
A Clustering Approach for the Nearly Unsupervised Recognition of
Nonliteral Language∗

Julia Birke and Anoop Sarkar

School of Computing Science, Simon Fraser University

Burnaby, BC, V5A 1S6, Canada

jbirke@alumni.sfu.ca, anoop@cs.sfu.ca

Abstract

In this paper we present TroFi (Trope

Finder), a system for automatically classi-

fying literal and nonliteral usages of verbs

through nearly unsupervised word-sense

disambiguation and clustering techniques.

TroFi uses sentential context instead of

selectional constraint violations or paths

in semantic hierarchies. It also uses lit-

eral and nonliteral seed sets acquired and

cleaned without human supervision in or-

der to bootstrap learning. We adapt a

word-sense disambiguation algorithm to

our task and augment it with multiple seed

set learners, a voting schema, and addi-

tional features like SuperTags and extra-

sentential context. Detailed experiments

on hand-annotated data show that our en-

hanced algorithm outperforms the base-

line by 24.4%. Using the TroFi algo-

rithm, we also build the TroFi Example

Base, an extensible resource of annotated

literal/nonliteral examples which is freely

available to the NLP research community.

1 Introduction

In this paper, we propose TroFi (Trope Finder),

a nearly unsupervised clustering method for sep-

arating literal and nonliteral usages of verbs. For

example, given the target verb “pour”, we would

expect TroFi to cluster the sentence “Custom

demands that cognac be poured from a freshly

opened bottle” as literal, and the sentence “Salsa

and rap music pour out of the windows” as nonlit-

eral, which, indeed, it does. We call our method

nearly unsupervised. See Section 3.1 for why we

use this terminology.

We reduce the problem of nonliteral language

recognition to one of word-sense disambiguation

∗ This research was partially supported by NSERC,
Canada (RGPIN: 264905). We would like to thank Bill
Dolan, Fred Popowich, Dan Fass, Katja Markert, Yudong
Liu, and the anonymous reviewers for their comments.

by redefining literal and nonliteral as two differ-

ent senses of the same word, and we adapt an ex-

isting similarity-based word-sense disambiguation

method to the task of separating usages of verbs

into literal and nonliteral clusters. This paper fo-

cuses on the algorithmic enhancements necessary

to facilitate this transformation from word-sense

disambiguation to nonliteral language recognition.

The output of TroFi is an expandable example base

of literal/nonliteral clusters which is freely avail-

able to the research community.

Many systems that use NLP methods – such as

dialogue systems, paraphrasing and summariza-

tion, language generation, information extraction,

machine translation, etc. – would benefit from be-

ing able to recognize nonliteral language. Con-

sider an example based on a similar example from

an automated medical claims processing system.

We must determine that the sentence “she hit the

ceiling” is meant literally before it can be marked

up as an ACCIDENT claim. Note that the typical

use of “hit the ceiling” stored in a list of idioms

cannot help us. Only using the context, “She broke

her thumb while she was cheering for the Patriots

and, in her excitement, she hit the ceiling,” can we

decide.

We further motivate the usefulness of the abil-

ity to recognize literal vs. nonliteral usages using

an example from the Recognizing Textual Entail-

ment (RTE-1) challenge of 2005. (This is just an

example; we do not compute entailments.) In the

challenge data, Pair 1959 was: Kerry hit Bush hard

on his conduct on the war in Iraq. → Kerry shot

Bush. The objective was to report FALSE since

the second statement in this case is not entailed

from the first one. In order to do this, it is cru-

cial to know that “hit” is being used nonliterally in

the first sentence. Ideally, we would like to look

at TroFi as a first step towards an unsupervised,

scalable, widely applicable approach to nonliteral

language processing that works on real-world data

from any domain in any language.

