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Abstract

We place synchronous tree-adjoining

grammars and tree transducers in the

single overarching framework of bimor-

phisms, continuing the unification of

synchronous grammars and tree transduc-

ers initiated by Shieber (2004). Along the

way, we present a new definition of the

tree-adjoining grammar derivation relation

based on a novel direct inter-reduction of

TAG and monadic macro tree transducers.

Tree transformation systems such as tree trans-

ducers and synchronous grammars have seen re-

newed interest, based on a perceived relevance

to new applications, such as importing syntactic

structure into statistical machine translation mod-

els or founding a formalism for speech command

and control.

The exact relationship among a variety of for-

malisms has been unclear, with a large number

of seemingly unrelated formalisms being inde-

pendently proposed or characterized. An initial

step toward unifying the formalisms was taken

(Shieber, 2004) in making use of the formal-

language-theoretic device of bimorphisms, previ-

ously used to characterize the tree relations defin-

able by tree transducers. In particular, the tree re-

lations definable by synchronous tree-substitution

grammars (STSG) were shown to be just those de-

finable by linear complete bimorphisms, thereby

providing for the first time a clear relationship be-

tween synchronous grammars and tree transduc-

ers.

In this work, we show how the bimorphism

framework can be used to capture a more powerful

formalism, synchronous tree-adjoining grammars,

providing a further uniting of the various and dis-

parate formalisms.

After some preliminaries (Section 1), we be-

gin by recalling the definition of tree-adjoining

grammars and synchronous tree-adjoining gram-

mars (Section 2). We turn then to a set of known

results relating context-free languages, tree homo-

morphisms, tree automata, and tree transducers

to extend them for the tree-adjoining languages

(Section 3), presenting these in terms of restricted

kinds of functional programs over trees, using a

simple grammatical notation for describing the

programs. This allows us to easily express gener-

alizations of the notions: monadic macro tree ho-

momorphisms, automata, and transducers, which

bear (at least some of) the same interrelationships

that their traditional simpler counterparts do (Sec-

tion 4). Finally, we use this characterization to

place the synchronous TAG formalism in the bi-

morphism framework (Section 5), further unify-

ing tree transducers and other synchronous gram-

mar formalisms. We also, in passing, provide a

new characterization of the relation between TAG

derivation and derived trees, and a new simpler

and more direct proof of the equivalence of TALs

and the output languages of monadic macro tree

transducers.

1 Preliminaries

We will notate sequences with angle brackets, e.g.,

〈a,b,c〉, or where no confusion results, simply as

abc, with the empty string written ε .

Trees will have nodes labeled with elements of

a RANKED ALPHABET, a set of symbols F, each

with a non-negative integer RANK or ARITY as-

signed to it, determining the number of children

for nodes so labeled. To emphasize the arity of

a symbol, we will write it as a parenthesized su-

perscript, for instance f (n) for a symbol f of ar-

ity n. Analogously, we write F(n) for the set of

symbols in F with arity n. Symbols with arity

zero (F(0)) are called NULLARY symbols or CON-
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STANTS. The set of nonconstants is written F(≥1).

To express incomplete trees, trees with “holes”

waiting to be filled, we will allow leaves to be la-

beled with variables, in addition to nullary sym-

bols. The set of TREES OVER A RANKED AL-

PHABET F AND VARIABLES X, notated T(F,X),
is the smallest set such that (i) f ∈ T(F,X) for

all f ∈ F(0); (ii) x ∈ T(F,X) for all x ∈ X; and

(iii) f (t1, . . . , tn) ∈ T(F,X) for all f ∈ F(≥1), and

t1, . . . , tn ∈ T(F,X). We abbreviate T(F, /0), where

the set of variables is empty, as T(F), the set

of GROUND TREES over F. We will also make

use of the set of n numerically ordered variables

Xn = {x1, . . . ,xn}, and write x, y, z as synonyms

for x1, x2, x3, respectively.

