
DUDE: a Dialogue and Understanding Development Environment,
mapping Business Process Models to Information State Update dialogue

systems

Oliver Lemon and Xingkun Liu

School of Informatics

University of Edinburgh�
olemon,xliu4 � @inf.ed.ac.uk

Abstract

We demonstrate a new development environ-

ment1 “Information State Update” dialogue

systems which allows non-expert developers

to produce complete spoken dialogue sys-

tems based only on a Business Process Model

(BPM) describing their application (e.g. bank-

ing, cinema booking, shopping, restaurant in-

formation). The environment includes au-

tomatic generation of Grammatical Frame-

work (GF) grammars for robust interpretation

of spontaneous speech, and uses application

databases to generate lexical entries and gram-

mar rules. The GF grammar is compiled to

an ATK or Nuance language model for speech

recognition. The demonstration system allows

users to create and modify spoken dialogue

systems, starting with a definition of a Busi-

ness ProcessModel and ending with a working

system. This paper describes the environment,

its main components, and some of the research

issues involved in its development.

1 Introduction: Business Process

Modelling and Contact Centres

Many companies use “business process models”

(BPMs) to specify communicative (andmany other) ac-

tions that must be performed in order to complete vari-

ous tasks (e.g. verify customer identity, pay a bill). See

for example BPEL4WS 2 (Andrews, 2003). These rep-

resentations specify states of processes or tasks, transi-

tions between the states, and conditions on transitions

(see e.g. the cinema booking example in figure 1). Typ-

ically, a human telephone operator (using a presenta-

tion of a BPM on a GUI) will step through these states

with a customer, during a telephone interaction (e.g. in

a contact centre), in order to complete a business pro-

cess. Note, however, that BPM representations do not

1This research is supported by Scottish Enterprise under
the Edinburgh-Stanford Link programme. We thank Graham
Technology for their collaboration.

2Business Process Execution Language for Web Services.

traditionally model dialogue context, so that (as well as

speech recognition, interpretation, and production) the

human operator is responsible for:

�
contextual interpretation of incoming speech

� maintaining and updating dialogue context
� dialogue strategy (e.g. implicit/explicit confirma-
tion, initiative management).

Figure 1: Part of an example Business Process Model

(cinema booking) in the GT-X7 system (Graham Tech-

nology plc, 2005) (version 1.8.0).

A major advantage of current BPM systems (as well

as their support for database access and enterprise sys-

tem integration etc.) is their graphical development

and authoring environments. See for example figure

1 from the GT-X7 system (Graham Technology plc,

2005), version 1.8.0. This shows part of a BPM for a

cinema booking process. First (top left “introduction”

node) the caller should hear an introduction, then (as

long as there is a “ContinueEvent”) they will be asked

for the name of a cinema (“cinemaChoice”), and then

for the name of a film (“filmChoice”) and so on until

the correct cinema tickets are payed for.

These systems allow non-experts to construct, mod-

ify, and rapidly deploy process models and the result-

ing interactions, including interactions with back-end

99



databases. For example, a manager may decide (after

deployment of a banking application) that credit should

now only be offered to customers with a credit rating of

5 or greater, and this change can be made simply by re-

vising a condition on a state transition, presented as an

arc in a process diagram. Thus the modelling environ-

ment allows for easy specification and revision of in-

teractions. The process models are also hierarchical, so

that complex processes can be built from nested com-

binations of simple interactions. By using these sorts

of graphical tools, non-experts can deploy and man-

age complex business processes to be used by thou-

sands of human contact centre operatives. However,

many of these interactions are mundane and tedious for

humans, and can easily be carried out by automated

dialogue systems. We estimate that around 80% of

contact-centre interactions involve simple information-

gathering dialogues such as acquiring customer con-

tact details. These can be handled robustly by Infor-

mation State Update (ISU) dialogue systems (Larsson

and Traum, 2000; Bos et al., 2003). Our contribution

here is to allow non expert developers to build ISU sys-

tems using only the BPMs and databases that they are

already familiar with, as shown in figure 2.

Figure 2: The DUDE development process

1.1 Automating Contact Centres with DUDE

Automation of contact centre interactions is a realis-

tic aim only if state-of-the art dialogue management

technology is employed. Currently, several compa-

nies are attempting to automate contact centers via sim-

ple speech-recognition-based interfaces using Voice

XML. However, this is much like specification of dia-

logue managers using finite state networks, a technique

which is known to be insufficient for flexible dialogues.

The main problem is that most traditional BPM sys-

tems lack a representation of dialogue context.3 Here

we show how to elaborate business process models

with linguistic information of various types (e.g. how

to generate appropriate clarification questions), and we

show an ISU dialogue management component, which

tracks dialogue context and takes standard BPMs as in-

put to its discourse planner. Developers can now make

use of the dialogue context (Information State) using

DUDE to define process conditions that depend on IS

features (e.g. user answer, dialogue-length, etc.).

3Footnote: The manufacturer of the GT-X7 system (Gra-
ham Technology plc, 2005) has independently created the
agent247(TM) Dialogue Modelling component with dynamic
prompt and Grammar generation for Natural Language Un-
derstanding.