329

2 Previous Work

The foundations of TroFi lie in a rich collec-

tion of metaphor and metonymy processing sys-

tems: everything from hand-coded rule-based sys-

tems to statistical systems trained on large cor-

pora. Rule-based systems – some using a type

of interlingua (Russell, 1976); others using com-

plicated networks and hierarchies often referred

to as metaphor maps (e.g. (Fass, 1997; Martin,

1990; Martin, 1992) – must be largely hand-coded

and generally work well on an enumerable set

of metaphors or in limited domains. Dictionary-

based systems use existing machine-readable dic-

tionaries and path lengths between words as one

of their primary sources for metaphor processing

information (e.g. (Dolan, 1995)). Corpus-based

systems primarily extract or learn the necessary

metaphor-processing information from large cor-

pora, thus avoiding the need for manual annota-

tion or metaphor-map construction. Examples of

such systems can be found in (Murata et. al., 2000;

Nissim & Markert, 2003; Mason, 2004). The work

on supervised metonymy resolution by Nissim &

Markert and the work on conceptual metaphors by

Mason come closest to what we are trying to do

with TroFi.

Nissim & Markert (2003) approach metonymy

resolution with machine learning methods, “which

[exploit] the similarity between examples of con-

ventional metonymy” ((Nissim & Markert, 2003),

p. 56). They see metonymy resolution as a classi-

fication problem between the literal use of a word

and a number of pre-defined metonymy types.

They use similarities between possibly metonymic

words (PMWs) and known metonymies as well as

context similarities to classify the PMWs. The

main difference between the Nissim & Markert al-

gorithm and the TroFi algorithm – besides the fact

that Nissim & Markert deal with specific types

of metonymy and not a generalized category of

nonliteral language – is that Nissim & Markert

use a supervised machine learning algorithm, as

opposed to the primarily unsupervised algorithm

used by TroFi.

Mason (2004) presents CorMet, “a corpus-

based system for discovering metaphorical map-

pings between concepts” ((Mason, 2004), p. 23).

His system finds the selectional restrictions of

given verbs in particular domains by statistical

means. It then finds metaphorical mappings be-

tween domains based on these selectional prefer-

ences. By finding semantic differences between

the selectional preferences, it can “articulate the

higher-order structure of conceptual metaphors”

((Mason, 2004), p. 24), finding mappings like

LIQUID→MONEY. Like CorMet, TroFi uses

contextual evidence taken from a large corpus and

also uses WordNet as a primary knowledge source,

but unlike CorMet, TroFi does not use selectional

preferences.

Metaphor processing has even been ap-

proached with connectionist systems storing

world-knowledge as probabilistic dependencies

(Narayanan, 1999).

3 TroFi

TroFi is not a metaphor processing system. It does

not claim to interpret metonymy and it will not tell

you what a given idiom means. Rather, TroFi at-

tempts to separate literal usages of verbs from non-

literal ones.

For the purposes of this paper we will take the

simplified view that literal is anything that falls

within accepted selectional restrictions (“he was

forced to eat his spinach” vs. “he was forced to eat

his words”) or our knowledge of the world (“the

sponge absorbed the water” vs. “the company

absorbed the loss”). Nonliteral is then anything

that is “not literal”, including most tropes, such as

metaphors, idioms, as well phrasal verbs and other

anomalous expressions that cannot really be seen

as literal. In terms of metonymy, TroFi may clus-

ter a verb used in a metonymic expression such as

“I read Keats” as nonliteral, but we make no strong

claims about this.

3.1 The Data

The TroFi algorithm requires a target set (called

original set in (Karov & Edelman, 1998)) – the

set of sentences containing the verbs to be classi-

fied into literal or nonliteral – and the seed sets:

the literal feedback set and the nonliteral feed-

back set. These sets contain feature lists consist-

ing of the stemmed nouns and verbs in a sentence,

with target or seed words and frequent words re-

moved. The frequent word list (374 words) con-

sists of the 332 most frequent words in the British

National Corpus plus contractions, single letters,

and numbers from 0-10. The target set is built us-

ing the ’88-’89 Wall Street Journal Corpus (WSJ)

tagged using the (Ratnaparkhi, 1996) tagger and

the (Bangalore & Joshi, 1999) SuperTagger; the

feedback sets are built using WSJ sentences con-

330

Algorithm 1 KE-train: (Karov & Edelman, 1998) algorithm adapted to literal/nonliteral classification