Trees can also be viewed as mappings from

TREE ADDRESSES, sequences of integers, to the

labels of nodes at those addresses. The address ε
is the address of the root, 1 the address of the first

child, 12 the address of the second child of the first

child, and so forth. We will use the notation t/p to

pick out the subtree of the node at address p in the

tree t. Replacing the subtree of t at address p by

a tree t ′, written t[p 7→ t ′] is defined as (using · for

the insertion of an element on a list)

t[ε 7→ t ′] = t ′

f (t1, . . . , tn)[(i · p) 7→ t ′] =
f (t1, . . . , ti[p 7→ t ′], . . . , tn) for 1 ≤ i ≤ n .

The HEIGHT of a tree t, notated height(t), is de-

fined as follows: height(x) = 0 for all x ∈ X and

height( f (t1, . . . , tn)) = 1+maxn
i=1 height(ti) for all

f ∈ F .

We can use trees with variables as CONTEXTS

in which to place other trees. A tree in T(F,Xn)
will be called a context, typically denoted with the

symbol C. For a context C ∈ T(F,Xn) and a se-

quence of n trees t1, . . . , tn ∈ T(F), the SUBSTITU-

TION OF t1, . . . , tn INTO C, notated C[t1, . . . , tn], is

defined inductively as follows:

( f (u1, . . . ,um))[t1, . . . , tn]
= f (u1[t1, . . . , tn], . . . ,um[t1, . . . , tn])

xi[t1, . . . , tn] = ti .

A tree t ∈ T(F,X) is LINEAR if and only if no

variable in X occurs more than once in t.

We will use a notation akin to BNF to specify

equations defining functional programs of various

sorts. As an introduction to the notation we will

use, here is a grammar defining trees over a ranked

alphabet and variables (essentially identically to

the definition given above):

f (n) ∈ F(n)

x ∈ X ::= x0 | x1 | x2 | · · ·

t ∈ T(F,X) ::= f (m)(t1, . . . , tm)

| x

The notation allows definition of classes of ex-

pressions (e.g., F(n)) and specifies metavariables

over them ( f (n)). These classes can be primitive

(F(n)) or defined (X), even inductively in terms

of other classes or themselves (T(F,X)). We use

the metavariables and subscripted variants on the

right-hand side to represent an arbitrary element

of the corresponding class. Thus, the elements

t1, . . . , tm stand for arbitrary trees in T(F,X), and

x an arbitrary variable in X. Because numerically

subscripted versions of x appear explicitly on the

right hand side of the rule defining variables, nu-

merically subscripted variables (e.g., x1) on the

right-hand side of all rules are taken to refer to

the specific elements of x, whereas otherwise sub-

scripted elements (e.g., xi) are taken generically.

2 Tree-Adjoining Grammars

Tree adjoining grammar (TAG) is a tree gram-

mar formalism distinguished by its use of a tree

adjunction operation. Traditional presentations

of TAG, which we will assume familiarity with,

take the symbols in elementary and derived trees

to be unranked; nodes labeled with a given non-

terminal symbol may have differing numbers of

children. (Joshi and Schabes (1997) present a

good overview.) For example, foot nodes of aux-

iliary trees and substitution nodes have no chil-

dren, whereas the similarly labeled root nodes

must have at least one. Similarly, two nodes with

the same label but differing numbers of children

may match for the purpose of allowing an ad-

junction (as the root nodes of α1 and β1 in Fig-

ure 1). In order to integrate TAG with tree trans-

ducers, however, we move to a ranked alphabet,

which presents some problems and opportunities.

(In some ways, the ranked alphabet definition of

TAGs is slightly more elegant than the traditional

one.) Although the bulk of the later discussion

integrating TAGs and transducers assumes (with-

out loss of expressivity (Joshi and Schabes, 1997,

fn. 6)) a limited form of TAG that includes adjunc-

tion but not substitution, we define the more com-

plete form here.

