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Abstract

The Arabic language is a collection of

spoken dialects with important phonolog-

ical, morphological, lexical, and syntac-

tic differences, along with a standard writ-

ten language, Modern Standard Arabic

(MSA). Since the spoken dialects are not

officially written, it is very costly to obtain

adequate corpora to use for training dialect

NLP tools such as parsers. In this paper,

we address the problem of parsing tran-

scribed spoken Levantine Arabic (LA). We

do not assume the existence of any anno-

tated LA corpus (except for development

and testing), nor of a parallel corpus LA-

MSA. Instead, we use explicit knowledge

about the relation between LA and MSA.

1 Introduction: Arabic Dialects

The Arabic language is a collection of spoken

dialects and a standard written language.1 The

dialects show phonological, morphological, lexi-

cal, and syntactic differences comparable to those

among the Romance languages. The standard

written language is the same throughout the Arab

world: Modern Standard Arabic (MSA). MSA is

also used in some scripted spoken communica-

tion (news casts, parliamentary debates). MSA is

based on Classical Arabic and is not a native lan-

guage of any Arabic speaking people, i.e., children

do not learn it from their parents but in school.

1This paper is based on work done at the 2005 Johns Hop-
kins Summer Workshop, which was partially supported by
the National Science Foundation under Grant No. 0121285.
Diab, Habash, and Rambow were supported for additional
work by DARPA contract HR0011-06-C-0023 under the
GALE program. We wish to thank audiences at JHU for their
useful feedback. The authors are listed in alphabetical order.

Most native speakers of Arabic are unable to pro-

duce sustained spontaneous MSA. Dialects vary

not only along a geographical continuum but also

with other sociolinguistic variables such as the ur-

ban/rural/Bedouin dimension.

The multidialectal situation has important neg-

ative consequences for Arabic natural language

processing (NLP): since the spoken dialects are

not officially written and do not have standard or-

thography, it is very costly to obtain adequate cor-

pora, even unannotated corpora, to use for train-

ing NLP tools such as parsers. Furthermore, there

are almost no parallel corpora involving one di-

alect and MSA.

In this paper, we address the problem of parsing

transcribed spoken Levantine Arabic (LA), which

we use as a representative example of the Arabic

dialects.2 Our work is based on the assumption

that it is easier to manually create new resources

that relate LA to MSA than it is to manually cre-

ate syntactically annotated corpora in LA. Our ap-

proaches do not assume the existence of any anno-

tated LA corpus (except for development and test-

ing), nor of a parallel LA-MSA corpus. Instead,

we assume we have at our disposal a lexicon that

relates LA lexemes to MSA lexemes, and knowl-

edge about the morphological and syntactic differ-

ences between LA and MSA. For a single dialect,

it may be argued that it is easier to create corpora

than to encode all this knowledge explicitly. In

response, we claim that because the dialects show

important similarities, it will be easier to reuse and

modify explicit linguistic resources for a new di-

alect, than to create a new corpus for it. The goal

of this paper is to show that leveraging LA/MSA

2We exclude from this study part-of-speech (POS) tag-
ging and LA/MSA lexicon induction. See (Rambow et al.,
2005) for these issues, as well as for more details on parsing.
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resources is feasible; we do not provide a demon-

stration of cost-effectiveness.

The paper is organized as follows. After dis-

cussing related work and available corpora, we

present linguistic issues in LA and MSA (Sec-

tion 4). We then proceed to discuss three ap-

proaches: sentence transduction, in which the LA

sentence to be parsed is turned into an MSA sen-

tence and then parsed with an MSA parser (Sec-

tion 5); treebank transduction, in which the MSA

treebank is turned into an LA treebank (Section 6);

and grammar transduction, in which an MSA

grammar is turned into an LA grammar which is

then used for parsing LA (Section 7). We summa-

rize and discuss the results in Section 8.