Require: S: the set of sentences containing the target word

Require: L: the set of literal seed sentences

Require: N : the set of nonliteral seed sentences

Require: W: the set of words/features, w ∈ s means w is in sentence s, s 3 w means s contains w

Require: ε: threshold that determines the stopping condition

1: w-sim0(wx, wy) := 1 if wx = wy, 0 otherwise

2: s-simI
0(sx, sy) := 1, for all sx, sy ∈ S × S where sx = sy, 0 otherwise

3: i := 0
4: while (true) do

5: s-simL
i+1(sx, sy) :=

∑

wx∈sx
p(wx, sx)maxwy∈sy

w-simi(wx, wy), for all sx, sy ∈ S × L
6: s-simN

i+1(sx, sy) :=
∑

wx∈sx
p(wx, sx)maxwy∈sy

w-simi(wx, wy), for all sx, sy ∈ S ×N
7: for wx, wy ∈ W ×W do

8: w-simi+1(wx, wy) :=

{

i = 0
∑

sx3wx
p(wx, sx)maxsy3wy

s-simI
i (sx, sy)

else
∑

sx3wx
p(wx, sx)maxsy3wy

{s-simL
i (sx, sy), s-simN

i (sx, sy)}

9: end for

10: if ∀wx,maxwy
{w-simi+1(wx, wy) − w-simi(wx, wy)} ≤ ε then

11: break # algorithm converges in 1

ε
steps.

12: end if

13: i := i + 1
14: end while

taining seed words extracted from WordNet and

the databases of known metaphors, idioms, and

expressions (DoKMIE), namely Wayne Magnu-

son English Idioms Sayings & Slang and George

Lakoff’s Conceptual Metaphor List, as well as ex-

ample sentences from these sources. (See Section

4 for the sizes of the target and feedback sets.) One

may ask why we need TroFi if we have databases

like the DoKMIE. The reason is that the DoKMIE

are unlikely to list all possible instances of non-

literal language and because knowing that an ex-

pression can be used nonliterally does not mean

that you can tell when it is being used nonliter-

ally. The target verbs may not, and typically do

not, appear in the feedback sets. In addition, the

feedback sets are noisy and not annotated by any

human, which is why we call TroFi unsupervised.

When we use WordNet as a source of example sen-

tences, or of seed words for pulling sentences out

of the WSJ, for building the literal feedback set,

we cannot tell if the WordNet synsets, or the col-

lected feature sets, are actually literal. We provide

some automatic methods in Section 3.3 to ensure

that the feedback set feature sets that will harm us

in the clustering phase are removed. As a side-

effect, we may fill out sparse nonliteral sets.

In the next section we look at the Core TroFi

algorithm and its use of the above data sources.

3.2 Core Algorithm

Since we are attempting to reduce the problem of

literal/nonliteral recognition to one of word-sense

disambiguation, TroFi makes use of an existing

similarity-based word-sense disambiguation algo-

rithm developed by (Karov & Edelman, 1998),

henceforth KE.

The KE algorithm is based on the principle of

attraction: similarities are calculated between sen-

tences containing the word we wish to disam-

biguate (the target word) and collections of seed

sentences (feedback sets) (see also Section 3.1).

A target set sentence is considered to be at-

tracted to the feedback set containing the sentence

to which it shows the highest similarity. Two sen-

tences are similar if they contain similar words and

two words are similar if they are contained in sim-

ilar sentences. The resulting transitive similarity

allows us to defeat the knowledge acquisition bot-

tleneck – i.e. the low likelihood of finding all pos-

sible usages of a word in a single corpus. Note

that the KE algorithm concentrates on similarities

in the way sentences use the target literal or non-

literal word, not on similarities in the meanings of

the sentences themselves.

