, the average procedural

score of the procedural training set is low.
Therefore, there is obviously a danger that a true

procedural document will be ranked lower than a

document that contains less procedural texts
when using this training set to train a Naive

Bayes classifier. Although our procedural

training set is not representative of the
procedural class, by comparing it with the non-

procedural training set, we are able to tell the

difference between procedural documents and

non-procedural documents. We adapted the
Naive Bayes classifier to focus on modeling the

difference between the two classes. For example,

if the procedural training set has a higher
average value on feature Xi than the non-

procedural training set, we inferred that a

document with a higher feature value on Xi
should be scored higher. To reflect this rule, we

scored a document jd by the probability of

picking a document with a lower feature value

from the procedural class (i.e.,

)|(proceduralCxXp
iji

=<). Again this

probability is estimated from the training set.

The new model will be referred to hereafter as
the Adapted Naive Bayes classifier. The details

of this new model can be found in (Yin and
Power, 2006).

3.4 Experiments on Ranking Procedural

Texts

There are two sources from which we compiled

the training and testing corpora: the Pagewise
collection and the SPIRIT collection. The

SPIRIT collection contains a terabyte of HTML

that are crawled from the web starting from an
initial seed set of a few thousands universities

and other educational organizations (Clarke et

al., 1998).
Our test set contained 103 documents,

including the 53 documents that were sampled

previously and then separated from the initial

training corpus, another 30 documents randomly
chosen from the Pagewise collection and 20

documents chosen from the SPIRIT collection.

We asked two human subjects to score the
procedurality for these documents, following the

same instruction described in section 3.2. The

correlation coefficient (Kendall tau-b) between
the two rankings was 0.725, which is the upper

bound of the performance of the classifiers.

We first used the initial training corpus to

bootstrap a larger training set (378 procedural
documents and 608 non-procedural documents),

which was then used to select distinctive feature

co-occurrence patterns and to train different
classifiers. We compared the Adapted Naive

Bayes classifier with the Naive Bayes classifier

and three other classifiers, including Maximum

Entropy (ME)
4

, Alternating Decision Tree
(ADTree) (Freund and Mason, 1999) and Linear

Regression (Witten and Frank, 2000).

Figure 1. Ranking results using individual
features: 1 refers to Adapted Naive Bayes, 2

refers to Naive Bayes, 3 refers to ME, 4 refers to

ADTree and 5 refers to Linear Regression.

Ranking Method Agreement

with Subject 1

Agreement

with Subject 2

Average

Adapted Naive Bayes 0.270841 0.367515 0.319178

Naive Bayes 0.381921 0.464577 0.423249

ME 0.446283 0.510926 0.478605

4 Refer to
http://homepages.inf.ed.ac.uk/s0450736/maxent.html

66

ADTree 0.371988 0.463966 0.417977

Linear Regression 0.497395 0.551597 0.524496

Table 2. Ranking results using individual
features.

Figure 2. Ranking results using feature co-

occurrence patterns: 1 refers to Adapted Naive
Bayes, 2 refers to Naive Bayes, 3 refers to ME, 4

refers to ADTree and 5 refers to Linear

Regression.

Ranking Method Agreement

with Subject 1
Agreement

with Subject 2

Average

Adapted Naive Bayes 0.420423 0.513336 0.466880

Naive Bayes 0.420866 0.475514 0.44819

ME 0.414184 0.455482 0.434833

ADTree 0.358095 0.422987 0.390541

Linear Regression 0.190609 0.279472 0.235041

Table 3. Ranking results using feature co-

occurrence patterns.

Figure 1 and table 2 show the Kendall tau-b

coefficient between human subjects’ ranking
results and the trained classifiers’ ranking results

of the test set when using individual features

(112); Figure 2 and table 3 show the Kendall

tau-b coefficient when using feature co-
occurrence patterns (813).

