
Discriminative Sentence Compression with Soft Syntactic Evidence

Ryan McDonald

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104
ryantm@cis.upenn.edu

Abstract

We present a model for sentence com-

pression that uses a discriminative large-

margin learning framework coupled with

a novel feature set defined on compressed

bigrams as well as deep syntactic repre-

sentations provided by auxiliary depen-

dency and phrase-structure parsers. The

parsers are trained out-of-domain and con-

tain a significant amount of noise. We ar-

gue that the discriminative nature of the

learning algorithm allows the model to

learn weights relative to any noise in the

feature set to optimize compression ac-

curacy directly. This differs from cur-

rent state-of-the-art models (Knight and

Marcu, 2000) that treat noisy parse trees,

for both compressed and uncompressed

sentences, as gold standard when calculat-

ing model parameters.

1 Introduction

The ability to compress sentences grammatically

with minimal information loss is an important

problem in text summarization. Most summariza-

tion systems are evaluated on the amount of rele-

vant information retained as well as their compres-

sion rate. Thus, returning highly compressed, yet

informative, sentences allows summarization sys-

tems to return larger sets of sentences and increase

the overall amount of information extracted.

We focus on the particular instantiation of sen-

tence compression when the goal is to produce the

compressed version solely by removing words or

phrases from the original, which is the most com-

mon setting in the literature (Knight and Marcu,

2000; Riezler et al., 2003; Turner and Charniak,

2005). In this framework, the goal is to find the

shortest substring of the original sentence that con-

veys the most important aspects of the meaning.

We will work in a supervised learning setting and

assume as input a training set T =(xt,yt)
|T |
t=1

of

original sentences xt and their compressions yt.

We use the Ziff-Davis corpus, which is a set of

1087 pairs of sentence/compression pairs. Fur-

thermore, we use the same 32 testing examples

from Knight and Marcu (2000) and the rest for

training, except that we hold out 20 sentences for

the purpose of development. A handful of sen-

tences occur twice but with different compres-

sions. We randomly select a single compression

for each unique sentence in order to create an un-

ambiguous training set. Examples from this data

set are given in Figure 1.

Formally, sentence compression aims to shorten

a sentence x = x1 . . . xn into a substring y =
y1 . . . ym, where yi ∈ {x1, . . . , xn}. We define

the function I(yi) ∈ {1, . . . , n} that maps word

yi in the compression to the index of the word in

the original sentence. Finally we include the con-

straint I(yi) < I(yi+1), which forces each word

in x to occur at most once in the compression y.

Compressions are evaluated on three criteria,

1. Grammaticality: Compressed sentences

should be grammatical.

2. Importance: How much of the important in-

formation is retained from the original.

3. Compression rate: How much compression

took place. A compression rate of 65%
means the compressed sentence is 65% the

length of the original.

Typically grammaticality and importance are

traded off with compression rate. The longer our

297

The Reverse Engineer Tool is priced from $8,000 for a single user to $90,000 for a multiuser project site .

The Reverse Engineer Tool is available now and is priced on a site-licensing basis , ranging from $8,000 for a single user to $90,000 for a multiuser project site .

Design recovery tools read existing code and translate it into defi nitions and structured diagrams .

Essentially , design recovery tools read existing code and translate it into the language in which CASE is conversant – defi nitions and structured diagrams .

Figure 1: Two examples of compressed sentences from the Ziff-Davis corpus. The compressed version

and the original sentence are given.

compressions, the less likely we are to remove im-

portant words or phrases crucial to maintaining

grammaticality and the intended meaning.

The paper is organized as follows: Section 2

discusses previous approaches to sentence com-

pression. In particular, we discuss the advantages

and disadvantages of the models of Knight and

Marcu (2000). In Section 3 we present our dis-

criminative large-margin model for sentence com-

pression, including the learning framework and

an efficient decoding algorithm for searching the

space of compressions. We also show how to

extract a rich feature set that includes surface-

level bigram features of the compressed sentence,

dropped words and phrases from the original sen-

tence, and features over noisy dependency and

phrase-structure trees for the original sentence.