Algorithms 1 and 2 summarize the basic TroFi

version of the KE algorithm. Note that p(w, s) is

the unigram probability of word w in sentence s,

331

Algorithm 2 KE-test: classifying literal/nonliteral

1: For any sentence sx ∈ S
2: if max

sy
s-simL(sx, sy) >

max
sy

s-simN (sx, sy)
then

3: tag sx as literal

4: else

5: tag sx as nonliteral

6: end if

normalized by the total number of words in s.

In practice, initializing s-simI
0 in line (2) of

Algorithm 1 to 0 and then updating it from

w-sim0 means that each target sentence is still

maximally similar to itself, but we also dis-

cover additional similarities between target sen-

tences. We further enhance the algorithm

by using Sum of Similarities. To implement

this, in Algorithm 2 we change line (2) into:
∑

sy
s-simL(sx, sy) >

∑

sy
s-simN (sx, sy)

Although it is appropriate for fine-grained tasks

like word-sense disambiguation to use the single

highest similarity score in order to minimize noise,

summing across all the similarities of a target set

sentence to the feedback set sentences is more

appropriate for literal/nonliteral clustering, where

the usages could be spread across numerous sen-

tences in the feedback sets. We make another

modification to Algorithm 2 by checking that the

maximum sentence similarity in line (2) is above a

certain threshold for classification. If the similar-

ity is above this threshold, we label a target-word

sentence as literal or nonliteral.

Before continuing, let us look at an example.

The features are shown in bold.

Target Set

1 The girl and her brother grasped their mother’s hand.
2 He thinks he has grasped the essentials of the institute’s
finance philosophies.
3 The president failed to grasp ACTech’s finance quandary.

Literal Feedback Set
L1 The man’s aging mother gripped her husband’s
shoulders tightly.
L2 The child gripped her sister’s hand to cross the road.
L3 The president just doesn’t get the picture, does he?

Nonliteral Feedback Set
N1 After much thought, he finally grasped the idea.
N2 This idea is risky, but it looks like the director of the
institute has comprehended the basic principles behind it.
N3 Mrs. Fipps is having trouble comprehending the legal
straits of the institute.
N4 She had a hand in his fully comprehending the quandary.

The target set consists of sentences from the

corpus containing the target word. The feedback

sets contain sentences from the corpus containing

synonyms of the target word found in WordNet

(literal feedback set) and the DoKMIE (nonliteral

feedback set). The feedback sets also contain ex-

ample sentences provided in the target-word en-

tries of these datasets. TroFi attempts to cluster the

target set sentences into literal and nonliteral by

attracting them to the corresponding feature sets

using Algorithms 1 & 2. Using the basic KE algo-

rithm, target sentence 2 is correctly attracted to the

nonliteral set, and sentences 1 and 3 are equally

attracted to both sets. When we apply our sum of

similarities enhancement, sentence 1 is correctly

attracted to the literal set, but sentence 3 is now in-

correctly attracted to the literal set too. In the fol-

lowing sections we describe some enhancements –

Learners & Voting, SuperTags, and Context – that

try to solve the problem of incorrect attractions.

3.3 Cleaning the Feedback Sets

In this section we describe how we clean up the

feedback sets to improve the performance of the

Core algorithm. We also introduce the notion of

Learners & Voting.

Recall that neither the raw data nor the collected

feedback sets are manually annotated for training

purposes. Since, in addition, the feedback sets are

collected automatically, they are very noisy. For

instance, in the example in Section 3.2, the lit-

eral feedback set sentence L3 contains an idiom

which was provided as an example sentence in

WordNet as a synonym for “grasp”. In N4, we

have the side-effect feature “hand”, which unfor-

tunately overlaps with the feature “hand” that we

might hope to find in the literal set (e.g. “grasp his

hand”). In order to remove sources of false attrac-

tion like these, we introduce the notion of scrub-

bing. Scrubbing is founded on a few basic prin-

ciples. The first is that the contents of the DoK-

MIE come from (third-party) human annotations

and are thus trusted. Consequently we take them

as primary and use them to scrub the WordNet

synsets. The second is that phrasal and expres-

sion verbs, for example “throw away”, are often

indicative of nonliteral uses of verbs – i.e. they are

not the sum of their parts – so they can be used

for scrubbing. The third is that content words ap-

pearing in both feedback sets – for example “the

wind is blowing” vs. “the winds of war are blow-

ing” for the target word “blow” – will lead to im-

pure feedback sets, a situation we want to avoid.