2 Related Work

There has been a fair amount of interest in parsing

one language using another language, see for ex-

ample (Smith and Smith, 2004; Hwa et al., 2004)

for recent work. Much of this work uses synchro-

nized formalisms as do we in the grammar trans-

duction approach. However, these approaches rely

on parallel corpora. For MSA and its dialects,

there are no naturally occurring parallel corpora. It

is this fact that has led us to investigate the use of

explicit linguistic knowledge to complement ma-

chine learning. We refer to additional relevant

work in the appropriate sections.

3 Linguistic Resources

We use the MSA treebanks 1, 2 and 3 (ATB) from

the LDC (Maamouri et al., 2004). We split the cor-

pus into 10% development data, 80% training data

and 10% test data all respecting document bound-

aries. The training data (ATB-Train) comprises

17,617 sentences and 588,244 tokens.

The Levantine treebank LATB (Maamouri et

al., 2006) comprises 33,000 words of treebanked

conversational telephone transcripts collected as

part of the LDC CALL HOME project. The tree-

banked section is primarily in the Jordanian sub-

dialect of LA. The data is annotated by the LDC

for speech effects such as disfluencies and repairs.

We removed the speech effects, rendering the data

more text-like. The orthography and syntactic

analysis chosen by the LDC for LA closely fol-

low previous choices for MSA, see Figure 1 for

two examples. The LATB is used exclusively for

development and testing, not for training. We

split the data in half respecting document bound-

aries. The resulting development data comprises

1928 sentences and 11151 tokens (DEV). The

test data comprises 2051 sentences and 10,644 to-

kens (TEST). For all the experiments, we use the

non-vocalized (undiacritized) version of both tree-

banks, as well as the collapsed POS tag set pro-

vided by the LDC for MSA and LA.

Two lexicons were created: a small lexicon

comprising 321 LA/MSA word form pairs cov-

ering LA closed-class words and a few frequent

open-class words; and a big lexicon which con-

tains the small lexicon and an additional 1,560

LA/MSA word form pairs. We assign to the map-

pings in the two lexicons both uniform probabil-

ities and biased probabilities using Expectation

Maximization (EM; see (Rambow et al., 2005)

for details of the use of EM). We thus have four

different lexicons: Small lexicon with uniform

probabilities (SLXUN); Small Lexicon with EM-

based probabilities (SLXEM); Big Lexicon with

uniform probabilities (BLXUN); and Big Lexicon

with EM-based probabilities (BLXEM).

4 Linguistic Facts

We illustrate the differences between LA and

MSA using an example3:

(1) a.
� �������	��
��
� ������������� ����
��

(LA)

AlrjAl

the-men

byHbw

like

$

not

Al$gl

the-work

hdA

this

the men do not like this work

b.
��� �!
��"� #$�%��� �
��
��"&"��'�(

(MSA)

lA

not

yHb

like

AlrjAl

the-men

h*A

this

AlEml

the-work

the men do not like this work

Lexically, we observe that the word for ‘work’

is
���	��
)�

Al$gl in LA but
���*�	
��

AlEml in MSA.

In contrast, the word for ‘men’ is the same in both

LA and MSA:
��� ����
��

AlrjAl. There are typically

also differences in function words, in our example�
$ (LA) and

(
lA (MSA) for ‘not’. Morpholog-

ically, we see that LA
�	�������

byHbw has the same

stem as MA
&+��'

yHb, but with two additional

morphemes: the present aspect marker b- which

does not exist in MSA, and the agreement marker

3Arabic Examples are transliter-
ated using the Buckwalter scheme:
http://www.ldc.upenn.edu/myl/morph/buckwalter.html

370



S

NP-TPC

��� �
��
��
‘men’i

VP

V

���������
‘like’

NEG

�
‘not’

NP-SBJ

ti

NP-OBJ

N

���	��
)�
‘work’

DET

� �$�
‘this’

S

VP

NEG

(
‘not’

V

&"��'
‘like’

NP-SBJ

��� �
��
��
‘men’

NP-OBJ

DET

� #$�
‘this’

N

��� �	
)�
‘work’

Figure 1: LDC-style left-to-right phrase structure trees for LA (left) and MSA (right) for sentence (1)

-w, which is used in MSA only in subject-initial

sentences, while in LA it is always used.