We will thus take the nodes of TAG trees to be

labeled with symbols from a ranked alphabet F;

a given symbol then has a fixed arity and a fixed
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Figure 1: Sample TAG for the copy language

{wcw | w ∈ {a,b}∗ }.

number of children. However, in order to main-

tain information about which symbols may match

for the purpose of adjunction and substitution, we

take the elements of F to be explicitly formed as

pairs of an unranked label e and an arity n. (For

notational consistency, we will use e for unranked

and f for ranked symbols.) We will notate these

elements, abusing notation, as e(n), and make use

of a function |·| to unrank symbols in F, so that

|e(n)| = e.

To handle foot nodes, for each non-nullary sym-

bol e(i) ∈ F(≥1), we will associate a new nullary

symbol e∗, which one can take to be the pair of e

and ∗; the set of such symbols will be notated F∗.

Similarly, for substitution nodes, F↓ will be the set

of nullary symbols e↓ for all e(i) ∈ F(≥1). These

additional symbols, since they are nullary, will

necessarily appear only at the frontier of trees. Fi-

nally, to allow null adjoining constraints, for each

f ∈ F(i), we introduce a symbol f /0 also of arity i,

and take F /0 to be the set of all such symbols. We

will extend the function |·| to provide the unranked

symbol associated with these symbols as well, so

|e↓| = |e∗| = |e(i)
/0| = e.

A TAG is then a quadruple 〈F,S, I,A〉, where F

is a ranked alphabet; S∈F is a distinguished initial

symbol; I is the set of initial trees, a finite subset of

T(F∪F /0 ∪F↓); and A is the set of auxiliary trees,

a finite subset of T(F∪F /0∪F↓∪F∗). An auxiliary

tree β whose root is labeled f must have exactly

one node labeled with | f |∗ ∈F∗ and no other nodes

labeled in F∗; this node is its foot node, its address

notated foot(β ). In Figure 1, α1 and α2 are initial

trees; β1 and β2 are auxiliary trees.

In order to allow reference to a particular tree in

the set P, we associate with each tree in P a unique

index, conventionally notated with a subscripted

α or β for initial and auxiliary trees respectively.

This further allows us to have multiple instances

of a tree in I or A, distinguished by their index.

(We will abuse notation by using the index and the

tree that it names interchangably.)

The trees are combined by two operations, sub-

stitution and adjunction. Under substitution, a

εS : S∗S

T

c

α1 : 1

S∗

a S

a

β1 :

S∗

b S

b

β2 :

1 1

S /0 S /0

Figure 2: Sample core-restricted TAG for the copy

language {wcw | w ∈ {a,b}∗ }.

node labeled e↓ (at address p) in a tree α can

be replaced by an initial tree α ′ with the corre-

sponding label f at the root when | f | = e. The

resulting tree, the substitution of α ′ at p in α , is

α[p 7→ α ′]. Under adjunction, an internal node of

α at p labeled f ∈ F is split apart, replaced by

an auxiliary tree β rooted in f ′ when | f | = | f ′|.
The resulting tree, the adjunction of β at p in α ,

is α[p 7→ β [foot(β ) 7→ α/p]]. This definition (by

requiring f to be in F, not F∗ or F↓) maintains

the standard convention, without loss of expres-

sivity, that adjunction is disallowed at foot nodes

and substitution nodes.

The TAG in Figure 1 generates a tree set

whose yield is the non-context-free copy language

{wcw | w ∈ {a,b}∗ }. The arities of the nodes are

suppressed, as they are clear from context.

A derivation tree D records the operations over

the elementary trees used to derive a given derived

tree. Each node in the derivation tree specifies

an elementary tree α , the node’s child subtrees Di

recording the derivations for trees that are adjoined

or substituted into that tree. A method is required

to record at which node in α the tree specified

by child subtree Di operates. For trees recording

derivations in context-free grammars, there are ex-

actly as many substitution operations as nontermi-

nals on the right-hand side of the rule used. Thus,

child order in the derivation tree can be used to

record the identity of the substitution node. But for

TAG trees, operations occur throughout the tree,

and some, namely adjunctions, can be optional, so

a simple convention using child order is not pos-

sible. Traditionally, the branches in the derivation

tree have been notated with the address of the node

in the parent tree at which the child node oper-

ates. Figure 4 presents a derivation tree (a) us-

ing this notation, along with the corresponding de-

rived tree (b) for the string abcab.