The fourth is that our scrubbing action can take a

number of different forms: we can choose to scrub

332

just a word, a whole synset, or even an entire fea-

ture set. In addition, we can either move the of-

fending item to the opposite feedback set or re-

move it altogether. Moving synsets or feature sets

can add valuable content to one feedback set while

removing noise from the other. However, it can

also cause unforeseen contamination. We experi-

mented with a number of these options to produce

a whole complement of feedback set learners for

classifying the target sentences. Ideally this will

allow the different learners to correct each other.

For Learner A, we use phrasal/expression verbs

and overlap as indicators to select whole Word-

Net synsets for moving over to the nonliteral feed-

back set. In our example, this causes L1-L3 to

be moved to the nonliteral set. For Learner B,

we use phrasal/expression verbs and overlap as

indicators to remove problematic synsets. Thus

we avoid accidentally contaminating the nonliteral

set. However, we do end up throwing away infor-

mation that could have been used to pad out sparse

nonliteral sets. In our example, this causes L1-L3

to be dropped. For Learner C, we remove feature

sets from the final literal and nonliteral feedback

sets based on overlapping words. In our exam-

ple, this causes L2 and N4 to be dropped. Learner

D is the baseline – no scrubbing. We simply use

the basic algorithm. Each learner has benefits and

shortcomings. In order to maximize the former

and minimize the latter, instead of choosing the

single most successful learner, we introduce a vot-

ing system. We use a simple majority-rules algo-

rithm, with the strongest learners weighted more

heavily. In our experiments we double the weights

of Learners A and D. In our example, this results

in sentence 3 now being correctly attracted to the

nonliteral set.

3.4 Additional Features

Even before voting, we attempt to improve the cor-

rectness of initial attractions through the use of

SuperTags, which allows us to add internal struc-

ture information to the bag-of-words feature lists.

SuperTags (Bangalore & Joshi, 1999) encode a

great deal of syntactic information in a single tag

(each tag is an elementary tree from the XTAG

English Tree Adjoining Grammar). In addition

to a word’s part of speech, they also encode in-

formation about its location in a syntactic tree –

i.e. we learn something about the surrounding

words as well. We devised a SuperTag trigram

composed of the SuperTag of the target word and

the following two words and their SuperTags if

they contain nouns, prepositions, particles, or ad-

verbs. This is helpful in cases where the same

set of features can be used as part of both literal

and nonliteral expressions. For example, turning

“It’s hard to kick a habit like drinking” into “habit

drink kick/B nx0Vpls1 habit/A NXN,” results in

a higher attraction to sentences about “kicking

habits” than to sentences like “She has a habit of

kicking me when she’s been drinking.”

Note that the creation of Learners A and B

changes if SuperTags are used. In the origi-

nal version, we only move or remove synsets

based on phrasal/expression verbs and overlapping

words. If SuperTags are used, we also move or

remove feature sets whose SuperTag trigram indi-

cates phrasal verbs (verb-particle expressions).

A final enhancement involves extending the

context to help with disambiguation. Sometimes

critical disambiguation features are contained not

in the sentence with the target word, but in an

adjacent sentence. To add context, we simply

group the sentence containing the target word with

a specified number of surrounding sentences and

turn the whole group into a single feature set.

4 Results

TroFi was evaluated on the 25 target words listed

in Table 1. The target sets contain from 1 to 115

manually annotated sentences for each verb. The

first round of annotations was done by the first an-

notator. The second annotator was given no in-

structions besides a few examples of literal and

nonliteral usage (not covering all target verbs).