We argue that this rich feature set allows the

model to learn which words and phrases should

be dropped and which should remain in the com-

pression. Section 4 presents an experimental eval-

uation of our model compared to the models of

Knight and Marcu (2000) and finally Section 5

discusses some areas of future work.

2 Previous Work

Knight and Marcu (2000) first tackled this prob-

lem by presenting a generative noisy-channel

model and a discriminative tree-to-tree decision

tree model. The noisy-channel model defines the

problem as finding the compressed sentence with

maximum conditional probability

y = arg max
y

P (y|x) = arg max
y

P (x|y)P (y)

P (y) is the source model, which is a PCFG plus

bigram language model. P (x|y) is the channel

model, the probability that the long sentence is an

expansion of the compressed sentence. To calcu-

late the channel model, both the original and com-

pressed versions of every sentence in the training

set are assigned a phrase-structure tree. Given a

tree for a long sentence x and compressed sen-

tence y, the channel probability is the product of

the probability for each transformation required if

the tree for y is to expand to the tree for x.

The tree-to-tree decision tree model looks to

rewrite the tree for x into a tree for y. The model

uses a shift-reduce-drop parsing algorithm that

starts with the sequence of words in x and the cor-

responding tree. The algorithm then either shifts

(considers new words and subtrees for x), reduces

(combines subtrees from x into possibly new tree

constructions) or drops (drops words and subtrees

from x) on each step of the algorithm. A decision

tree model is trained on a set of indicative features

for each type of action in the parser. These mod-

els are then combined in a greedy global search

algorithm to find a single compression.

Though both models of Knight and Marcu per-

form quite well, they do have their shortcomings.

The noisy-channel model uses a source model

that is trained on uncompressed sentences, even

though the source model is meant to represent the

probability of compressed sentences. The channel

model requires aligned parse trees for both com-

pressed and uncompressed sentences in the train-

ing set in order to calculate probability estimates.

These parses are provided from a parsing model

trained on out-of-domain data (the WSJ), which

can result in parse trees with many mistakes for

both the original and compressed versions. This

makes alignment difficult and the channel proba-

bility estimates unreliable as a result. On the other

hand, the decision tree model does not rely on the

trees to align and instead simply learns a tree-to-

tree transformation model to compress sentences.

The primary problem with this model is that most

of the model features encode properties related to

including or dropping constituents from the tree

with no encoding of bigram or trigram surface fea-

tures to promote grammaticality. As a result, the

model will sometimes return very short and un-

grammatical compressions.

Both models rely heavily on the output of a

noisy parser to calculate probability estimates for

the compression. We argue in the next section that

298

ideally, parse trees should be treated solely as a

source of evidence when making compression de-

cisions to be balanced with other evidence such as

that provided by the words themselves.

Recently Turner and Charniak (2005) presented

supervised and semi-supervised versions of the

Knight and Marcu noisy-channel model. The re-

sulting systems typically return informative and

grammatical sentences, however, they do so at the

cost of compression rate. Riezler et al. (2003)

present a discriminative sentence compressor over

the output of an LFG parser that is a packed rep-

resentation of possible compressions. Though this

model is highly likely to return grammatical com-

pressions, it required the training data be human

annotated with syntactic trees.

3 Discriminative Sentence Compression

For the rest of the paper we use x = x1 . . . xn

to indicate an uncompressed sentence and y =
y1 . . . ym a compressed version of x, i.e., each yj

indicates the position in x of the jth word in the

compression. We always pad the sentence with

dummy start and end words, x1 = -START- and

xn = -END-, which are always included in the

compressed version (i.e. y1 = x1 and ym = xn).

In this section we described a discriminative on-

line learning approach to sentence compression,

the core of which is a decoding algorithm that

searches the entire space of compressions. Let the

score of a compression y for a sentence x as

s(x,y)

In particular, we are going to factor this score us-

ing a first-order Markov assumption on the words

in the compressed sentence

s(x,y) =

|y|∑

j=2

s(x, I(yj−1), I(yj))

Finally, we define the score function to be the dot

product between a high dimensional feature repre-

sentation and a corresponding weight vector

s(x,y) =

|y|∑

j=2

w · f(x, I(yj−1), I(yj))

Note that this factorization will allow us to define

features over two adjacent words in the compres-

sion as well as the words in-between that were

dropped from the original sentence to create the

compression. We will show in Section 3.2 how

this factorization also allows us to include features

on dropped phrases and subtrees from both a de-

pendency and a phrase-structure parse of the orig-

inal sentence. Note that these features are meant

to capture the same information in both the source

and channel models of Knight and Marcu (2000).