Syntactically, we observe three differences.

First, the subject precedes the verb in LA (SVO

order), but follows in MSA (VSO order). This is

in fact not a strict requirement, but a strong pref-

erence: both varieties allow both orders. Second,

we see that the demonstrative determiner follows

the noun in LA, but precedes it in MSA. Finally,

we see that the negation marker follows the verb

in LA, while it precedes the verb in MSA.4 The

two phrase structure trees are shown in Figure 1

in the LDC convention. Unlike the phrase struc-

ture trees, the (unordered) dependency trees for

the MSA and LA sentences (not shown here for

space considerations) are isomorphic. They differ

only in the node labels.

5 Sentence Transduction

In this approach, we parse an MSA translation of

the LA sentence and then link the LA sentence to

the MSA parse. Machine translation (MT) is not

easy, especially when there are no MT resources

available such as naturally occurring parallel text

or transfer lexicons. However, for this task we

have three encouraging insights. First, for really

close languages it is possible to obtain better trans-

lation quality by means of simpler methods (Hajic

et al., 2000). Second, suboptimal MSA output can

still be helpful for the parsing task without neces-

sarily being fluent or accurate (since our goal is

parsing LA, not translating it to MSA). And fi-

nally, translation from LA to MSA is easier than

from MSA to LA. This is a result of the availabil-

ity of abundant resources for MSA as compared to

LA: for example, text corpora and tree banks for

4Levantine also has other negation markers that precede
the verb, as well as the circumfi x m- -$.

language modeling and a morphological genera-

tion system (Habash, 2004).

One disadvantage of this approach is the lack of

structural information on the LA side for transla-

tion from LA to MSA, which means that we are

limited in the techniques we can use. Another dis-

advantage is that the translation can add more am-

biguity to the parsing problem. Some unambigu-

ous dialect words can become syntactically am-

biguous in MSA. For example, the LA words ���
mn ‘from’ and �

�
� myn ‘who’ both are translated

into an orthographically ambiguous form in MSA

��� mn ‘from’ or ‘who’.

5.1 Implementation

Each word in the LA sentence is translated into

a bag of MSA words, producing a sausage lat-

tice. The lattice is scored and decoded using

the SRILM toolkit with a trigram language model

trained on 54 million MSA words from Arabic Gi-

gaword (Graff, 2003). The text used for language

modeling was tokenized to match the tokenization

of the Arabic used in the ATB and LATB. The

tokenization was done using the ASVM Toolkit

(Diab et al., 2004). The 1-best path in the lattice is

passed on to the Bikel parser (Bikel, 2002), which

was trained on the MSA training ATB. Finally, the

terminal nodes in the resulting parse structure are

replaced with the original LA words.

5.2 Experimental Results

Table 1 describes the results of the sentence trans-

duction path on the development corpus (DEV) in

different settings: using no POS tags in the input

versus using gold POS tags in the input, and using

SLXUN versus BLXUN. The baseline results are

obtained by parsing the LA sentence directly using

the MSA parser (with and without gold POS tags).

The results are reported in terms of PARSEVAL’s
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No Tags Gold Tags

Baseline 59.4/51.9/55.4 64.0/58.3/61.0

SLXUN 63.8/58.3/61.0 67.5/63.4/65.3

BLXUN 65.3/61.1/63.1 66.8/63.2/65.0

Table 1: Sentence transduction results on DEV (la-

beled precision/recall/F-measure)

No Tags Gold Tags

Baseline 53.5 60.2

SLXUN 57.7 64.0

Table 2: Sentence transduction results on TEST

(labeled F-measure)

Precision/Recall/F-Measure.