The authors of this paper were the annotators. Our

inter-annotator agreement on the annotations used

as test data in the experiments in this paper is quite

high. κ (Cohen) and κ (S&C) on a random sam-

ple of 200 annotated examples annotated by two

different annotators was found to be 0.77. As per

((Di Eugenio & Glass, 2004), cf. refs therein), the

standard assessment for κ values is that tentative

conclusions on agreement exists when .67 ≤ κ <

.8, and a definite conclusion on agreement exists

when κ ≥ .8.

In the case of a larger scale annotation effort,

having the person leading the effort provide one

or two examples of literal and nonliteral usages

for each target verb to each annotator would al-

most certainly improve inter-annotator agreement.

Table 1 lists the total number of target sentences,

plus the manually evaluated literal and nonliteral

333

counts, for each target word. It also provides the

feedback set sizes for each target word. The to-

tals across all words are given at the bottom of the

table.

absorb assault die drag drown

Lit Target 4 3 24 12 4
Nonlit Target 62 0 11 41 1

Target 66 3 35 53 5

Lit FB 286 119 315 118 25
Nonlit FB 1 0 7 241 21

escape examine fill fix flow

Lit Target 24 49 47 39 10
Nonlit Target 39 37 40 16 31

Target 63 86 87 55 41

Lit FB 124 371 244 953 74
Nonlit FB 2 2 66 279 2

grab grasp kick knock lend

Lit Target 5 1 10 11 77
Nonlit Target 13 4 26 29 15

Target 18 5 36 40 92

Lit FB 76 36 19 60 641
Nonlit FB 58 2 172 720 1

miss pass rest ride roll

Lit Target 58 0 8 22 25
Nonlit Target 40 1 20 26 46

Target 98 1 28 48 71

Lit FB 236 1443 42 221 132
Nonlit FB 13 156 6 8 74

smooth step stick strike touch

Lit Target 0 12 8 51 13
Nonlit Target 11 94 73 64 41

Target 11 106 81 115 54

Lit FB 28 5 132 693 904
Nonlit FB 75 517 546 351 406

Totals: Target=1298; Lit FB=7297; Nonlit FB=3726

Table 1: Target and Feedback Set Sizes.

The algorithms were evaluated based on how

accurately they clustered the hand-annotated sen-

tences. Sentences that were attracted to neither

cluster or were equally attracted to both were put

in the opposite set from their label, making a fail-

ure to cluster a sentence an incorrect clustering.

Evaluation results were recorded as recall, pre-

cision, and f-score values. Literal recall is defined

as (correct literals in literal cluster / total correct

literals). Literal precision is defined as (correct

literals in literal cluster / size of literal cluster).

If there are no literals, literal recall is 100%; lit-

eral precision is 100% if there are no nonliterals in

the literal cluster and 0% otherwise. The f-score

is defined as (2 · precision · recall) / (precision

+ recall). Nonliteral precision and recall are de-

fined similarly. Average precision is the average

of literal and nonliteral precision; similarly for av-

erage recall. For overall performance, we take the

f-score of average precision and average recall.

We calculated two baselines for each word. The

first was a simple majority-rules baseline. Due to

the imbalance of literal and nonliteral examples,

this baseline ranges from 60.9% to 66.7% with an

average of 63.6%. Keep in mind though that us-

ing this baseline, the f-score for the nonliteral set

will always be 0%. We come back to this point

at the end of this section. We calculated a sec-

ond baseline using a simple attraction algorithm.

Each target set sentence is attracted to the feed-

back set containing the sentence with which it has

the most words in common. This corresponds well

to the basic highest similarity TroFi algorithm.

Sentences attracted to neither, or equally to both,

sets are put in the opposite cluster to where they

belong. Since this baseline actually attempts to

distinguish between literal and nonliteral and uses

all the data used by the TroFi algorithm, it is the

one we will refer to in our discussion below.

Experiments were conducted to first find the

results of the core algorithm and then determine

the effects of each enhancement. The results are

shown in Figure 1. The last column in the graph

shows the average across all the target verbs.