However, here they are merely treated as evidence

for the discriminative learner, which will set the

weight of each feature relative to the other (pos-

sibly overlapping) features to optimize the models

accuracy on the observed data.

3.1 Decoding

We define a dynamic programming table C[i]
which represents the highest score for any com-

pression that ends at word xi for sentence x. We

define a recurrence as follows

C[1] = 0.0
C[i] = maxj<i C[j] + s(x, j, i) for i > 1

It is easy to show that C[n] represents the score of

the best compression for sentence x (whose length

is n) under the first-order score factorization we

made. We can show this by induction. If we as-

sume that C[j] is the highest scoring compression

that ends at word xj , for all j < i, then C[i] must

also be the highest scoring compression ending at

word xi since it represents the max combination

over all high scoring shorter compressions plus

the score of extending the compression to the cur-

rent word. Thus, since xn is by definition in every

compressed version of x (see above), then it must

be the case that C[n] stores the score of the best

compression. This table can be filled in O(n2).

This algorithm is really an extension of Viterbi

to the case when scores factor over dynamic sub-

strings of the text (Sarawagi and Cohen, 2004;

McDonald et al., 2005a). As such, we can use

back-pointers to reconstruct the highest scoring

compression as well as k-best decoding algo-

rithms.

This decoding algorithm is dynamic with re-

spect to compression rate. That is, the algorithm

will return the highest scoring compression re-

gardless of length. This may seem problematic

since longer compressions might contribute more

to the score (since they contain more bigrams) and

thus be preferred. However, in Section 3.2 we de-

fine a rich feature set, including features on words

dropped from the compression that will help disfa-

vor compressions that drop very few words since

299

this is rarely seen in the training data. In fact,

it turns out that our learned compressions have a

compression rate very similar to the gold standard.

That said, there are some instances when a static

compression rate is preferred. A user may specif-

ically want a 25% compression rate for all sen-

tences. This is not a problem for our decoding

algorithm. We simply augment the dynamic pro-

gramming table and calculate C[i][r], which is the

score of the best compression of length r that ends

at word xi. This table can be filled in as follows

C[1][1] = 0.0
C[1][r] = −∞ for r > 1
C[i][r] = maxj<i C[j][r − 1] + s(x, j, i) for i > 1

Thus, if we require a specific compression rate, we

simple determine the number of words r that sat-

isfy this rate and calculate C[n][r]. The new com-

plexity is O(n2r).

3.2 Features

So far we have defined the score of a compres-

sion as well as a decoding algorithm that searches

the entire space of compressions to find the one

with highest score. This all relies on a score fac-

torization over adjacent words in the compression,

s(x, I(yj−1), I(yj)) = w · f(x, I(yj−1), I(yj)).
In Section 3.3 we describe an online large-margin

method for learning w. Here we present the fea-

ture representation f(x, I(yj−1), I(yj)) for a pair

of adjacent words in the compression. These fea-

tures were tuned on a development data set.

3.2.1 Word/POS Features

The first set of features are over adjacent words

yj−1 and yj in the compression. These include

the part-of-speech (POS) bigrams for the pair, the

POS of each word individually, and the POS con-

text (bigram and trigram) of the most recent word

being added to the compression, yj . These fea-

tures are meant to indicate likely words to in-

clude in the compression as well as some level

of grammaticality, e.g., the adjacent POS features

“JJ&VB” would get a low weight since we rarely

see an adjective followed by a verb. We also add a

feature indicating if yj−1 and yj were actually ad-

jacent in the original sentence or not and we con-

join this feature with the above POS features. Note

that we have not included any lexical features. We

found during experiments on the development data

that lexical information was too sparse and led to

overfitting, so we rarely include such features. In-

stead we rely on the accuracy of POS tags to pro-

vide enough evidence.