Using SLXUN improves the F1 score for no

tags and for gold tags. A further improvement is

gained when using the BLXUN lexicon with no

POS tags in the input, but this improvement disap-

pears when we use BLXUN with gold POS tags.

We suspect that the added translation ambiguity

from BLXUN is responsible for the drop. We also

experimented with the SLXEM and BLXEM lexi-

cons. There was no consistent improvement.

In Table 2, we report the F-Measure score on the

test set (TEST) for the baseline and for SLXUN

(with and without gold POS tags). We see a gen-

eral drop in performance between DEV and TEST

for all combinations suggesting that TEST is a

harder set to parse than DEV.

5.3 Discussion

The current implementation does not handle cases

where the word order changes between MSA and

LA. Since we start from an LA string, identify-

ing constituents to permute is clearly a hard task.

We experimented with identifying strings with the

postverbal LA negative particle $ and then per-

muting them to obtain the MSA preverbal order.

The original word positions are “bread-crumbed”

through the systems language modeling and pars-

ing steps and then used to construct an unordered

dependency parse tree labeled with the input LA

words. (A constituency representation is meaning-

less since word order changes from LA to MSA.)

The results were not encouraging since the effect

of the positive changes was undermined by newly

introduced errors.

6 Treebank Transduction

In this approach, the idea is to convert the MSA

treebank (ATB-Train) into an LA-like treebank us-

ing linguistic knowledge of the systematic varia-

tions on the syntactic, lexical and morphological

levels across the two varieties of Arabic. We then

train a statistical parser on the newly transduced

treebank and test the parsing performance against

the gold test set of the LA treebank sentences.

6.1 MSA Transformations

We now list the transformations we applied to

ATB-Train:

6.1.1 Structural Transformations

Consistency checks (CON): These are conver-

sions that make the ATB annotation more consis-

tent. For example, there are many cases where

SBAR and S nodes are used interchangeably in the

MSA treebank. Therefore, an S clause headed by

a complementizer is converted to an SBAR.

Sentence Splitting (TOPS): A fair number of

sentences in the ATB has a root node S with sev-

eral embedded direct descendant S nodes, some-

times conjoined using the conjunction w. We split

such sentences into several shorter sentences.

6.1.2 Syntactic Transformations

There are several possible systematic syntactic

transformations. We focus on three major ones

due to their significant distributional variation in

MSA and LA. They are illustrated in Figure 1.

Negation (NEG): In MSA negation is marked

with preverbal negative particles. In LA, a nega-

tive construction is expressed in one of three pos-

sible ways: m$/mA preceding the verb; a particle

$ suffixed onto the verb; or a circumfix of a prefix

mA and suffix it $. We converted all negation in-

stances in the ATB-Train three ways reflecting the

LA constructions for negation.

VSO-SVO Ordering (SVO): Both Verb Subject

Object (VSO) and Subject Verb Object (SVO)

constructions occur in MSA and LA treebanks.

But pure VSO constructions – where there is no

pro-drop – occur in the LA corpus only 10% of

the data, while VSO is the most frequent ordering

in MSA. Hence, the goal is to skew the distribu-

tions of the SVO constructions in the MSA data.

Therefore, VSO constructions are both replicated

and converted to SVO constructions.

Demonstrative Switching (DEM): In LA,

demonstrative pronouns precede or, more com-
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monly, follow the nouns they modify, while in

MSA demonstrative pronoun only precede the

noun they modify. Accordingly, we replicate the

LA constructions in ATB-Train and moved the

demonstrative pronouns to follow their modified

nouns while retaining the source MSA ordering si-

multaneously.

6.1.3 Lexical Substitution

We use the four lexicons described in Section 3.

These resources are created with a coverage bias

from LA to MSA. As an approximation, we re-

versed the directionality to yield MSA to LA lex-

icons, retaining the assigned probability scores.

Manipulations involving lexical substitution are

applied only to the lexical items without altering

the POS tag or syntactic structure.