On average, the basic TroFi algorithm (KE)

gives a 7.6% improvement over the baseline, with

some words, like “lend” and “touch”, having

higher results due to transitivity of similarity. For

our sum of similarities enhancement, all the in-

dividual target word results except for “examine”

sit above the baseline. The dip is due to the fact

that while TroFi can generate some beneficial sim-

ilarities between words related by context, it can

also generate some detrimental ones. When we

use sum of similarities, it is possible for the tran-

sitively discovered indirect similarities between a

target nonliteral sentence and all the sentences in a

feedback set to add up to more than a single direct

similarity between the target sentence and a single

feedback set sentence. This is not possible with

highest similarity because a single sentence would

have to show a higher similarity to the target sen-

tence than that produced by sharing an identical

word, which is unlikely since transitively discov-

ered similarities generally do not add up to 1. So,

although highest similarity occasionally produces

better results than using sum of similarities, on av-

erage we can expect to get better results with the

latter. In this experiment alone, we get an average

f-score of 46.3% for the sum of similarities results

– a 9.4% improvement over the high similarity re-

sults (36.9%) and a 16.9% improvement over the

baseline (29.4%).

334

Figure 1: TroFi Evaluation Results.

In comparing the individual results of all our

learners, we found that the results for Learners A

and D (46.7% and 46.3%) eclipsed Learners B and

C by just over 2.5%. Using majority-rules voting

with Learners A and D doubled, we were able to

obtain an average f-score of 48.4%, showing that

voting does to an extent balance out the learners’

varying results on different words.

The addition of SuperTags caused improve-

ments in some words like “drag” and “stick”. The

overall gain was only 0.5%, likely due to an over-

generation of similarities. Future work may iden-

tify ways to use SuperTags more effectively.

The use of additional context was responsible

for our second largest leap in performance after

sum of similarities. We gained 4.9%, bringing

us to an average f-score of 53.8%. Worth noting

is that the target words exhibiting the most sig-

nificant improvement, “drown” and “grasp”, had

some of the smallest target and feedback set fea-

ture sets, supporting the theory that adding cogent

features may improve performance.

With an average of 53.8%, all words but one

lie well above our simple-attraction baseline, and

some even achieve much higher results than the

majority-rules baseline. Note also that, using this

latter baseline, TroFi boosts the nonliteral f-score

from 0% to 42.3%.

5 The TroFi Example Base

In this section we discuss the TroFi Example Base.

First, we examine iterative augmentation. Then

we discuss the structure and contents of the exam-

ple base and the potential for expansion.

After an initial run for a particular target word,

we have the cluster results plus a record of the

feedback sets augmented with the newly clustered

sentences. Each feedback set sentence is saved

with a classifier weight, with newly clustered sen-

tences receiving a weight of 1.0. Subsequent runs

may be done to augment the initial clusters. For

these runs, we use the classifiers from our initial

run as feedback sets. New sentences for clustering

are treated like a regular target set. Running TroFi

produces new clusters and re-weighted classifiers

augmented with newly clustered sentences. There

can be as many runs as desired; hence iterative

augmentation.

We used the iterative augmentation process to

build a small example base consisting of the target

words from Table 1, as well as another 25 words

drawn from the examples of scholars whose work

335

pour
nonliteral cluster
wsj04:7878 N As manufacturers get bigger , they are likely to
pour more money into the battle for shelf space , raising the
ante for new players ./.
wsj25:3283 N Salsa and rap music pour out of the windows ./.
wsj06:300 U Investors hungering for safety and high yields
are pouring record sums into single-premium , interest-earning
annuities ./.
literal cluster
wsj59:3286 L Custom demands that cognac be poured from a
freshly opened bottle ./.

Figure 2: TroFi Example Base Excerpt.

was reviewed in Section 2. It is important to note

that in building the example base, we used TroFi

with an Active Learning component (see (Birke,

2005)) which improved our average f-score from

53.8% to 64.9% on the original 25 target words.