For simplicity below, we use a stripped down

TAG formalism, one that loses no expressivity in

weak generative capacity but is easier for analysis

purposes.

First, we make all adjunction obligatory, in the
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B /0

Figure 3: Sample TAG tree marked with diacritics

to show the permutation of operable nodes.

sense that if a node in a tree allows adjunction, an

adjunction must occur there. To get the effect of

optional adjunction, for instance at a node labeled

B, we add a vestigial tree of a single node εB = B∗,

which has no adjunction sites and does not itself

modify any tree that it adjoins into. It thus founds

the recursive structure of derivations.

Second, now that it is determinate whether an

operation must occur at a node, the number of

children of a node in a derivation tree is deter-

mined by the elementary tree at that node; it is just

the number of adjunction or substitution nodes in

the tree, the OPERABLE NODES. All that is left

to determine is the mapping between child order

in the derivation tree and node in the elementary

tree labeling the parent, that is, a permutation π
on the operable nodes (or equivalently, their ad-

dresses), so that the i-th child of a node labeled α
in a derivation tree is taken to specify the tree that

operates at the node πi in α . This permutation can

be thought of as specified as part of the elemen-

tary tree itself. For example, the tree in Figure 3,

which requires operations at the nodes at addresses

ε , 12, and 2, may be associated with the permuta-

tion 〈12,2,ε〉. This permutation can be marked on

the tree itself with numeric diacritics i , as shown

in the figure.

Finally, as mentioned before, we eliminate sub-

stitution (Joshi and Schabes, 1997, fn. 6). With

these changes, the sample TAG grammar and

derivation tree of Figures 1 and 4(a) might be ex-

pressed with the core TAG grammar and deriva-

tion tree of Figures 2 and 4(c).

3 Tree Transducers, Homomorphisms,
and Automata

3.1 Tree Transducers

Informally, a TREE TRANSDUCER is a function

from T(F) to T(G) defined such that the symbol

at the root ofthe input tree and a current state de-

termines an output context in which the recursive

images of the subtrees are placed. Formally, we

can define a transducer as a kind of functional pro-

gram, that is, a set of equations characterized by

the following grammar for equations Eqn. (The

set of states is conventionally notated Q, with

members notated q. One of the states is distin-

guished as the INITIAL STATE of the transducer.)1

q ∈ Q

f (n) ∈ F(n)

g(n) ∈ G(n)

xi ∈ X ::= x0 | x1 | x2 | · · ·

Eqn ::= q( f (n)(x1, . . . ,xn)) = τ(n)

τ(n) ∈ R(n) ::= g(m)(τ
(n)
1 , . . . ,τ

(n)
m )

| q j(xi) where 1 ≤ i ≤ n

Intuitively speaking, the expressions in R(n) are

right-hand-side terms using variables limited to

the first n.

For example, the grammar allows definition of

the following set of equations defining a tree trans-

ducer:2

q( f (x)) = g(q′(x),q(x))
q(a) = a

q′( f (x)) = f (q′(x))
q′(a) = a

This transducer allows for the following deriva-

tion:

q( f ( f (a)) = g(q′( f (a),q( f (a))))
= g( f (q′(a)),g(q′(a),q(a)))
= g( f (a),g(a,a))

The relation defined by a tree transducer with

initial state q is {〈t,u〉 | q(t) = u}. By virtue of

nondeterminism in the equations, multiple equa-

tions for a given state q and symbol f , tree trans-

ducers define true relations rather than merely

functions.

TREE HOMOMORPHISMS are a subtype of tree

transducers, those with only a single state, hence

essentially stateless. Other subtypes of tree trans-

ducers can be defined by restricting the trees τ

1Strictly speaking, what we define here are nondetermin-
istic top-down tree transducers.

2Full definitions of tree transducers typically describe a
transducer in terms of a set of states, an input and output
ranked alphabet, and an initial state, in addition to the set of
transitions, that is, defining equations. We will leave off these
details, in the expectation that the sets of states and symbols
can be inferred from the equations, and the initial state de-
termined under a convention that it is the state defined in the
textually first equation.