As we can see from the above figures, when
using individual features, Linear Regression

achieved the best result, Adapted Naive Bayes

performed the worst, Naive Bayes, ME and
ADTree were in the middle; however, when

using feature co-occurrence patterns, the order

almost reversed, i.e., Adapted Naive Bayes
performed the best and Linear Regression the

worst. Detailed analysis of the result is beyond

the scope of this paper. The best model gained

by using feature co-ocurrence patterns (i.e.,
Adapted Naive Bayes classifier) and by using
individual features (i.e., Linear Regression
classification model) will be used for further
experiments on the two-stage architecture.

4 Retrieving Relevant Documents for

How-To Questions

In this section we will describe the experiments
on retrieving relevant documents for how-to

questions by applying different approaches

mentioned in the introduction section.

4.1 Experiment Setup

We randomly chose 60 how-to questions from
the query logs of the FA Q finder system (Burke

et al., 1997). Three judges went through these

questions and agreed on 10 procedural
questions5

.

We searched Google and downloaded 40 top

ranked documents for each question, which were

then mixed with 1000 web documents from the
SPIRIT collection to compile a test set. The two-

stage architecture is as shown in figure 3. In the

first stage, we sent only the content of the goal to
a state-of-the-art IR model to retrieve 30

documents from the test set, which were

reranked in the second stage according to the
degree of procedurality by a trained document

classifier.

Figure 3. A two-stage architecture.

We also tried to test how well query expansion

could help in retrieving procedural documents,

following a process as shown in figure 4. First,

key words in the content of goal were used to
query an IR model to retrieve an initial set of

relevant documents, those of which that do not

contain the phrase ‘how to’ were then removed.
The remaining top ten documents were used to

generate 40 searching terms, which were applied

in the second round to retrieve documents.
Finally the 30 top ranked documents were

returned as relevant documents.

5 We distinguish questions asking for a series of steps

(i.e., procedural questions) from those of which the

answer could be a list of useful hints, e.g., ‘how to

make money’.

Stage One

Stage Two

67

Figure 4. An alternative architecture using query

expansion.

4.2 IR Model

For the above-mentioned IR model, we used the
BM25 and PL2 algorithms from the Terrier IR

platform
6
.

The BM25 algorithm is one variety of the

probabilistic schema presented in (Robertson et
al. 1993). It has gained much success in TREC

competitions and has been adopted by many

other TREC participants.
The PL2 algorithm, as most other IR models

implemented in the Terrier IR platform, is based

on the Divergence From Randomness (DFR)
framework. Amati and Rijsbergen (2004)

provide a detailed explanation of this framework

and a set of term-weighting formulae derived by

applying different models of randomness and
different ways to normalize the weight of a term

according to the document length and according

to a notion called information gain. They test
these different formulae in the experiments on

retrieving relevant documents for various sets of

TREC topics and show that they achieve

comparable result with the BM25 algorithm.
We also used the Bo1 algorithm from the

same package to select terms for query

expansion. Refer to (Plachouras et al., 2004) for
details about this algorithm.

4.3 Result

We tested eight systems, which could be

organized into two sets. The first set uses BM25
algorithm as the basic IR model and the second

set uses PL2 as the basic IR model. Each set

includes four systems: a baseline system that

returns the result of the first stage in the two-
stage architecture, one system that uses query

expansion technique following the architecture

in figure 4 and two systems that apply the two-

6 http://ir.dcs.gla.ac.uk/terrier/index.html

stage architecture (one uses the Adapted Naive

Bayes classifier and another one uses the Linear

Regression classification model).

The mean average precision (MAP)
7

 of
different retrieval systems is shown in table 4

and figure 5.

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

1 2

Basel i ne

Quer y Expansi on

Adapt ed Nai ve Bayes

Li near Regr essi on

Figure 5. MAPs of different systems: 1 refers to

using BM25 as the IR model, 2 refers to using
PL2 as the IR model.

 Model MAP

 BM25 (Baseline) 0.33692

Set1 BM25 + Query Expansion 0.50162

 BM25 + Adapted Naive Bayes 0.45605

 BM25 + Linear Regression 0.41597

 PL2 (Baseline) 0.33265

Set2 PL2 + Query Expansion 0.45821

 PL2 + Adapted Naive Bayes 0.44263

 PL2 + Linear Regression 0.40218

Table 4. Results of different systems.