6.1.4 Morphological Transformations

We applied some morphological rules to han-

dle specific constructions in the LA. The POS tier

as well as the lexical items were affected by these

manipulations.

bd Construction (BD): bd is an LA noun that

means ‘want’. It acts like a verb in verbal con-

structions yielding VP constructions headed by

NN. It is typically followed by a possessive pro-

noun. Accordingly, we translated all MSA verbs

meaning want/need into the noun bd and changed

their POS tag to the nominal tag NN. In cases

where the subject of the MSA verb is pro-dropped,

we add a clitic possessive pronoun in the first

or second person singular. This was intended to

bridge the genre and domain disparity between the

MSA and LA data.

Aspectual Marker b (ASP): In dialectal Arabic,

present tense verbs are marked with an initial b.

Therefore we add a b prefix to all verbs of POS

tag type VBP. The aspectual marker is present on

the verb byHbw in the LA example in Figure 1.

lys Construction (LYS): In the MSA data, lys is

interchangeably marked as a verb and as a parti-

cle. However, in the LA data, lys occurs only as a

particle. Therefore, we convert all occurrences of

lys into RP.

6.2 Experimental Results

We transform ATB-Train into an LA-like treebank

using different strategies, and then train the Bikel

parser on the resulting LA-like treebank. We parse

the LA test set with the Bikel parser trained in this

manner. As before, we report results on DEV and

No Tags Gold Tags

Baseline 59.5/52/55.5 64.2/58.4/61.1

MORPH 63.9/58/60.8

SLXEM 64.2/59.3/61.7

NEG 64.5/58.9/61.6

STRUCT 64.6/59.2/61.8

+NEG 64.6/59.5/62

+NEG

+SLXEM 62.1/55.9/58.8 65.5/61.3/63.3

Table 3: Treebank transduction results on

DEV(labeled precision/recall/F-measure)

No Tags Gold Tags

Baseline 53.5 60.2

STRUCT

+NEG+SLXEM 57 62.1

Table 4: Treebank transduction results on TEST

(labeled F-measure)

TEST sets, without POS tags and with gold POS

tags, using the Parseval metrics of labeled preci-

sion, labeled recall and f-measure. Table 3 sum-

marizes the results on the LA development set.

In Table 3, STRUCT refers to the structural

transformations combining TOPS with CON. Of

the Syntactic transformations applied, NEG is

the only transformation that helps performance.

Both SVO and DEM decrease the performance

from the baseline with F-measures of 59.4 and

59.5, respectively. Of the lexical substitutions

(i.e., lexicons), SLXEM helps performance the

best. MORPH refers to a combination of all

the morphological transformations. MORPH

does not help performance, as we see a decrease

from the baseline by 0.3% when applied on its

own. When combining MORPH with other con-

ditions, we see a consistent decrease. For instance,

STRUCT+NEG+SLXEM+MORPH yields an f-

measure of 62.9 compared to 63.3 yielded by

STRUCT+NEG+SLXEM. The best results ob-

tained are those from combining STRUCT with

NEG and SLXEM for both the No Tag and Gold

Tag conditions.

Table 4 shows the results obtained on TEST. As

for the sentence transduction case, we see an over-

all reduction in the performance indicating that the

test data is very different from the training data.
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6.3 Discussion

The best performing condition always includes

CON, TOPS and NEG. SLXEM helps as well,

however, due to the inherent directionality of the

resource, its impact is limited. We experimented

with the other lexicons but none of them helped

improve performance. We believe that the EM

probabilities helped in biasing the lexical choices,

playing the role of an LA language model (which

we do not have). We do not observe any significant

improvement from applying MORPH.

7 Grammar Transduction

The grammar-transduction approach uses the ma-

chinery of synchronous grammars to relate MSA

and LA. A synchronous grammar composes paired

elementary trees, or fragments of phrase-structure

trees, to generate pairs of phrase-structure trees.

