
Edit Machines for Robust Multimodal Language Processing

Srinivas Bangalore
AT&T Labs-Research

180 Park Ave

Florham Park, NJ 07932

srini@research.att.com

Michael Johnston
AT&T Labs-Research

180 Park Ave

Florham Park, NJ 07932

johnston@research.att.com

Abstract

Multimodal grammars provide an expres-
sive formalism for multimodal integra-
tion and understanding. However, hand-
crafted multimodal grammars can be brit-
tle with respect to unexpected, erroneous,
or disfluent inputs. Spoken language
(speech-only) understanding systems have
addressed this issue of lack of robustness
of hand-crafted grammars by exploiting
classification techniques to extract fillers
of a frame representation. In this paper,
we illustrate the limitations of such clas-
sification approaches for multimodal in-
tegration and understanding and present
an approach based on edit machines that
combine the expressiveness of multimodal
grammars with the robustness of stochas-
tic language models of speech recognition.
We also present an approach where the
edit operations are trained from data using
a noisy channel model paradigm. We eval-
uate and compare the performance of the
hand-crafted and learned edit machines in
the context of a multimodal conversational
system (MATCH).

1 Introduction

Over the years, there have been several mul-
timodal systems that allow input and/or output
to be conveyed over multiple channels such as
speech, graphics, and gesture, for example, put

that there (Bolt, 1980), CUBRICON (Neal and
Shapiro, 1991), QuickSet (Cohen et al., 1998),
SmartKom (Wahlster, 2002), Match (Johnston et
al., 2002). Multimodal integration and interpre-
tation for such interfaces is elegantly expressed
using multimodal grammars (Johnston and Ban-
galore, 2000). These grammars support com-
posite multimodal inputs by aligning speech in-
put (words) and gesture input (represented as se-
quences of gesture symbols) while expressing the
relation between the speech and gesture input and
their combined semantic representation. In (Ban-
galore and Johnston, 2000; Johnston and Banga-

lore, 2005), we have shown that such grammars
can be compiled into finite-state transducers en-
abling effective processing of lattice input from
speech and gesture recognition and mutual com-
pensation for errors and ambiguities.

However, like other approaches based on hand-
crafted grammars, multimodal grammars can be
brittle with respect to extra-grammatical, erro-
neous and disfluent input. For speech recognition,
a corpus-driven stochastic language model (SLM)
with smoothing or a combination of grammar-
based and � -gram model (Bangalore and John-
ston, 2004; Wang et al., 2002) can be built in order
to overcome the brittleness of a grammar-based
language model. Although the corpus-driven lan-
guage model might recognize a user’s utterance
correctly, the recognized utterance may not be
assigned a semantic representation by the multi-
modal grammar if the utterance is not part of the
grammar.

There have been two main approaches to im-
proving robustness of the understanding compo-
nent in the spoken language understanding litera-
ture. First, a parsing-based approach attempts to
recover partial parses from the parse chart when
the input cannot be parsed in its entirety due to
noise, in order to construct a (partial) semantic
representation (Dowding et al., 1993; Allen et al.,
2001; Ward, 1991). Second, a classification-based
approach views the problem of understanding as
extracting certain bits of information from the in-
put. It attempts to classify the utterance and iden-
tifies substrings of the input as slot-filler values
to construct a frame-like semantic representation.
Both approaches have shortcomings. Although in
the first approach, the grammar can encode richer
semantic representations, the method for combin-
ing the fragmented parses is quite ad hoc. In the
second approach, the robustness is derived from
training classifiers on annotated data, this data is
very expensive to collect and annotate, and the
semantic representation is fairly limited. Further-
more, it is not clear how to extend this approach to
apply on lattice input – an important requirement
for multimodal processing.

361

An alternative to these approaches is to edit
the recognized string to match the closest string
that can be accepted by the grammar. Essentially
the idea is that, if the recognized string cannot
be parsed, then we determine which in-grammar
string it is most like. For example, in Figure 1, the
recognized string is mapped to the closest string in
the grammar by deletion of the words restaurants

and in.