Note also that we avail ourselves of consistent renaming
of the variables x1, x2, and so forth, where convenient for
readability.
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that form the right-hand sides of equations, the

elements of R(n) used. A transducer is LINEAR

if all such τ are linear; is COMPLETE if τ con-

tains every variable in Xn; is ε -FREE if τ 6∈ Xn; is

SYMBOL-TO-SYMBOL if height(τ) = 1; and is a

DELABELING if τ is complete, linear, and symbol-

to-symbol.

Another subcase is TREE AUTOMATA, tree

transducers that compute a partial identity func-

tion; these are delabeling tree transducers that pre-

serve the label and the order of arguments. Be-

cause they compute only the identity function, tree

automata are of interest for their domains, not the

mappings they compute. Their domains define

tree languages, in particular, the so-called REGU-

LAR TREE LANGUAGES.

3.2 The Bimorphism Characterization of

Tree Transducers

Tree transducers can be characterized directly in

terms of equations defining a simple kind of func-

tional program, as above. There is an elegant alter-

native characterization of tree transducers in terms

of a constellation of elements of the various sub-

types of transducers — homomorphisms and au-

tomata — we have introduced, called a bimor-

phism.

A bimorphism is a triple 〈L,hi,ho〉, consisting

of a regular tree language L (or, equivalently, a

tree automaton) and two tree homomorphisms hi

and ho. The tree relation defined by a bimor-

phism is the set of tree pairs that are generable

from elements of the tree language by the homo-

morphisms, that is,

L(〈L,hi,ho〉) = {〈hi(t),ho(t)〉 | t ∈ L} .

We can limit attention to bimorphisms in which

the input or output homomorphisms are restricted

to a certain type, linear (L), complete (C), epsilon-

free (F), symbol-to-symbol (S), delabeling (D), or

unrestricted (M). We will write B(I,O) where I

and O characterize a subclass of homomorphisms

for the set of bimorphisms for which the input ho-

momorphism is in the subclass indicated by I and

the output homomorphism is in the subclass indi-

cated by O. Thus, B(D,M) is the set of bimor-

phisms for which the input homomorphism is a

delabeling but the output homomorphism can be

arbitrary.

The tree relations definable by tree transducers

turn out to be exactly this class B(D,M) (Comon

et al., 1997). The bimorphism notion thus allows

us to characterize the tree transductions purely in

terms of tree automata and tree homomorphisms.

We have shown (Shieber, 2004) that the tree

relations defined by synchronous tree-substitution

grammars were exactly the relations B(LC,LC).
Intuitively speaking, the tree language in such a

bimorphism represents the set of derivation trees

for the synchronous grammar, and each homomor-

phism represents the relation between the deriva-

tion tree and the derived tree for one of the pro-

jected tree-substitution grammars. The homomor-

phisms are linear and complete because the tree re-

lation between a tree-substitution grammar deriva-

tion tree and its associated derived tree is exactly

a linear complete tree homomorphism. To charac-

terize the tree relations defined by a synchronous

tree-adjoining grammar, it similary suffices to find

a simple homomorphism-like characterization of

the tree relation between TAG derivation trees and

derived trees. In Section 5 below, we show that

linear complete embedded tree homomorphisms,

which we introduce next, serve this purpose.

4 Embedded Tree Transducers

Embedded tree transducers are a generalization

of tree transducers in which states are allowed

to take a single additional argument in a re-

stricted manner. They correspond to a restric-

tive subcase of macro tree transducers with one

recursion variable. We use the term “embed-

ded tree transducer” rather than the more cumber-

some “monadic macro tree transducer” for brevity

and by analogy with embedded pushdown au-

tomata (Schabes and Vijay-Shanker, 1990), an-

other automata-theoretic characterization of the

tree-adjoining languages.