In the present application, we start with MSA ele-

mentary trees (plus probabilities) induced from the

ATB and transform them using handwritten rules

into dialect elementary trees to yield an MSA-

dialect synchronous grammar. This synchronous

grammar can be used to parse new dialect sen-

tences using statistics gathered from the MSA

data.

Thus this approach can be thought of as a

variant of the treebank-transduction approach in

which the syntactic transformations are localized

to elementary trees. Moreover, because a parsed

MSA translation is produced as a byproduct, we

can also think of this approach as being related to

the sentence-transduction approach.

7.1 Preliminaries

The parsing model used is essentially that of Chi-

ang (Chiang, 2000), which is based on a highly

restricted version of tree-adjoining grammar. In

its present form, the formalism is tree-substitution

grammar (Schabes, 1990) with an additional op-

eration called sister-adjunction (Rambow et al.,

2001). Because of space constraints, we omit dis-

cussion of the sister-adjunction operation in this

paper.

A tree-substitution grammar is a set of elemen-

tary trees. A frontier node labeled with a nonter-

minal label is called a substitution site. If an ele-

mentary tree has exactly one terminal symbol, that

symbol is called its lexical anchor.

A derivation starts with an elementary tree and

proceeds by a series of composition operations.

In the substitution operation, a substitution site is

rewritten with an elementary tree with a matching

root label. The final product is a tree with no more

substitution sites.

A synchronous TSG is a set of pairs of ele-

mentary trees. In each pair, there is a one-to-one

correspondence between the substitution sites of

the two trees, which we represent using boxed in-

dices (Figure 2). The substitution operation then

rewrites a pair of coindexed substitution sites with

an elementary tree pair. A stochastic synchronous

TSG adds probabilities to the substitution opera-

tion: the probability of substituting an elementary

tree pair 〈α,α′〉 at a substitution site pair 〈η, η′〉 is

P (α,α′ | η, η′).
When we parse a monolingual sentence S us-

ing one side of a stochastic synchronous TSG, us-

ing a straightforward generalization of the CKY

and Viterbi algorithms, we obtain the highest-

probability paired derivation which includes a

parse for S on one side, and a parsed translation

of S on the other side. It is also straightforward

to calculate inside and outside probabilities for re-

estimation by Expectation-Maximization (EM).

7.2 An MSA-dialect synchronous grammar

We now describe how we build our MSA-dialect

synchronous grammar. As mentioned above, the

MSA side of the grammar is extracted from the

ATB in a process described by Chiang and others

(Chiang, 2000; Xia et al., 2000; Chen, 2001). This

process also gives us MSA-only substitution prob-

abilities P (α | η).
We then apply various transformation rules (de-

scribed below) to the MSA elementary trees to

produce a dialect grammar, at the same time as-

signing probabilities P (α′ | α). The synchronous-

substitution probabilities can then be estimated as:

P (α,α′ | η, η′) ≈ P (α | η)P (α′ | α)

≈ P (α | η)P (w′, t′ | w, t)

P (ᾱ′ | ᾱ, w′, t′, w, t)

where w and t are the lexical anchor of α and

its POS tag, and ᾱ is the equivalence class of α

modulo lexical anchors and their POS tags.

P (w′, t′ | w, t) is assigned as described in Sec-

tion 3; P (ᾱ′ | ᾱ, w′, t′, w, t) is initially assigned

by hand. Because the full probability table for the

latter would be quite large, we smooth it using a

backoff model so that the number of parameters to
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S
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&+��'
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


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

























Figure 2: Example elementary tree pair of a synchronous TSG.

be chosen is manageable. Finally, we reestimate

these parameters using EM.

Because of the underlying syntactic similar-

ity between the two varieties of Arabic, we as-

sume that every tree in the MSA grammar ex-

tracted from the MSA treebank is also an LA tree.

In addition, we perform certain tree transforma-

tions on all elementary trees which match the pat-

tern: NEG and SVO (Section 6.1.2) and BD (Sec-

tion 6.1.4). NEG is modified so that we simply

insert a $ negation marker postverbally, as the pre-

verbal markers are handled by MSA trees.