ASR: show cheap restaurants thai places in in chelsea
Edits: show cheap � thai places in � chelsea
Grammar: show cheap thai places in chelsea

Figure 1: Editing Example

In this paper, we develop further this edit-based
approach to finite-state multimodal language un-
derstanding and show how when appropriately
tuned it can provide a substantial improvement in
concept accuracy. We also explore learning ed-
its from data and present an approach of model-
ing this process as a machine translation problem.
We learn a model to translate from out of grammar
or misrecognized language (such as ‘ASR:’ above)
to the closest language the system can understand
(‘Grammar:’ above). To this end, we adopt tech-
niques from statistical machine translation (Brown
et al., 1993; Och and Ney, 2003) and use statistical
alignment to learn the edit patterns. Here we eval-
uate these different techniques on data from the
MATCH multimodal conversational system (John-
ston et al., 2002) but the same techniques are more
broadly applicable to spoken language systems in
general whether unimodal or multimodal.

The layout of the paper is as follows. In Sec-
tions 2 and 3, we briefly describe the MATCH
application and the finite-state approach to mul-
timodal language understanding. In Section 4,
we discuss the limitations of the methods used
for robust understanding in spoken language un-
derstanding literature. In Section 5 we present
our approach to building hand-crafted edit ma-
chines. In Section 6, we describe our approach to
learning the edit operations using a noisy channel
paradigm. In Section 7, we describe our experi-
mental evaluation.

2 MATCH: A Multimodal Application

MATCH (Multimodal Access To City Help) is a
working city guide and navigation system that en-
ables mobile users to access restaurant and sub-
way information for New York City and Washing-
ton, D.C. (Johnston et al., 2002). The user inter-
acts with an interface displaying restaurant list-
ings and a dynamic map showing locations and
street information. The inputs can be speech,
drawing/pointing on the display with a stylus, or

synchronous multimodal combinations of the two
modes. The user can ask for the review, cui-
sine, phone number, address, or other informa-
tion about restaurants and subway directions to lo-
cations. The system responds with graphical la-
bels on the display, synchronized with synthetic
speech output. For example, if the user says phone

numbers for these two restaurants and circles two
restaurants as in Figure 2 [A], the system will draw
a callout with the restaurant name and number and
say, for example Time Cafe can be reached at 212-

533-7000, for each restaurant in turn (Figure 2
[B]).

Figure 2: MATCH Example

3 Finite-state Multimodal Understanding

Our approach to integrating and interpreting mul-
timodal inputs (Johnston et al., 2002) is an exten-
sion of the finite-state approach previously pro-
posed in (Bangalore and Johnston, 2000; John-
ston and Bangalore, 2005). In this approach, a
declarative multimodal grammar captures both the
structure and the interpretation of multimodal and
unimodal commands. The grammar consists of
a set of context-free rules. The multimodal as-
pects of the grammar become apparent in the ter-
minals, each of which is a triple W:G:M, consist-
ing of speech (words, W), gesture (gesture sym-
bols, G), and meaning (meaning symbols, M). The
multimodal grammar encodes not just multimodal
integration patterns but also the syntax of speech
and gesture, and the assignment of meaning, here
represented in XML. The symbol SEM is used to
abstract over specific content such as the set of
points delimiting an area or the identifiers of se-
lected objects (Johnston et al., 2002). In Figure 3,
we present a small simplified fragment from the
MATCH application capable of handling informa-
tion seeking requests such as phone for these three
restaurants. The epsilon symbol (�) indicates that
a stream is empty in a given terminal.

In the example above where the user says phone

for these two restaurants while circling two restau-
rants (Figure 2 [a]), assume the speech recognizer
returns the lattice in Figure 4 (Speech). The ges-
ture recognition component also returns a lattice
(Figure 4, Gesture) indicating that the user’s ink

362

CMD � � : � : � cmd � INFO � : � : � /cmd �
INFO � � : � : � type � TYPE � : � : � /type �

for: � : ��� : � : � obj � DEICNP � : � : � /obj �
TYPE � phone: � :phone � review: � :review
DEICNP � DDETPL � :area: ��� :sel: � NUM HEADPL
DDETPL � these:G: �	� those:G: �
HEADPL � restaurants:rest: � rest �
� :SEM:SEM� : � : � /rest �
NUM � two:2: ��� three:3: � ... ten:10: �

Figure 3: Multimodal grammar fragment

Speech:

sel

locareaG

Gesture:

2

<rest>

Meaning:

<rest>

</type> <obj>

</cmd></info></obj></rest>r12,r15

phone

twotheseforphone

SEM(r12,r15)

restaurants

<type><info><cmd>

SEM(points...)