Next we added features over every dropped

word in the original sentence between yj−1 and yj ,

if there were any. These include the POS of each

dropped word, the POS of the dropped words con-

joined with the POS of yj−1 and yj . If the dropped

word is a verb, we add a feature indicating the ac-

tual verb (this is for common verbs like “is”, which

are typically in compressions). Finally we add the

POS context (bigram and trigram) of each dropped

word. These features represent common charac-

teristics of words that can or should be dropped

from the original sentence in the compressed ver-

sion (e.g. adjectives and adverbs). We also add a

feature indicating whether the dropped word is a

negation (e.g., not, never, etc.).

We also have a set of features to represent

brackets in the text, which are common in the data

set. The first measures if all the dropped words

between yj−1 and yj have a mismatched or incon-

sistent bracketing. The second measures if the left

and right-most dropped words are themselves both

brackets. These features come in handy for ex-

amples like, The Associated Press (AP) reported

the story, where the compressed version is The

Associated Press reported the story. Information

within brackets is often redundant.

3.2.2 Deep Syntactic Features

The previous set of features are meant to en-

code common POS contexts that are commonly re-

tained or dropped from the original sentence dur-

ing compression. However, they do so without a

larger picture of the function of each word in the

sentence. For instance, dropping verbs is not that

uncommon - a relative clause for instance may be

dropped during compression. However, dropping

the main verb in the sentence is uncommon, since

that verb and its arguments typically encode most

of the information being conveyed.

An obvious solution to this problem is to in-

clude features over a deep syntactic analysis of

the sentence. To do this we parse every sentence

twice, once with a dependency parser (McDon-

ald et al., 2005b) and once with a phrase-structure

parser (Charniak, 2000). These parsers have been

trained out-of-domain on the Penn WSJ Treebank

and as a result contain noise. However, we are

merely going to use them as an additional source

of features. We call this soft syntactic evidence

since the deep trees are not used as a strict gold-

standard in our model but just as more evidence for

300

root0

saw2

on4 after6

Mary1 Ralph3 Tuesday5 lunch7

S

VP

PP PP

NP NP NP NP

NNP VBD NNP IN NNP IN NN

Mary1 saw2 Ralph3 on4 Tuesday5 after6 lunch7

Figure 2: An example dependency tree from the McDonald et al. (2005b) parser and phrase structure

tree from the Charniak (2000) parser. In this example we want to add features from the trees for the case

when Ralph and after become adjacent in the compression, i.e., we are dropping the phrase on Tuesday.

or against particular compressions. The learning

algorithm will set the feature weight accordingly

depending on each features discriminative power.

It is not unique to use soft syntactic features in

this way, as it has been done for many problems

in language processing. However, we stress this

aspect of our model due to the history of compres-

sion systems using syntax to provide hard struc-

tural constraints on the output.

Lets consider the sentence x = Mary saw Ralph

on Tuesday after lunch, with corresponding parses

given in Figure 2. In particular, lets consider the

feature representation f(x,3,6). That is, the fea-

ture representation of making Ralph and after ad-

jacent in the compression and dropping the prepo-

sitional phrase on Tuesday. The first set of features

we consider are over dependency trees. For every

dropped word we add a feature indicating the POS

of the words parent in the tree. For example, if

the dropped words parent is root, then it typically

means it is the main verb of the sentence and un-

likely to be dropped. We also add a conjunction

feature of the POS tag of the word being dropped

and the POS of its parent as well as a feature in-

dicating for each word being dropped whether it

is a leaf node in the tree. We also add the same

features for the two adjacent words, but indicating

that they are part of the compression.

For the phrase-structure features we find every

node in the tree that subsumes a piece of dropped

text and is not a child of a similar node. In this case

the PP governing on Tuesday. We then add fea-

tures indicating the context from which this node

was dropped. For example we add a feature spec-

ifying that a PP was dropped which was the child

of a VP. We also add a feature indicating that a PP

was dropped which was the left sibling of another

PP, etc. Ideally, for each production in the tree we

would like to add a feature indicating every node

that was dropped, e.g. “VP→VBD NP PP PP ⇒
VP→VBD NP PP”. However, we cannot neces-

sarily calculate this feature since the extent of the

production might be well beyond the local context

of first-order feature factorization. Furthermore,

since the training set is so small, these features are

likely to be observed very few times.