We can see that in both sets: (1) systems that

adopts the two-stage architecture performed
better than the baseline system but worse than

the system that applies query expansion

technique; (2) the system that uses Adapted
Naive Bayes classifier in the second stage gained

better result than the one that uses Linear

Regression classification model. We performed a

pairwise t-test to test the significance of the
difference between the results of the two systems

with an integrated Adapted Naive Bayes

classifier and of the two baseline systems. Each
data set contained 20 figures, with each figure

representing the average precision of the

retrieving result for one question. The difference
is significant (p=0.02). We also performed a

pairwise t-test to test the significance of the

difference between the two systems with an

integrated Adapted Naive Bayes classifier and of

7 The average precision of a single question is the

mean of the precision scores after each relevant

document is retrieved. The mean average precision is

the mean of the average precisions of a collection of

questions.

Round One

Round Two

68

the two systems using query expansion

techniques. The difference is not significant

(p=0.66).

4.4 Discussion

Contrary to our expectation, the result of the
experiments showed that the two-stage approach

did not perform better than simply applying a

query expansion technique to generate an
expanded list of querying terms. An explanation

can be sought from the following two aspects

(each of which corresponds to one of the two
problems mentioned in the first section).

First, we expected that many documents that

contain procedures do not contain the word

‘procedure’ or the phrase ‘how to’. Therefore, a
system based on key word matching would not

be able to identify such documents. However,

we found that such words or phrases, although
not included in the body of the text, often occur

in the title of the document.

Another problem we pointed out before is that

the phrase ‘how to’ occurs in a much broader
context than keywords in the content of the goal,

therefore, it would bring a lot of irrelevant

documents when used together with the content
of goal for document retrieval. However, in our

experiment, we used the content of the goal to

retrieve document first and then removed those
containing no phrase ‘how to’ (refer to figure 4).

This is actually also a two-stage approach in

itself.

Despite the experiment result, a well-known
defect of query expansion is that it is only

effective if relevant documents are similar to

each other while the two-stage approach does
not have this limitation. For example, for

retrieving documents about ‘how to cook

herring’, query expansion is only able to retrieve
typical recipes while our two-stage approach is

able to detect an exotic method as long as it is

described as a sequence of steps.

5 Summary and Future Work

In this paper, we suggested that a how-to

question could be seen as consisting of two

parts: the specific goal and the general nature of
the desired information (i.e., procedural). We

proposed a two-stage architecture to retrieve

documents that meet the requirement of both
parts. We compared the two-stage architecture

with other approaches: one only uses the content

of the goal to retrieve documents (baseline
system) and another one uses an expanded set of

query terms obtained by automatic query

expansion techniques. The result has shown that

the two-stage architecture performed better than

the base line system but did not show superiority
over query expansion techniques. We provide an

explanation in section 4.4.

As suggested in section 1, many information
requests are formulated as consisting of two

parts. As a future work, we will test the two-

stage architecture for retrieving answers for other
kind of questions.

References

Amati, Gianni and Cornelis J. van Rijsbergen. 2002.

Probabilistic models of information retrieval based
on measuring the divergence from randomness.

ACM Transactions on Information Systems, 20 (4):

357-389.

Burke, Robin D., Kristian J. Hammond, Vladimir

Kulyukin, Steven L. Lytinen, Noriko Tomuro, and

Scott Schoenberg. 1997. Question answering from

frequently-asked question files: experiences with

the FAQ finder system. AI Magazine, 18(2): 57-66.

Clarke, Charles, Gordan Cormack, M. Laszlo,

Thomas Lynam, and Egidio Terra. 1998. The

impact of corpus size on question answering

performance. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research
and Development in IR, Tampere, Finland.

Elworthy, David. 2000. Question answering using a

large NLP system. In Proceedings of the Ninth Text
Retrieval Conference (TREC-9), pages 355-360.

Freund, Yoav and Llew Mason. 1999. The alternating

decision tree learning algorithm. In Proceeding of
the Sixteenth International Conference on Machine
Learning, pages 124-133, Bled, Slovenia.