ten

Figure 4: Multimodal Example

is either a selection of two restaurants or a ge-
ographical area. In Figure 4 (Gesture) the spe-
cific content is indicated in parentheses after SEM.
This content is removed before multimodal pars-
ing and integration and replaced afterwards. For
detailed explanation of our technique for abstract-
ing over and then re-integrating specific gestural
content and our approach to the representation of
complex gestures see (Johnston et al., 2002). The
multimodal grammar (Figure 3) expresses the re-
lationship between what the user said, what they
drew with the pen, and their combined mean-
ing, in this case Figure 4 (Meaning). The mean-
ing is generated by concatenating the meaning
symbols and replacing SEM with the appropri-
ate specific content: � cmd
�� info
�� type

phone � /type
�� obj
�� rest
 [r12,r15] � /rest
� /obj
�� /info
�� /cmd
 .

For use in our system, the multimodal grammar
is compiled into a cascade of finite-state transduc-
ers (Johnston and Bangalore, 2000; Johnston et al.,
2002; Johnston and Bangalore, 2005). As a result,
processing of lattice inputs from speech and ges-
ture processing is straightforward and efficient.

3.1 Meaning Representation for Concept
Accuracy

The hierarchically nested XML representation
above is effective for processing by the backend
application, but is not well suited for the auto-
mated determination of the performance of the
language understanding mechanism. We adopt an

approach, similar to (Ciaramella, 1993; Boros et
al., 1996), in which the meaning representation,
in our case XML, is transformed into a sorted flat
list of attribute-value pairs indicating the core con-
tentful concepts of each command. The example
above yields:������������� �"!$#&%�'(�)%+*,�-��'.�)/�0$',�)!1�,2-'+3$'��)!4�-�-��5

(1)
This allows us to calculate the performance of the
understanding component using the same string
matching metrics used for speech recognition ac-
curacy. Concept Sentence Accuracy measures the
number of user inputs for which the system got the
meaning completely right (this is called Sentence
Understanding in (Ciaramella, 1993)).

4 Robust Understanding

Robust understanding has been of great interest
in the spoken language understanding literature.
The issue of noisy output from the speech recog-
nizer and disfluencies that are inherent in spoken
input make it imperative for using mechanisms
to provide robust understanding. As discussed
in the introduction, there are two approaches to
addressing robustness – partial parsing approach
and classification approach. We have explored the
classification-based approach to multimodal un-
derstanding in earlier work. We briefly present
this approach and discuss its limitations for mul-
timodal language processing.

4.1 Classification-based Approach

In previous work (Bangalore and Johnston, 2004),
we viewed multimodal understanding as a se-
quence of classification problems in order to de-
termine the predicate and arguments of an utter-
ance. The meaning representation shown in (1)
consists of an predicate (the command attribute)
and a sequence of one or more argument at-
tributes which are the parameters for the success-
ful interpretation of the user’s intent. For ex-
ample, in (1), �����6� �7�,� � is the predicate and!+#8%�'(�9%+*��)��':�-/,0+',�9!1��2)' 3&',�)!��8�)� is the set of
arguments to the predicate.

We determine the predicate (;�<) for a = to-
ken multimodal utterance (>@?A) by maximizing the
posterior probability as shown in Equation 2.

; <CB D$E9F&GHD$IJ K E,L ;NM-> ?ANO (2)

We view the problem of identifying and extract-
ing arguments from a multimodal input as a prob-
lem of associating each token of the input with
a specific tag that encodes the label of the argu-
ment and the span of the argument. These tags
are drawn from a tagset which is constructed by

363

extending each argument label by three additional
symbols P,QSRTQVU , following (Ramshaw and Mar-
cus, 1995). These symbols correspond to cases
when a token is inside (P) an argument span, out-
side (R) an argument span or at the boundary of
two argument spans (U) (See Table 1).

User cheap thai upper west side
Utterance
Argument � price � cheap � /price �6� cuisine �
Annotation thai � /cuisine �W� place � upper west

side � /place �
IOB cheap price � B � thai cuisine � B �
Encoding upper place � I � west place � I �

side place � I �
Table 1: The X I,O,B Y encoding for argument ex-
traction.