We modify the grammar of transducer equations

to add an extra argument to each occurrence of a

state q. To highlight the special nature of the extra

argument, it is written in angle brackets before the

input tree argument. We uniformly use the other-

wise unused variable x0 for this argument in the

left-hand side, and add x0 as a possible right-hand

side itself. Finally, right-hand-side occurrences

of states may be passed an arbitrary further right-

hand-side tree in this argument.

q ∈ Q

f (n) ∈ F(n)

xi ∈ X ::= x0 | x1 | x2 | · · ·

Eqn ::= q〈[x0]〉( f (n)(x1, . . . ,xn)) = τ(n)

τ(n) ∈ R(n) ::= f (m)(τ
(n)
1 , . . . ,τ

(n)
m )

| x0

| q j〈τ
(n)
j 〉(xi) where 1 ≤ i ≤ n
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Embedded transducers are strictly more expres-

sive than traditional transducers, because the extra

argument allows unbounded communication be-

tween positions unboundedly distant in depth in

the output tree. For example, a simple embedded

transducer can compute the reversal of a string,

e.g., 1(2(2(nil))) reverses to 2(2(1(nil))). (This

is not computable by a traditional tree transducer.)

It is given by the following equations:

r〈〉(x) = r′〈nil〉(x)
r′〈x0〉(nil) = x0

r′〈x0〉(1(x)) = r′〈1(x0)〉(x)
r′〈x0〉(2(x)) = r′〈2(x0)〉(x)

(1)

This is, of course, just the normal accumulating

reverse functional program, expressed as an em-

bedded transducer. The additional power of em-

bedded transducers is, we will show in this sec-

tion, exactly what is needed to characterize the ad-

ditional power that TAGs represent over CFGs in

describing tree languages. In particular, we show

that the relation between a TAG derivation tree

and derived tree is characterized by a determinis-

tic linear complete embedded tree transducer (DL-

CETT).

The relation between tree-adjoining languages

and embedded tree transducers may be implicit in

a series of previous results in the formal-language

theory literature.3 For instance, Fujiyoshi and

Kasai (2000) show that linear, complete monadic

context-free tree grammars generate exactly the

tree-adjoining languages via a normal form for

spine grammars. Separately, the relation between

context-free tree grammars and macro tree trans-

ducers has been described, where the relation-

ship between the monadic variants of each is im-

plicit. Thus, taken together, an equivalence be-

tween the tree-adjoining languages and the im-

age languages of monadic macro tree transducers

might be pieced together. In the present work,

we define the relation between tree-adjoining lan-

guages and linear complete monadic tree trans-

ducers directly, simply, and transparently, by giv-

ing explicit constructions in both directions, care-

fully handling the distinction between the un-

ranked trees of tree-adjoining grammars and the

ranked trees of macro tree transducers and other

important issues of detail in the constructions.

The proof requires reductions in both directions.

First, we show that for any TAG we can construct

a DLCETT that specifies the tree relation between

the derivation trees for the TAG and the derived

3We are indebted to Uwe Mönnich for this observation.

trees. Then, we show that for any DLCETT we

can construct a TAG such that the tree relation be-

tween the derivation trees and derived trees is re-

lated through a simple homomorphism to the DL-

CETT tree relation.

4.1 From TAG to Transducer

Given an elementary tree α with the label A at its

root, let the sequence π = 〈π1, . . . ,πn〉 be a per-

mutation on the nodes in α at which adjunction

occurs. (We use this ordering by means of the dia-

critic representation below.) Then, if α is an aux-

iliary tree, construct the equation

qA〈x0〉(α(x1, . . . ,xn)) = bαc

and if α is an initial tree, construct the equation

qA〈〉(α(x1, . . . ,xn)) = bαc

where the right-hand-side transformation b·c is de-

fined by4

bA /0(t1, . . . , tn)c = A(bt1c, . . . ,btnc)
b k A(t1, . . . , tn)c = qA〈bA /0(t1, . . . , tn)c〉(xk)

bA∗c = x0

bac = a

(2)

Note that the equations are linear and complete,

because each variable xi is generated once as the

tree α is traversed, namely at position πi in the

traversal (marked with i ), and the variable x0 is

generated at the foot node only. Thus, the gener-

ated embedded tree transducer is linear and com-

plete. Because only one equation is generated per

tree, the transducer is trivially deterministic.