Hovy, Eduard, Laurie Gerber, Ulf Hermjakob,

Michael Junk, and Chin-Yew Lin. 2001. Question
Answering in Webclopedia. In Proceedings of the
Ninth Text Retrieval Conference (TREC-9), pages

655-664.

Kelly, Diane, Vanessa Murdock, Xiao-Jun Yuan, W.

Bruce Croft, and Nicholas J. Belkin. 2002. Features

of documents relevant to task- and fact-oriented

questions. In Proceedings of the Eleventh
International Conference on Information and
Knowledge Management (CIKM '02), pages 645-

647, McLean, VA.

Kendall, Maurice. 1979. The Advanced Theory of
Statistics. Fourth Edition. Griffin, London.

Murdok, Vanessa and Bruce Croft. 2002. Task

orientation in question answering. In Proceedings
of SIGIR ’02, pages 355-356, Tampere, Finland.

69

Picard, Justin. 1999. Finding content-bearing terms

using term similarities. In Proceedings of the Ninth
Conference of the European Chapter of the
Association for Computational Linguistics (EACL
1999), pages 241-244, Bergen, Norway.

Plachouras, Vassilis, Ben He, and Iadh Ounis. 2004.

University of Glasgow at TREC2004: Experiments

in web, robust and terabyte tracks with Terrier. In

Proceedings of the Thirteenth Text REtrieval
Conference (TREC 2004).

Robertson, Stephen, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.

1993. Okapi at TREC-2. In Proceedings of the
Second Text Retrieval Conference (TREC-2),
pages 21-24.

Schwitter, Rolf, Fabio Rinaldi, and Simon Clematide.

2004. The importance of how-questions in

technical domains. In Proceedings of the Question-
Answering workshop of TALN 04, Fez, Morocco.

Stricker, Mathieu, Frantz Vichot, Gérard Dreyfus,

and Francis Wolinski. 2000. Two steps feature

selection and neural network classification for the
TREC-8 routing. CoRR cs. CL/0007016.

Takechi, Mineki, Takenobu Tokunaga, Yuji

Matsumoto, and Hozumi Tanaka. 2003. Feature

selection in categorizing procedural expressions. In

Proceedings of the Sixth International Workshop
on Information Retrieval with Asian Languages
(IRAL2003), pages 49-56, Sapporo, Japan.

Tsur, Oren, Maarten de Rijke, and Khalil Sima'an.

2004. BioGrapher: biography questions as a

restricted domain question answering task. In

Proceedings ACL 2004 Workshop on Question
Answering in Restricted Domains, Barcelona.

Weisstein, Eric. 1999. Correlation Coefficient.
MathWorld--A Wolfram Web Resource. Available

at: <URL: http://mathworld.wolfram.com/

CorrelationCoefficient.html> [Accessed 21 Oct

2005]

Witten, Ian and Eibe Frank. 2000. Data Mining:
Practical Machine Learning Tools with Java
Implementations, Morgan Kaufmann, San Mateo,

CA.

Xu, Jinxi, Ana Licuanan, and Ralph Weischedel.

2003. TREC2003 QA at BBN: answering
definitional questions. In Proceedings of the
Twelfth Text Retrieval Conference (TREC 2003),
pages 98-106.

Yang, Yi-Ming. 1999. An evaluation of statistical

approaches to text categorization. Journal of
Information Retrieval 1(1/2): 67-88.

Yang, Yi-Ming and Xin Liu. 1999. A re-examination

of text categorization methods. In Proceedings of
ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR'99),
pages 42-49, Berkeley, CA.

Yin, Ling and Richard Power. 2005. Investigating the

structure of topic expressions: a corpus-based

approach. In Proceedings from the Corpus
Linguistics Conference Series, Vol.1, No.1,

University of Birmingham, Birmingham.

Yin, Ling and Richard Power. 2006. Adapting the

Naive Bayes classifier to rank procedural texts. In

Proceedings of the 28th European Conference on
IR Research (ECIR 2006).

70