Given this encoding, the problem of extracting
the arguments is a search for the most likely se-
quence of tags (Z[<) given the input multimodal ut-
terance > ?A as shown in Equation (3). We approx-

imate the posterior probability
K E,L Z\M�> ?A O us-

ing independence assumptions as shown in Equa-
tion (4).Z < B]D&E9F&GHD$I^ K E,L Z_M-> ?A O (3)

` D&E9F&GHD$I^ a9b K E�Ldc
b
M->
bfe gb h g Q c

b
h A Q c

b
h�i O (4)

Owing to the large set of features that are used
for predicate identification and argument extrac-
tion, we estimate the probabilities using a classifi-
cation model. In particular, we use the Adaboost
classifier (Freund and Schapire, 1996) wherein a
highly accurate classifier is build by combining
many “weak” or “simple” base classifiers j

b
, each

of which may only be moderately accurate. The
selection of the weak classifiers proceeds itera-
tively picking the weak classifier that correctly
classifies the examples that are misclassified by
the previously selected weak classifiers. Each
weak classifier is associated with a weight (k

b
)

that reflects its contribution towards minimizing
the classification error. The posterior probability
of
K E�L ;NM I O is computed as in Equation 5.K E,L ;NM I O B lL lnm.o h�i <qpTrSs r <qt rvuxw7y O (5)

4.2 Limitations of this approach

Although, we have shown that the classification
approach works for unimodal and simple multi-
modal inputs, it is not clear how this approach
can be extended to work on lattice inputs. Mul-
timodal language processing requires the integra-
tion and joint interpretation of speech and gesture
input. Multimodal integration requires alignment
of the speech and gesture input. Given that the in-
put modalities are both noisy and can receive mul-
tiple within-modality interpretations (e.g. a circle

could be an “O” or an area gesture); it is neces-
sary for the input to be represented as a multiplic-
ity of hypotheses, which can be most compactly
represented as a lattice. The multiplicity of hy-
potheses is also required for exploiting the mu-
tual compensation between the two modalities as
shown in (Oviatt, 1999; Bangalore and Johnston,
2000). Furthermore, in order to provide the dialog
manager the best opportunity to recover the most
appropriate meaning given the dialog context, we
construct a lattice of semantic representations in-
stead of providing only one semantic representa-
tion.

In the multimodal grammar-based approach, the
alignment between speech and gesture along with
their combined interpretation is utilized in deriv-
ing the multimodal finite-state transducers. These
transducers are used to create a gesture-speech
aligned lattice and a lattice of semantic interpre-
tations. However, in the classification-based ap-
proach, it is not as yet clear how alignment be-
tween speech and gesture would be achieved es-
pecially when the inputs are lattice and how the
aligned speech-gesture lattices can be processed to
produce lattice of multimodal semantic represen-
tations.

5 Hand-crafted Finite-State Edit
Machines

A corpus trained SLM with smoothing is more ef-
fective at recognizing what the user says, but this
will not help system performance if coupled di-
rectly to a grammar-based understanding system
which can only assign meanings to in-grammar ut-
terances. In order to overcome the possible mis-
match between the user’s input and the language
encoded in the multimodal grammar (z|{), we in-
troduce a weighted finite-state edit transducer to
the multimodal language processing cascade. This
transducer coerces the set of strings (}) encoded
in the lattice resulting from ASR (z|~) to closest
strings in the grammar that can be assigned an in-
terpretation. We are interested in the string with
the least costly number of edits (D$E�F$G�� �) that can
be assigned an interpretation by the grammar1.
This can be achieved by composition (�) of trans-
ducers followed by a search for the least cost path
through a weighted transducer as shown below.� <�B�D$E9F&G�� ��q� ~ z,~T��z,���

b��
��z,{ (6)

We first describe the edit machine introduced
in (Bangalore and Johnston, 2004) (Basic Edit)
then go on to describe a smaller edit machine with
higher performance (4-edit) and an edit machine

1We note that the closest string according to the edit met-
ric may not be the closest string in meaning

364

which incorporates additional heuristics (Smart
edit).