7.3 Experimental Results

We first use DEV to determine which of the trans-

formations are useful. The results are shown in

Table 5. The baseline is the same as in the previ-

ous two approaches. We see that important im-

provements are obtained using lexicon SLXUN.

Adding the SVO transformation does not improve

the results, but the NEG and BD transformations

help slightly, and their effect is (partly) cumula-

tive. (We did not perform these tuning experi-

ments on input with no POS tags.) We also exper-

imented with the SLXEM and BLXEM lexicons.

There was no consistent improvement.

7.4 Discussion

We observe that the lexicon can be used effectively

in our synchronous grammar framework. In ad-

dition, some syntactic transformations are useful.

The SVO transformation, we assume, turned out

not to be useful because the SVO word order is

also possible in MSA, so that the new trees were

not needed and needlessly introduced new deriva-

tions. The BD transformation shows the impor-

tance not of general syntactic transformations, but

rather of lexically specific syntactic transforma-

tions: varieties within one language family may

No Tags Gold Tags

Baseline 59.4/51.9/55.4 64.0/58.3/61.0

SLXUN 63.0/60.8/61.9 66.9/67.0/66.9

+ SVO 66.9/66.7/66.8

+ NEG 67.0/67.0/67.0

+ BD 67.4/67.0/67.2

+ NEG + BD 67.4/67.1/67.3

BLXUN 64.9/63.7/64.3 67.9/67.4/67.6

Table 5: Grammar transduction results on

development corpus (labeled precision/recall/F-

measure)

No Tags Gold Tags

Baseline 53.5 60.2

SLXUN

+ Neg + bd 60.2 67.1

Table 6: Grammar transduction results on TEST

(labeled F-measure)

differ more in terms of the lexico-syntactic con-

structions used for a specific (semantic or prag-

matic) purpose than in their basic syntactic inven-

tory. Note that our tree-based synchronous formal-

ism is ideally suited for expressing such transfor-

mations since it is lexicalized, and has an extended

domain of locality.

8 Summary of Results and Discussion

We have built three frameworks for leveraging

MSA corpora and explicit knowledge about the

lexical, morphological, and syntactic differences

between MSA and LA for parsing LA. The results

on TEST are summarized in Table 7, where per-

formance is given as absolute and relative reduc-

tion in labeled F-measure error (i.e., 100−F ). We

see that some important improvements in parsing
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No Tags Gold Tags

Sentence Transd. 4.2/9.0% 3.8/9.5%

Treebank Transd. 3.5/7.5% 1.9/4.8%

Grammar Transd. 6.7/14.4% 6.9/17.3%

Table 7: Results on test corpus: absolute/percent

error reduction in F-measure over baseline (using

MSA parser on LA test corpus); all numbers are

for best obtained results using that method

quality can be achieved. We also remind the reader

that on the ATB, state-of-the-art performance is

currently about 75% F-measure.

There are several important ways in which

we can expand our work. For the sentence-

transduction approach, we plan to explore the use

of a larger set of permutations; to use improved

language models on MSA (such as language mod-

els built on genres closer to speech); to use lattice

parsing (Sima’an, 2000) directly on the transla-

tion lattice and to integrate this approach with the

treebank transduction approach. For the treebank

and grammar transduction approaches, we would

like to explore more systematic syntactic, morpho-

logical, and lexico-syntactic transformations. We

would also like to explore the feasibility of induc-

ing the syntactic and morphological transforma-

tions automatically. Specifically for the treebank

transduction approach, it would be interesting to

apply an LA language model for the lexical substi-

tution phase as a means of pruning out implausible

word sequences.

For all three approaches, one major impediment

to obtaining better results is the disparity in genre

and domain which affects the overall performance.

This may be bridged by finding MSA data that is

more in the domain of the LA test corpus than the

MSA treebank.
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