3.2.3 Feature Set Summary

In this section we have described a rich feature

set over adjacent words in the compressed sen-

tence, dropped words and phrases from the origi-

nal sentence, and properties of deep syntactic trees

of the original sentence. Note that these features in

many ways mimic the information already present

in the noisy-channel and decision-tree models of

Knight and Marcu (2000). Our bigram features

encode properties that indicate both good and bad

words to be adjacent in the compressed sentence.

This is similar in purpose to the source model from

the noisy-channel system. However, in that sys-

tem, the source model is trained on uncompressed

sentences and thus is not as representative of likely

bigram features for compressed sentences, which

is really what we desire.

Our feature set also encodes dropped words

and phrases through the properties of the words

themselves and through properties of their syntac-

tic relation to the rest of the sentence in a parse

tree. These features represent likely phrases to be

dropped in the compression and are thus similar in

nature to the channel model in the noisy-channel

system as well as the features in the tree-to-tree de-

cision tree system. However, we use these syntac-

tic constraints as soft evidence in our model. That

is, they represent just another layer of evidence to

be considered during training when setting param-

eters. Thus, if the parses have too much noise,

the learning algorithm can lower the weight of the

parse features since they are unlikely to be use-

ful discriminators on the training data. This dif-

fers from the models of Knight and Marcu (2000),

which treat the noisy parses as gold-standard when

301

calculating probability estimates.

An important distinction we should make is the

notion of supported versus unsupported features

(Sha and Pereira, 2003). Supported features are

those that are on for the gold standard compres-

sions in the training. For instance, the bigram fea-

ture “NN&VB” will be supported since there is

most likely a compression that contains a adjacent

noun and verb. However, the feature “JJ&VB”

will not be supported since an adjacent adjective

and verb most likely will not be observed in any

valid compression. Our model includes all fea-

tures, including those that are unsupported. The

advantage of this is that the model can learn nega-

tive weights for features that are indicative of bad

compressions. This is not difficult to do since most

features are POS based and the feature set size

even with all these features is only 78,923.

3.3 Learning

Having defined a feature encoding and decod-

ing algorithm, the last step is to learn the fea-

ture weights w. We do this using the Margin

Infused Relaxed Algorithm (MIRA), which is a

discriminative large-margin online learning tech-

nique shown in Figure 3 (Crammer and Singer,

2003). On each iteration, MIRA considers a single

instance from the training set (xt,yt) and updates

the weights so that the score of the correct com-

pression, yt, is greater than the score of all other

compressions by a margin proportional to their

loss. Many weight vectors will satisfy these con-

straints so we pick the one with minimum change

from the previous setting. We define the loss to be

the number of words falsely retained or dropped

in the incorrect compression relative to the correct

one. For instance, if the correct compression of the

sentence in Figure 2 is Mary saw Ralph, then the

compression Mary saw after lunch would have a

loss of 3 since it incorrectly left out one word and

included two others.

Of course, for a sentence there are exponentially

many possible compressions, which means that

this optimization will have exponentially many

constraints. We follow the method of McDon-

ald et al. (2005b) and create constraints only on

the k compressions that currently have the high-

est score, bestk(x; w). This can easily be calcu-

lated by extending the decoding algorithm with

standard Viterbi k-best techniques. On the devel-

opment data, we found that k = 10 provided the

Training data: T = {(xt, yt)}
T
t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. min
‚

‚

‚
w(i+1) − w(i)

‚

‚

‚

s.t. s(xt, yt) − s(xt, y
′) ≥ L(yt, y

′)

where y
′ ∈ bestk(x; w(i))

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T)

Figure 3: MIRA learning algorithm as presented

by McDonald et al. (2005b).

best performance, though varying k did not have a

major impact overall. Furthermore we found that

after only 3-5 training epochs performance on the

development data was maximized.

The final weight vector is the average of all

weight vectors throughout training. Averaging has

been shown to reduce overfitting (Collins, 2002)

as well as reliance on the order of the examples

during training. We found it to be particularly im-

portant for this data set.