5.1 Basic edit

Our baseline, the edit machine described in (Ban-
galore and Johnston, 2004), is essentially a finite-
state implementation of the algorithm to compute
the Levenshtein distance. It allows for unlimited
insertion, deletion, and substitution of any word
for another (Figure 5). The costs of insertion, dele-
tion, and substitution are set as equal, except for
members of classes such as price (cheap, expen-
sive), cuisine (turkish) etc., which are assigned a
higher cost for deletion and substitution.

wjiw : /scost

iw : /0wi

i
w

:ε
/d

co
st

i
w:

ε
/ico

st

Figure 5: Basic Edit Machine

5.2 4-edit

Basic edit is effective in increasing the number of
strings that are assigned an interpretation (Banga-
lore and Johnston, 2004) but is quite large (15mb,
1 state, 978120 arcs) and adds an unacceptable
amount of latency (5s on average). In order to
overcome this performance problem we experi-
mented with revising the topology of the edit ma-
chine so that it allows only a limited number of
edit operations (at most four) and removed the
substitution arcs, since they give rise to R L M�� M i O
arcs. For the same grammar, the resulting edit ma-
chine is about 300K with 4 states and 16796 arcs
and the average latency is (0.5s). The topology of
the 4-edit machine is shown in Figure 6.

i

/icostε :

w iw /0:

w

i

i

/dcostε:w

/0:wi

/icost

wi

ε

wi :

: wi

/dcostε

i

i

/dcostε:

w

wi

/icostε :

w

:wi /0

i

iw :

ε : wi

/dcost

/icost

w /0:wi

ε

iw /0

:wi

Figure 6: 4-edit machine

5.3 Smart edit

Smart edit is a 4-edit machine which incorporates
a number of additional heuristics and refinements
to improve performance:

1. Deletion of SLM-only words: Arcs were
added to the edit transducer to allow for free
deletion of any words in the SLM training
data which are not found in the grammar. For
example, listings in thai restaurant listings in

midtown � thai restaurant in midtown.

2. Deletion of doubled words: A common er-
ror observed in SLM output was doubling of
monosyllabic words. For example: subway

to the cloisters recognized as subway to to
the cloisters. Arcs were added to the edit ma-
chine to allow for free deletion of any short
word when preceded by the same word.

3. Extended variable weighting of words: In-
sertion and deletion costs were further subdi-
vided from two to three classes: a low cost
for ‘dispensable’ words, (e.g. please, would,

looking, a, the), a high cost for special words
(slot fillers, e.g. chinese, cheap, downtown),
and a medium cost for all other words, (e.g.
restaurant, find).

4. Auto completion of place names: It is un-
likely that grammar authors will include all
of the different ways to refer to named en-
tities such as place names. For example, if
the grammar includes metropolitan museum
of art the user may just say metropolitan

museum. These changes can involve signif-
icant numbers of edits. A capability was
added to the edit machine to complete par-
tial specifications of place names in a single
edit. This involves a closed world assump-
tion over the set of place names. For ex-
ample, if the only metropolitan museum in
the database is the metropolitan museum of

art we assume that we can insert of art af-
ter metropolitan museum. The algorithm for
construction of these auto-completion edits
enumerates all possible substrings (both con-
tiguous and non-contiguous) for place names.
For each of these it checks to see if the sub-
string is found in more than one semantically
distinct member of the set. If not, an edit se-
quence is added to the edit machine which
freely inserts the words needed to complete
the placename. Figure 7 illustrates one of the
edit transductions that is added for the place
name metropolitan museum of art. The algo-
rithm which generates the autocomplete edits
also generates new strings to add to the place
name class for the SLM (expanded class). In
order to limit over-application of the comple-
tion mechanism substrings starting in prepo-
sitions (of art � metropolitan museum of art)
or involving deletion of parts of abbreviations
are not considered for edits (b c building � n

b c building).

metropolitan:metropolitan museum:museum ε art:εof:

Figure 7: Auto-completion Edits

365

The average latency of SmartEdit is 0.68s. Note
that the application-specific structure and weight-
ing of SmartEdit (3,4 above) can be derived auto-
matically: 4. runs on the placename list for the
new application and the classification in 3. is pri-
marily determined by which words correspond to
fields in the underlying application database.

6 Learning Edit Patterns

In the previous section, we described an edit ap-
proach where the weights of the edit operations
have been set by exploiting the constraints from
the underlying application. In this section, we dis-
cuss an approach that learns these weights from
data.