Customers are now able to immediately declare their

goals (“I want to change my address”) rather than hav-

ing to laboriously navigate a series of multiple-choice

options. This sort of “How may I help you?” sys-

tem is easily within current dialogue system expertise

(Walker et al., 2000), but has not seen widespread com-

mercial deployment. Another possibility opened up by

the use of dialogue technology is the personalization

of the dialogue with the customer. By interacting with

a model of the customer’s preferences a dialogue in-

terface is able to recommend appropriate services for

the customer (Moore et al., 2004), as well as modify its

interaction style.

2 DUDE: a development environment

DUDE targets development of flexible and robust ISU

dialogue systems from BPMs and databases. Its main

components are:

�
A graphical Business Process Modelling Tool

(Graham Technology plc, 2005) (java)

�
DIPPER generic dialogue manager (Bos et al.,

2003) (java or prolog)

�
MySQL databases

�
a development GUI (java), see section 2.2

The spoken dialogue systems produced by DUDE all

run using the Open Agent Architecture (OAA) (Cheyer

and Martin, 2001) and employ the following agents in

addition to DIPPER:

� Grammatical Framework (GF) parser (Ranta,
2004) (java)

�
BPM agent (java) and Database agent (java)

� HTK speech recognizer (Young, 1995) using ATK
(or alternatively Nuance)

� Festival2 speech synthesizer (Taylor et al., 1998)
We now highlight generic dialogue management, the

DUDE developer GUI, and the use of GF.

2.1 DIPPER and generic dialogue management

Many sophisticated research systems are developed for

specific applications and cannot be transferred to an-

other, even very similar, task or domain. The prob-

lem of components being domain specific is espe-

cially severe in the core area of dialogue manage-

ment. For example MIT’s Pegasus and Mercury sys-

tems (Seneff, 2002) have dialogue managers which use

approximately 350 domain-specific hand-coded rules

each. The sheer amount of labor required to con-

struct systems prevents them from being more widely

and rapidly deployed. Using BPMs and related au-

thoring tools to specify dialogue interactions addresses

this problem and requires the development of domain-

general dialogue managers, where BPMs represent

application-specific information.

100



We have developed a generic dialogue manager

(DM) using DIPPER. The core DM rules cover mixed

initiative dialogue for multiple tasks (e.g. a BPM with

several sub-processes), explicit and implicit confirma-

tion, help, restart, repeat, and quit commands, and

presentation and refinement of database query results.

This is a domain-neutral abstraction of the ISU dia-

logue managers implemented for the FLIGHTS and

TALK systems (Moore et al., 2004; Lemon et al.,

2006).

The key point here is that the DM consults the BPM

to determinewhat task-based steps to take next (e.g. ask

for cinema name), when appropriate. Domain-general

aspects of dialogue (e.g. confirmation and clarification

strategies) are handled by the core DM. Values for con-

straints on transitions and branching in the BPM (e.g.

present insurance option if the user is business-class)

are compiled into domain-specific parts of the Informa-

tion State. We use an XML format for BPMs, and com-

pile them into finite state machines (the BPM agent)

consulted by DIPPER for task-based dialogue control.

2.2 The DUDE developer GUI

Figures 3 to 5 show different screens from the DUDE

GUI for dialogue system development. Figure 3 shows

the developer associating “spotter” phrases with sub-

tasks in the BPM. Here the developer is associating

the phrases “hotels, hotel, stay, room, night, sleep” and

“rooms” with the hotels task. This means that, for

example, if the user says “I need a place to stay”, the

hotel-booking BPM will be triggered. (Note that multi-

word phrases may also be defined). The defined spot-

ters are automatically compiled into the GF grammar

for parsing and speech recognition. By default all the

lexical entries for answer-types for the subtasks will al-

ready be present as spotter phrases. DUDE checks for

possible ambiguities (e.g. if “sushi” is a spotter for both

cuisine type for a restaurant subtask and food type for

a shopping process) and uses clarification subdialogues

to resolve them at runtime.

Figure 3: Example: using DUDE to define “spotter”

phrases for different BPM subtasks

Figure 4 shows the developer’s overview of the sub-

tasks of a BPM (here, hotel information). The devel-

oper can navigate this representation and edit it to de-

fine prompts and manipulate the associated databases.

Figure 4: A Business Process Model viewed by DUDE

Figure 5 shows the developer specifying the required

linguistic information to automate the “ask price” sub-

task of the hotel-information BPM. Here the developer

specifies the system prompt for the information (“Do

you want something cheap or expensive?”), a phrase

for implicit confirmation of provided values (here “a

[X] hotel”, where [X] is the semantics of the ASR hy-

pothesis for the user input), and a clarifying phrase for

this subtask (e.g. “Do you mean the hotel price?”) for

use when disambiguating between 2 or more tasks. The

developer also specifies here the answer type that will

resolve the system prompt. There are many predefined

answer-types extracted from the databases associated

with the BPMs, and the developer can select and/or edit

these. They can also give additional (optional) example

phrases that users might employ to answer the prompt,

and these are automatically added to the GF grammar.