An excerpt from the example base is shown

in Figure 2. Each entry includes an ID num-

ber and a Nonliteral, Literal, or Unannotated

tag. Annotations are from testing or from

active learning during example-base construc-

tion. The TroFi Example Base is available at

http://www.cs.sfu.ca/˜anoop/students/jbirke/. Fur-

ther unsupervised expansion of the existing clus-

ters as well as the production of additional clusters

is a possibility.

6 Conclusion

In this paper we presented TroFi, a system for

separating literal and nonliteral usages of verbs

through statistical word-sense disambiguation and

clustering techniques. We suggest that TroFi is

applicable to all sorts of nonliteral language, and

that, although it is currently focused on English

verbs, it could be adapted to other parts of speech

and other languages.

We adapted an existing word-sense disam-

biguation algorithm to literal/nonliteral clustering

through the redefinition of literal and nonliteral as

word senses, the alteration of the similarity scores

used, and the addition of learners and voting, Su-

perTags, and additional context.

For all our models and algorithms, we carried

out detailed experiments on hand-annotated data,

both to fully evaluate the system and to arrive at

an optimal configuration. Through our enhance-

ments we were able to produce results that are, on

average, 16.9% higher than the core algorithm and

24.4% higher than the baseline.

Finally, we used our optimal configuration of

TroFi, together with active learning and iterative

augmentation, to build the TroFi Example Base,

a publicly available, expandable resource of lit-

eral/nonliteral usage clusters that we hope will be

useful not only for future research in the field of

nonliteral language processing, but also as train-

ing data for other statistical NLP tasks.

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Supertag-
ging: an approach to almost parsing. Comput. Linguist.
25, 2 (Jun. 1999), 237-265.

Julia Birke. 2005. A Clustering Approach for the Unsuper-
vised Recognition of Nonliteral Language. M.Sc. Thesis.
School of Computing Science, Simon Fraser University.

Barbara Di Eugenio and Michael Glass. 2004. The kappa
statistic: a second look. Comput. Linguist. 30, 1 (Mar.
2004), 95-101.

William B. Dolan. 1995. Metaphor as an emergent property
of machine-readable dictionaries. In Proceedings of Rep-
resentation and Acquisition of Lexical Knowledge: Poly-
semy, Ambiguity, and Generativity (March 1995, Stanford
University, CA). AAAI 1995 Spring Symposium Series,
27-29.

Dan Fass. 1997. Processing metonymy and metaphor.
Greenwich, CT: Ablex Publishing Corporation.

Yael Karov and Shimon Edelman. 1998. Similarity-based
word sense disambiguation. Comput. Linguist. 24, 1 (Mar.
1998), 41-59.

James H. Martin. 1990. A computational model of metaphor
interpretation. Toronto, ON: Academic Press, Inc.

James H. Martin. 1992. Computer understanding of con-
ventional metaphoric language. Cognitive Science 16, 2
(1992), 233-270.

Zachary J. Mason. 2004. CorMet: a computational, corpus-
based conventional metaphor extraction system. Comput.
Linguist. 30, 1 (Mar. 2004), 23-44.

Masaki Murata, Qing Ma, Atsumu Yamamoto, and Hitoshi
Isahara. 2000. Metonymy interpretation using x no y ex-
amples. In Proceedings of SNLP2000 (Chiang Mai, Thai-
land, 10 May 2000).

Srini Narayanan. 1999. Moving right along: a computational
model of metaphoric reasoning about events. In Proceed-
ings of the 16th National Conference on Artificial Intelli-
gence and the 11th IAAI Conference (Orlando, US, 1999).
121-127.

Malvina Nissim and Katja Markert. 2003. Syntactic features
and word similarity for supervised metonymy resolution.
In Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-03) (Sapporo,
Japan, 2003). 56-63.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. In Proceedings of the Empirical Methods
in Natural Language Processing Conference (University
of Pennsylvania, May 17-18 1996).

Sylvia W. Russell. 1976. Computer understanding of
metaphorically used verbs. American Journal of Compu-
tational Linguistics, Microfiche 44.

336