4 Experiments

We use the same experimental methodology as

Knight and Marcu (2000). We provide every com-

pression to four judges and ask them to evaluate

each one for grammaticality and importance on a

scale from 1 to 5. For each of the 32 sentences in

our test set we ask the judges to evaluate three sys-

tems: human annotated, the decision tree model

of Knight and Marcu (2000) and our system. The

judges were told all three compressions were au-

tomatically generated and the order in which they

were presented was randomly chosen for each sen-

tence. We compared our system to the decision

tree model of Knight and Marcu instead of the

noisy-channel model since both performed nearly

as well in their evaluation, and the compression

rate of the decision tree model is nearer to our sys-

tem (around 57-58%). The noisy-channel model

typically returned longer compressions.

Results are shown in Table 1. We present the av-

erage score over all judges as well as the standard

deviation. The evaluation for the decision tree sys-

tem of Knight and Marcu is strikingly similar to

the original evaluation in their work. This provides

strong evidence that the evaluation criteria in both

cases were very similar.

Table 1 shows that all models had similar com-

302

Compression Rate Grammaticality Importance

Human 53.3% 4.96 ± 0.2 3.91 ± 1.0
Decision-Tree (K&M2000) 57.2% 4.30 ± 1.4 3.60 ± 1.3

This work 58.1% 4.61 ± 0.8 4.03 ± 1.0

Table 1: Compression results.

pressions rates, with humans preferring to com-

press a little more aggressively. Not surprisingly,

the human compressions are practically all gram-

matical. A quick scan of the evaluations shows

that the few ungrammatical human compressions

were for sentences that were not really gram-

matical in the first place. Of greater interest is

that the compressions of our system are typically

more grammatical than the decision tree model of

Knight and Marcu.

When looking at importance, we see that our

system actually does the best – even better than

humans. The most likely reason for this is that

our model returns longer sentences and is thus less

likely to prune away important information. For

example, consider the sentence

The chemical etching process used for glare protection is

effective and will help if your office has the fluorescent-light

overkill that’s typical in offices

The human compression was Glare protection is

effective, whereas our model compressed the sen-

tence to The chemical etching process used for

glare protection is effective.

A primary reason that our model does better

than the decision tree model of Knight and Marcu

is that on a handful of sentences, the decision tree

compressions were a single word or noun-phrase.

For such sentences the evaluators typically rated

the compression a 1 for both grammaticality and

importance. In contrast, our model never failed

in such drastic ways and always output something

reasonable. This is quantified in the standard de-

viation of the two systems.

Though these results are promising, more large

scale experiments are required to really ascer-

tain the significance of the performance increase.

Ideally we could sample multiple training/testing

splits and use all sentences in the data set to eval-

uate the systems. However, since these systems

require human evaluation we did not have the time

or the resources to conduct these experiments.

4.1 Some Examples

Here we aim to give the reader a flavor of some

common outputs from the different models. Three

examples are given in Table 4.1. The first shows

two properties. First of all, the decision tree

model completely breaks and just returns a sin-

gle noun-phrase. Our system performs well, how-

ever it leaves out the complementizer of the rela-

tive clause. This actually occurred in a few exam-

ples and appears to be the most common problem

of our model. A post-processing rule should elim-

inate this.

The second example displays a case in which

our system and the human system are grammati-

cal, but the removal of a prepositional phrase hurts

the resulting meaning of the sentence. In fact,

without the knowledge that the sentence is refer-

ring to broadband, the compressions are mean-

ingless. This appears to be a harder problem –

determining which prepositional phrases can be

dropped and which cannot.

The final, and more interesting, example

presents two very different compressions by the

human and our automatic system. Here, the hu-

man kept the relative clause relating what lan-

guages the source code is available in, but dropped

the main verb phrase of the sentence. Our model

preferred to retain the main verb phrase and drop

the relative clause. This is most likely due to the

fact that dropping the main verb phrase of a sen-

tence is much less likely in the training data than

dropping a relative clause. Two out of four eval-

uators preferred the compression returned by our

system and the other two rated them equal.

5 Discussion

In this paper we have described a new system for

sentence compression. This system uses discrim-

inative large-margin learning techniques coupled

with a decoding algorithm that searches the space

of all compressions. In addition we defined a

rich feature set of bigrams in the compression and

dropped words and phrases from the original sen-

tence. The model also incorporates soft syntactic

evidence in the form of features over dependency

and phrase-structure trees for each sentence.