Figure 5: Example: using DUDE to define prompts,

answer sets, and database mappings for the “ask price”

subtask of the BPM in figure 4

A similar GUI allows the developer to specify

101



database access and result presentation phases of the

dialogue, if they are present in the BPM.

2.3 The Grammatical Framework: compiling

grammars from BPMs, DBs, and example sets

GF (Ranta, 2004) is a language for writing multilin-

gual grammars, on top of which various applications

such as machine translation and human-machine inter-

action have been built. A GF grammar not only defines

syntactic well-formedness, but also semantic content.

Using DUDE, system developers do not have to

write a single line of GF grammar code. We have de-

veloped a core GF grammar for information-seeking

dialogues (this supports a large fragment of spoken En-

glish, with utterances such as “Uh I think I think I want

a less expensive X and uhhh a Y on DATE please” and

so on). In addition, we compile all database entries and

their properties into the appropriate “slot-filling” parts

of the GF grammar for each specific BPM.

For example, a generated GF rule is:

Bpm generalTypeRule 4:

town info hotels name->Utt=-> � s = np.s � .
This means that all hotel names are valid utterances,

and it is generated because “name” is a DB field for

the subtask “hotels” in the “town info” BPM.

Finally, we allow developers to give example sen-

tences showing how users might respond to system

prompts. If these are not already covered by the exist-

ing grammar we automatically generate rules to cover

them. Finally GF, is a robust parser – it skips all dis-

fluencies and unknown words to produce an interpre-

tation of the user input if one exists. Note that the

GF grammars developed by DUDE can be compiled to

speech-recognition language models for both Nuance

and HTK/ATK (Young, 1995).

2.4 Usability

We have built several demonstration systems using

DUDE. We are able to build a new system in under

an hour, but our planned evaluation will test the abil-

ity of novice users (with some knowledge of BPMs

and databases) to iteratively develop their own ISU di-

alogue systems.

3 Summary

We demonstrate a development environment for “Infor-

mation State Update” dialogue systems which allows

non-expert developers to produce complete spoken di-

alogue systems based only on Business Process Models

(BPM) describing their applications. The environment

includes automatic generation of Grammatical Frame-

work (GF) grammars for robust interpretation of spon-

taneous speech, and uses the application databases to

generate lexical entries and grammar rules. The GF

grammar is compiled to an ATK language model for

speech recognition (Nuance is also supported). The

demonstration system allows users to create and mod-

ify spoken dialogue systems, starting with a definition

of a Business Process Model (e.g. banking, cinema

booking, shopping, restaurant information) and ending

with a working system. This paper describes the en-

vironment, its main components, and some of the re-

search issues involved in its development.

References

Tony Andrews. 2003. Business process execution
language for web services, version 1.1, http://www-
106.ibm.com/developerworks/library/ws-bpel/.
Technical report, IBM developer works.

Johan Bos, Ewan Klein, Oliver Lemon, and Tetsushi
Oka. 2003. DIPPER: Description and Formalisation
of an Information-StateUpdate Dialogue SystemAr-
chitecture. In 4th SIGdial Workshop on Discourse
and Dialogue, pages 115–124, Sapporo.

Adam Cheyer and David Martin. 2001. The Open
Agent Architecture. Journal of Autonomous Agents
and Multi-Agent Systems, 4(1/2):143–148.

Graham Technology plc. 2005. GT-X7 v.1.8.0
from Graham Technology plc [without the
agent247(TM) Dialogue and NLP Engine].
www.grahamtechnology.com.

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the TRINDI Dia-
logue Move Engine Toolkit. Natural Language En-
gineering, 6(3-4):323–340.

Oliver Lemon, Kallirroi Georgila, James Henderson,
andMatthew Stuttle. 2006. An ISU dialogue system
exhibiting reinforcement learning of dialogue poli-
cies: generic slot-filling in the TALK in-car system.
In Proceedings of EACL, page to appear.

Johanna Moore, Mary Ellen Foster, Oliver Lemon, and
Michael White. 2004. Generating tailored, compar-
ative descriptions in spoken dialogue. In The 17th
International FLAIRS Conference (Florida Artifical
Intelligence Research Society).

A. Ranta. 2004. Grammatical framework. a type-
theoretical grammar formalism. Journal of Func-
tional Programming, 14(2):145–189.

Stephanie Seneff. 2002. Response Planning and Gen-
eration in the Mercury Flight Reservation System.
Computer Speech and Language, 16.

P. Taylor, A. Black, and R. Caley. 1998. The architec-
ture of the the Festival speech synthesis system. In
Third International Workshop on Speech Synthesis,
Sydney, Australia.

M. A. Walker, I. Langkilde, J. Wright, A. Gorin, and
D. Litman. 2000. Learning to Predict Problematic
Situations in a Spoken Dialogue System: Experi-
ments with How May I Help You? In Proceedings
of the NAACL 2000, Seattle.

Steve Young. 1995. Large vocabulary continuous
speech recognition: A review. In Proceedings of
the IEEE Workshop on Automatic Speech Recogni-
tion and Understanding, pages 3–28.

102