By way of example, we consider the core TAG

grammar given by the following trees:

α : 1 A(e)
βA : A /0( 1 B(a), 2 C( 3 D(A∗)))
βB : 1 B(b,B∗)
εB : B∗

εC : C∗

εD : D∗

4It may seem like trickery to use the diacritics in this way,
as they are not really components of the tree being traversed,
but merely reflexes of an extrinsic ordering. But their use is
benign. The same transformation can be defined, a bit more
cumbersomely, keeping the permutation π separate, by track-
ing the permutation and the current address p in a revised
transformation b·cπ,p defined as follows:

bA /0(t1, . . . , tn)cπ,p = A(bt1cπ,p·1, . . . ,btncπ,p·n)
bA(t1, . . . , tn)cπ,p = qA〈bA /0(t1, . . . , tn)cπ,p〉(xπ−1(p))

bA∗cπ,p = x0

bacπ,p = a

We then use bαcπ,ε for the transformation of the tree α .
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Figure 4: Derivation and derived trees for the sam-

ple grammars: (a) derivation tree for the gram-

mar of Figure 1; (b) corresponding derived tree;

(c) corresponding derivation tree for the core TAG

version of the grammar in Figure 2.

Starting with the auxiliary tree βA =
A /0( 1 B(a), 2 C( 3 D(A∗))), the adjunction sites,

corresponding to the nodes labeled B, C, and D at

addresses 1, 2, and 21, have been arbitrarily given

a preorder permutation. We therefore construct

the equation as follows:

qA〈x0〉(βA(x1,x2,x3))
= bA /0( 1 B(a), 2 C( 3 D(A∗)))c
= A(b 1 B(a)c,b 2 C( 3 D(A∗))c)
= A(qB〈bB /0(a)c〉(x1),b 2 C( 3 D(A∗))c)
= A(qB〈B(bac)〉(x1),b 2 C( 3 D(A∗))c)
= · · ·
= A(qB〈B(a)〉(x1),qC〈C(qD〈D(x0)〉(x3))〉(x2))

Similar derivations for the remaining trees yield

the (deterministic linear complete) embedded tree

transducer defined by the following set of equa-

tions:

qA〈〉(α(x1)) = qA〈A(e)〉(x1)
qA〈x0〉(βA(x1,x2,x3)) =
A(qB〈B(a)〉(x1),qC〈C(qD〈D(x0)〉(x3))〉(x2))

qB〈x0〉(βB(x1)) = qB〈B(b,x0)〉(x1)
qB〈x0〉(εB()) = x0

qC〈x0〉(εC()) = x0

qD〈x0〉(εD()) = x0

We can use this transducer to compute the derived

tree for the derivation tree α(βA(βB(εB),εC,εD)).

qA〈〉(α(βA(βB(εB),εC,εD)))
= qA〈A(e)〉(βA(βB(εB),εC,εD))
= A( qB〈B(a)〉(βB(εB)),

qC〈C(qD〈D(A(e))〉(εD))〉(εC))
= A(qB〈B(b,B(a))〉(εB),C(qD〈D(A(e))〉(εD)))
= A(B(b,B(a)),C(D(A(e))))

As a final step, useful later for the bimor-

phism characterization of synchronous TAG, it is

straightforward to show that the transducer so con-

structed is the composition of a regular tree lan-

guage and a linear complete embedded tree homo-

morphism.

4.2 From Transducer to TAG

Given a linear complete embedded tree transducer,

we construct a corresponding TAG as follows: For

each rule of the form

qi〈[x0]〉( f (m)(x1, . . . ,xm)) = τ

we build a tree named 〈qi, f ,τ〉. Where this tree

appears is determined solely by the state qi, so

we take the root node of the tree to be the state.