6.1 Noisy Channel Model for Error
Correction

The edit machine serves the purpose of translating
user’s input to a string that can be assigned a mean-
ing representation by the grammar. One of the
possible shortcomings of the approach described
in the preceding section is that the weights for the
edit operations are set heuristically and are crafted
carefully for the particular application. This pro-
cess can be tedious and application-specific. In or-
der to provide a more general approach, we couch
the problem of error correction in the noisy chan-
nel modeling framework. In this regard, we fol-
low (Ringger and Allen, 1996; Ristad and Yian-
ilos, 1998), however, we encode the error cor-
rection model as a weighted Finite State Trans-
ducer (FST) so we can directly edit ASR input
lattices. Furthermore, unlike (Ringger and Allen,
1996), the language grammar from our application
filters out edited strings that cannot be assigned an
interpretation by the multimodal grammar. Also,
while in (Ringger and Allen, 1996) the goal is
to translate to the reference string and improve
recognition accuracy, in our approach the goal is
to translate in order to get the reference meaning
and improve concept accuracy.

We let >�{ be the string that can be assigned a
meaning representation by the grammar and >�� be
the user’s input utterance. If we consider >
� to be
the noisy version of the >�{ , we view the decoding
task as a search for the string > <{ that maximizes
the following equation.

> <{ B�D$E9F&GHD&I�7� K L >���QS>|{ O (7)

We then use a Markov approximation (trigram
for our purposes) to compute the joint probabilityK L > � QS> { O .

> <{ B�D$E9F&GHD$I� � a K L >
b
� QS>

b
{ M�>

b
h A� QS>

b
h�i� QS>

b
h A{ QS>

b
h�i{ O

(8)
where >�� B > A� > i� 5�5�5 > g� and >|{ B > A{ > i{ 5�5�5 >��{ .

In order to compute the joint probability, we
need to construct an alignment between tokensL >
b
� QS>

b
{ O . We use the viterbi alignment provided

by GIZA++ toolkit (Och and Ney, 2003) for this
purpose. We convert the viterbi alignment into a
bilanguage representation that pairs words of the
string >�� with words of >�{ . A few examples of
bilanguage strings are shown in Figure 8. We
compute the joint n-gram model using a language
modeling toolkit (Goffin et al., 2005). Equation 8
thus allows us to edit a user’s utterance to a string
that can be interpreted by the grammar.

show:show me:me the: � map: � of: � midtown:midtown

no: � find:find me:me french:french restaurants:around down-

town:downtown

I: � need: � subway:subway directions:directions

Figure 8: A few examples of bilanguage strings

6.2 Deriving Translation Corpus

Since our multimodal grammar is implemented as
a finite-state transducer it is fully reversible and
can be used not just to provide a meaning for input
strings but can also be run in reverse to determine
possible input strings for a given meaning. Our
multimodal corpus was annotated for meaning us-
ing the multimodal annotation tools described in
(Ehlen et al., 2002). In order to train the transla-
tion model we build a corpus that pairs the refer-
ence speech string for each utterance in the train-
ing data with a target string. The target string is de-
rived in two steps. First, the multimodal grammar
is run in reverse on the reference meaning yield-
ing a lattice of possible input strings. Second, the
closest string in the lattice to the reference speech
string is selected as the target string.

6.3 FST-based Decoder

In order to facilitate editing of ASR lattices, we
represent the edit model as a weighted finite-state
transducer. We first represent the joint n-gram
model as a finite-state acceptor (Allauzen et al.,
2004). We then interpret the symbols on each
arc of the acceptor as having two components –
a word from user’s utterance (input) and a word
from the edited string (output). This transforma-
tion makes a transducer out of an acceptor. In do-
ing so, we can directly compose the editing model
with ASR lattices to produce a weighted lattice
of edited strings. We further constrain the set of

366

edited strings to those that are interpretable by
the grammar. We achieve this by composing with
the language finite-state acceptor derived from the
multimodal grammar as shown in Equation 5. Fig-
ure 9 shows the input string and the resulting out-
put after editing with the trained model.

Input: I’m trying to find african restaurants
that are located west of midtown
Edited Output: find african around west midtown

Input: I’d like directions subway directions from
the metropolitan museum of art to the empire state building
Edited Output: subway directions from the
metropolitan museum of art to the empire state building

Figure 9: Edited output from the MT edit-model

7 Experiments and Results

To evaluate the approach, we collected a corpus of
multimodal utterances for the MATCH domain in
a laboratory setting from a set of sixteen first time
users (8 male, 8 female). A total of 833 user inter-
actions (218 multimodal / 491 speech-only / 124
pen-only) resulting from six sample task scenarios
were collected and annotated for speech transcrip-
tion, gesture, and meaning (Ehlen et al., 2002).
These scenarios involved finding restaurants of
various types and getting their names, phone num-
bers, addresses, or reviews, and getting subway
directions between locations. The data collected
was conversational speech where the users ges-
tured and spoke freely.