This system has many advantages over previous

approaches. First of all its discriminative nature

allows us to use a rich dependent feature set and

to optimize a function directly related to compres-

303

Full Sentence The fi rst new product , ATF Protype , is a line of digital postscript typefaces that will be sold in packages of up to six fonts .
Human ATF Protype is a line of digital postscript typefaces that will be sold in packages of up to six fonts .
Decision Tree The fi rst new product .
This work ATF Protype is a line of digital postscript typefaces will be sold in packages of up to six fonts .

Full Sentence Finally , another advantage of broadband is distance .
Human Another advantage is distance .
Decision Tree Another advantage of broadband is distance .
This work Another advantage is distance .

Full Sentence The source code , which is available for C , Fortran , ADA and VHDL , can be compiled and executed on the same system or ported to other
target platforms .

Human The source code is available for C , Fortran , ADA and VHDL .
Decision Tree The source code is available for C .
This work The source code can be compiled and executed on the same system or ported to other target platforms .

Table 2: Example compressions for the evaluation data.

sion accuracy during training, both of which have

been shown to be beneficial for other problems.

Furthermore, the system does not rely on the syn-

tactic parses of the sentences to calculate probabil-

ity estimates. Instead, this information is incorpo-

rated as just another form of evidence to be consid-

ered during training. This is advantageous because

these parses are trained on out-of-domain data and

often contain a significant amount of noise.

A fundamental flaw with all sentence compres-

sion systems is that model parameters are set with

the assumption that there is a single correct answer

for each sentence. Of course, like most compres-

sion and translation tasks, this is not true, consider,

TapeWare , which supports DOS and NetWare 286 , is a

value-added process that lets you directly connect the

QA150-EXAT to a file server and issue a command from any

workstation to back up the server

The human annotated compression is, TapeWare

supports DOS and NetWare 286. However, an-

other completely valid compression might be,

TapeWare lets you connect the QA150-EXAT to a

fi le server. These two compressions overlap by a

single word.

Our learning algorithm may unnecessarily

lower the score of some perfectly valid compres-

sions just because they were not the exact com-

pression chosen by the human annotator. A pos-

sible direction of research is to investigate multi-

label learning techniques for structured data (Mc-

Donald et al., 2005a) that learn a scoring function

separating a set of valid answers from all invalid

answers. Thus if a sentence has multiple valid

compressions we can learn to score each valid one

higher than all invalid compressions during train-

ing to avoid this problem.

Acknowledgments

The author would like to thank Daniel Marcu for

providing the data as well as the output of his

and Kevin Knight’s systems. Thanks also to Hal

Daumé and Fernando Pereira for useful discus-

sions. Finally, the author thanks the four review-

ers for evaluating the compressed sentences. This

work was supported by NSF ITR grants 0205448

and 0428193.

References

E. Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. NAACL.

M. Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. EMNLP.

K. Crammer and Y. Singer. 2003. Ultraconservative
online algorithms for multiclass problems. JMLR.

K. Knight and D. Marcu. 2000. Statistical-based sum-
marization - step one: Sentence compression. In
Proc. AAAI 2000.

R. McDonald, K. Crammer, and F. Pereira. 2005a.
Flexible text segmentation with structured multil-
abel classifi cation. In Proc. HLT-EMNLP.

R. McDonald, K. Crammer, and F. Pereira. 2005b. On-
line large-margin training of dependency parsers. In
Proc. ACL.

S. Riezler, T. H. King, R. Crouch, and A. Zaenen.
2003. Statistical sentence condensation using ambi-
guity packing and stochastic disambiguation meth-
ods for lexical-functional grammar. In Proc. HLT-
NAACL.

S. Sarawagi and W. Cohen. 2004. Semi-Markov con-
ditional random fi elds for information extraction. In
Proc. NIPS.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fi elds. In Proc. HLT-NAACL, pages
213–220.

J. Turner and E. Charniak. 2005. Supervised and un-
supervised learning for sentence compression. In
Proc. ACL.

304