Any foot node in the tree will also need to be

marked with the same label, so we pass this infor-

mation down as the tree is built inductively. The

tree is therefore of the form qi /0(dτei) where the

right-hand-side transformation d·ei constructs the

remainder of the tree by the inductive walk of τ ,

with the subscript noting that the root is labeled

qi.

d f (t1, . . . , tm)ei = f /0(dt1ei, . . . ,dtmei)
dq j〈τ〉(xk)ei = k q j(dτei)

dx0ei = qi∗

daei = a

Note that at x0, a foot node is generated of the

proper label. (Because the equation is linear, only

one foot node is generated, and it is labeled ap-

propriately by construction.) Where recursive pro-

cessing of the input tree occurs (q j〈τ〉(xl)), we

generate a tree that admits adjunctions at q j. The

role of the diacritic k is merely to specify the per-

mutation of operable nodes for interpreting deriva-

tion trees; it says that the k-th child in a derivation

tree rooted in the current elementary tree is taken

to specify adjunctions at this node.

The trees generated by this TAG are intended

to correspond to the outputs of the corresponding

tree transducer. Because of the more severe con-

straints on TAG, in particular that all combinato-

rial limitations on putting subtrees together must

be manifest in the labels in the trees themselves,

the outputs actually contain more structure than

the corresponding transducer output. In particu-

lar, the state-labeled nodes are merely for book-

keeping. A homomorphism removing these nodes

gives the desired transducer output. Most impor-

tantly, then, the weak generative capacity of TAGs

and LCETTs are identical.
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Some examples may clarify the construction.

Recall the reversal embedded transducer in (1)

above. The construction above generates a TAG

containing the following trees. We have given

them indicative names rather than the cumbersome

ones of the form 〈qi, f ,τ〉.

α : r /0(1 : r′(nil))
βnil : r′ /0(r

′
∗)

β1 : r′ /0(1 : r′(1 /0(r
′
∗)))

β2 : r′ /0(1 : r′(2 /0(r
′
∗)))

It is simple to verify that the derivation tree

α(β1(β2(β2(βnil))))

derives the tree

r(r′6(2(r′(2(r′(1(r′(nil))))))))

Simple homomorphisms that extract the input

function symbols on the input and drop the book-

keeping states on the output reduce these trees to

1(2(2(nil))) and 2(2(1(nil))) respectively, just as

for the corresponding tree transducer.

5 Synchronous TAGs as Bimorphisms

The major advantage of characterizing TAG

derivation in terms of tree transducers (via the

compilation (2)) is the integration of synchronous

TAGs into the bimorphism framework. A syn-

chronous TAG (Shieber, 1994) is composed of a

set of triples 〈tL, tR,_〉 where the two trees tL and

tR are elementary trees and _ is a set of links spec-

ifying pairs of linked operable nodes from tL and

tR. Without loss of generality, we can stipulate that

each operable node in each tree is impinged upon

by exactly one link in _. (If a node is unlinked,

the triple can never be used; if overlinked, a set

of replacement triples can be “multiplied out”.) In

this case, a projection of the triples on first or sec-

ond component, with a permutation defined by the

corresponding projections on the links, is exactly a

TAG as defined above. Thus, derivations proceed

just as in a single TAG except that nodes linked by

some link in _ are simultaneously operated on by

paired trees derived by the grammar.

In order to model a synchronous grammar for-

malism as a bimorphism, the well-formed deriva-

tions of the synchronous formalism must be char-

acterizable as a regular tree language and the rela-

tion between such derivation trees and each of the

paired derived trees as a homomorphism of some

sort. For synchronous tree-substitution grammars,

derivation trees are regular tree languages, and the

map from derivation to each of the paired derived

trees is a linear complete tree homomorphism.

Thus, synchronous tree-substitution grammars fall

in the class of bimorphisms B(LC,LC). The other

direction can be shown as well; all bimorphisms

in B(LC,LC) define tree relations expressible by

an STSG.

A similar result follows immediately for STAG.

Crucially relying on the result above that the

derivation relation is a DLCETT, we can use

the method of Shieber (2004) directly to char-

acterize the synchronous TAG tree relations as

just B(ELC,ELC). We have thus integrated syn-

chronous TAG with the other transducer and syn-

chronous grammar formalisms falling under the

bimorphism umbrella.
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