Since we are concerned here with editing er-
rors out of disfluent, misrecognized or unexpected
speech, we report results on the 709 inputs that in-
volve speech (491 unimodal speech and 218 mul-
timodal). Since there are only a small number of
scenarios performed by all users, we partitioned
the data six ways by scenario. This ensures that
the specific tasks in the test data for each parti-
tion are not also found in the training data for that
partition. For each scenario we built a class-based
trigram language model using the other five sce-
narios as training data. Averaging over the six par-
titions, ASR sentence accuracy was 49% and word
accuracy was 73.4%.

In order to evaluate the understanding perfor-
mance of the different edit machines, for each
partition of the data we first composed the out-
put from speech recognition with the edit machine
and the multimodal grammar, flattened the mean-
ing representation (as described in Section 3.1),
and computed the exact string match accuracy be-
tween the flattened meaning representation and the
reference meaning representation. We then aver-
aged this concept sentence accuracy measure over
all six partitions.

ConSentAcc

No edits 38.9%

Basic edit 51.5%

4-edit 53.0%

Smart edit 60.2%

Smart edit (lattice) 63.2%

MT-based edit 51.3%
(lattice)

Classifier 34.0%

Figure 10: Results of 6-fold cross validation

The results are tabulated in Figure 10. The
columns show the concept sentence accuracy
(ConSentAcc) and the relative improvement over
the the baseline of no edits. Compared to the base-
line of 38.9% concept sentence accuracy without
edits (No Edits), Basic Edit gave a relative im-
provement of 32%, yielding 51.5% concept sen-
tence accuracy. 4-edit further improved concept
sentence accuracy (53%) compared to Basic Edit.
The heuristics in Smart Edit brought the concept
sentence accuracy to 60.2%, a 55% improvement
over the baseline. Applying Smart edit to lat-
tice input improved performance from 60.2% to
63.2%.

The MT-based edit model yielded concept sen-
tence accuracy of 51.3% a 31.8% improvement
over the baseline with no edits, but still substan-
tially less than the edit model derived from the
application database. We believe that given the
lack of data for multimodal applications that an
approach that combines the two methods may be
most effective.

The Classification approach yielded only 34.0%
concept sentence accuracy. Unlike MT-based edit
this approach does not have the benefit of compo-
sition with the grammar to guide the understand-
ing process. The low performance of the classi-
fier is most likely due to the small size of the cor-
pus. Also, since the training/test split was by sce-
nario the specifics of the commands differed be-
tween training and test. In future work will ex-
plore the use of other classification techniques and
try combining the annotated data with the gram-
mar for training the classifier model.

8 Conclusions

Robust understanding is a crucial feature of a
practical conversational system whether spoken
or multimodal. There have been two main ap-
proaches to addressing this issue for speech-only
dialog systems. In this paper, we present an al-
ternative approach based on edit machines that is
more suitable for multimodal systems where gen-
erally very little training data is available and data

367

is costly to collect and annotate. We have shown
how edit machines enable integration of stochas-
tic speech recognition with hand-crafted multi-
modal understanding grammars. The resulting
multimodal understanding system is significantly
more robust 62% relative improvement in perfor-
mance compared to 38.9% concept accuracy with-
out edits. We have also presented an approach to
learning the edit operations and a classification-
based approach. The Learned edit approach pro-
vides a substantial improvement over the baseline,
performing similarly to the Basic edit machine,
but does not perform as well as the application-
tuned Smart edit machine. Given the small size
of the corpus, the classification-based approach
performs less well. This leads us to conclude
that given the lack of data for multimodal applica-
tions a combined strategy may be most effective.
Multimodal grammars coupled with edit machines
derived from the underlying application database
can provide sufficiently robust understanding per-
formance to bootstrap a multimodal service and
as more data become available data-driven tech-
niques such as Learned edit and the classification-

based approach can be brought into play.

References

C. Allauzen, M. Mohri, M. Riley, and B. Roark. 2004. A
generalized construction of speech recognition transduc-
ers. In ICASSP, pages 761–764.

J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. Galescu,
and A. Stent. 2001. Towards Conversational Human-
Computer Interaction. AI Magazine, 22(4), December.

S. Bangalore and M. Johnston. 2000. Tight-coupling of mul-
timodal language processing with speech recognition. In
Proceedings of ICSLP, pages 126–129, Beijing, China.

S. Bangalore and M. Johnston. 2004. Balancing data-driven
and rule-based approaches in the context of a multimodal
conversational system. In Proceedings of HLT-NAACL.

Robert A. Bolt. 1980. ”put-that-there”:voice and gesture at
the graphics interface. Computer Graphics, 14(3):262–
270.

M. Boros, W. Eckert, F. Gallwitz, G. Gŏrz, G. Hanrieder, and
H. Niemann. 1996. Towards Understanding Spontaneous
Speech: Word Accuracy vs. Concept Accuracy. In Pro-
ceedings of ICSLP, Philadelphia.

P. Brown, S.D. Pietra, V.D. Pietra, and R. Mercer. 1993. The
Mathematics of Machine Translation: Parameter Estima-
tion. Computational Linguistics, 16(2):263–312.

A. Ciaramella. 1993. A Prototype Performance Evalua-
tion Report. Technical Report WP8000-D3, Project Esprit
2218 SUNDIAL.

Philip R. Cohen, M. Johnston, D. McGee, S. L. Oviatt,
J. Pittman, I. Smith, L. Chen, and J. Clow. 1998. Mul-
timodal interaction for distributed interactive simulation.
In M. Maybury and W. Wahlster, editors, Readings in In-
telligent Interfaces. Morgan Kaufmann Publishers.

J. Dowding, J. M. Gawron, D. E. Appelt, J. Bear, L. Cherny,
R. Moore, and D. B. Moran. 1993. GEMINI: A natural
language system for spoken-language understanding. In
Proceedings of ACL, pages 54–61.

P. Ehlen, M. Johnston, and G. Vasireddy. 2002. Collecting
mobile multimodal data for MATCH. In Proceedings of
ICSLP, Denver, Colorado.

Y. Freund and R. E. Schapire. 1996. Experiments with a new
boosting alogrithm. In Machine Learning: Proceedings of
the Thirteenth International Conference, pages 148–156.

V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur,
A. Ljolje, S. Parthasarathy, M. Rahim, G. Riccardi, and
M. Saraclar. 2005. The at&t watson speech recognizer.
In Proceedings of ICASSP, Philadelphia, PA.

M. Johnston and S. Bangalore. 2000. Finite-state mul-
timodal parsing and understanding. In Proceedings of
COLING, pages 369–375, Saarbrücken, Germany.

M. Johnston and S. Bangalore. 2005. Finite-state multi-
modal integration and understanding. Journal of Natural
Language Engineering, 11(2):159–187.

M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen,
M. Walker, S. Whittaker, and P. Maloor. 2002. MATCH:
An architecture for multimodal dialog systems. In Pro-
ceedings of ACL, pages 376–383, Philadelphia.

J. G. Neal and S. C. Shapiro. 1991. Intelligent multi-media
interface technology. In J. W. Sullivan and S. W. Tyler,
editors, Intelligent User Interfaces, pages 45–68. ACM
Press, Addison Wesley, New York.

F.J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational Lin-
guistics, 29(1):19–51.

S. L. Oviatt. 1999. Mutual disambiguation of recognition
errors in a multimodal architecture. In CHI ’99, pages
576–583. ACM Press, New York.

L. Ramshaw and M. P. Marcus. 1995. Text chunking us-
ing transformation-based learning. In Proceedings of the
Third Workshop on Very Large Corpora, MIT, Cambridge,
Boston.

E. K. Ringger and J. F. Allen. 1996. A fertility channel
model for post-correction of continuous speech recogni-
tion. In ICSLP.

E. S. Ristad and P. N. Yianilos. 1998. Learning string-edit
distance. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(5):522–532.

W. Wahlster. 2002. SmartKom: Fusion and fission of speech,
gestures, and facial expressions. In Proceedings of the 1st
International Workshop on Man-Machine Symbiotic Sys-
tems, pages 213–225, Kyoto, Japan.

Y. Wang, A. Acero, C. Chelba, B. Frey, and L. Wong. 2002.
Combination of statistical and rule-based approaches for
spoken language understanding. In Proceedings of the IC-
SLP, Denver, Colorado, September.

W. Ward. 1991. Understanding spontaneous speech: the
phoenix system. In ICASSP.

368

