
A Comparison of Syntactically Motivated Word Alignment Spaces

Colin Cherry

Department of Computing Science

University of Alberta

Edmonton, AB, Canada, T6G 2E8

colinc@cs.ualberta.ca

Dekang Lin

Google Inc.

1600 Amphitheatre Parkway

Mountain View, CA, USA, 94043

lindek@google.com

Abstract

This work is concerned with the space of

alignments searched by word alignment

systems. We focus on situations where

word re-ordering is limited by syntax. We

present two new alignment spaces that

limit an ITG according to a given depen-

dency parse. We provide D-ITG grammars

to search these spaces completely and

without redundancy. We conduct a care-

ful comparison of five alignment spaces,

and show that limiting search with an ITG

reduces error rate by 10%, while a D-ITG

produces a 31% reduction.

1 Introduction

Bilingual word alignment finds word-level corre-

spondences between parallel sentences. The task

originally emerged as an intermediate result of

training the IBM translation models (Brown et

al., 1993). These models use minimal linguistic

intuitions; they essentially treat sentences as flat

strings. They remain the dominant method for

word alignment (Och and Ney, 2003). There have

been several proposals to introduce syntax into

word alignment. Some work within the framework

of synchronous grammars (Wu, 1997; Melamed,

2003), while others create a generative story that

includes a parse tree provided for one of the sen-

tences (Yamada and Knight, 2001).

There are three primary reasons to add syntax to

word alignment. First, one can incorporate syntac-

tic features, such as grammar productions, into the

models that guide the alignment search. Second,

movement can be modeled more naturally; when a

three-word noun phrase moves during translation,

it can be modeled as one movement operation in-

stead of three. Finally, one can restrict the type of

movement that is considered, shrinking the num-

ber of alignments that are attempted. We investi-

gate this last advantage of syntactic alignment. We

fix an alignment scoring model that works equally

well on flat strings as on parse trees, but we vary

the space of alignments evaluated with that model.

These spaces become smaller as more linguistic

guidance is added. We measure the benefits and

detriments of these constrained searches.

Several of the spaces we investigate draw guid-

ance from a dependency tree for one of the

sentences. We will refer to the parsed lan-

guage as English and the other as Foreign. Lin

and Cherry (2003) have shown that adding a

dependency-based cohesion constraint to an align-

ment search can improve alignment quality. Un-

fortunately, the usefulness of their beam search

solution is limited: potential alignments are con-

structed explicitly, which prevents a perfect search

of alignment space and the use of algorithms like

EM. However, the cohesion constraint is based

on a tree, which should make it amenable to dy-

namic programming solutions. To enable such

techniques, we bring the cohesion constraint in-

side the ITG framework (Wu, 1997).

Zhang and Gildea (2004) compared Yamada

and Knight’s (2001) tree-to-string alignment

model to ITGs. They concluded that methods like

ITGs, which create a tree during alignment, per-

form better than methods with a fixed tree estab-

lished before alignment begins. However, the use

of a fixed tree is not the only difference between

(Yamada and Knight, 2001) and ITGs; the proba-

bility models are also very different. By using a

fixed dependency tree inside an ITG, we can re-

visit the question of whether using a fixed tree is

harmful, but in a controlled environment.

2 Alignment Spaces

Let an alignment be the entire structure that con-

nects a sentence pair, and let a link be the in-

dividual word-to-word connections that make up

an alignment. An alignment space determines

the set of all possible alignments that can ex-

145

ist for a given sentence pair. Alignment spaces

can emerge from generative stories (Brown et al.,

1993), from syntactic notions (Wu, 1997), or they

can be imposed to create competition between

links (Melamed, 2000). They can generally be de-

scribed in terms of how links interact.

For the sake of describing the size of alignment

spaces, we will assume that both sentences have n
tokens. The largest alignment space for a sentence

pair has 2n2

possible alignments. This describes

the case where each of the n2 potential links can

be either on or off with no restrictions.

2.1 Permutation Space

A straight-forward way to limit the space of pos-

sible alignments is to enforce a one-to-one con-

straint (Melamed, 2000). Under such a constraint,

each token in the sentence pair can participate in

at most one link. Each token in the English sen-

tence picks a token from the Foreign sentence to

link to, which is then removed from competition.

This allows for n! possible alignments1, a substan-

tial reduction from 2n2

.

Note that n! is also the number of possi-

ble permutations of the n tokens in either one

of the two sentences. Permutation space en-

forces the one-to-one constraint, but allows any re-

ordering of tokens as they are translated. Permu-

tation space methods include weighted maximum

matching (Taskar et al., 2005), and approxima-

tions to maximum matching like competitive link-

ing (Melamed, 2000). The IBM models (Brown

et al., 1993) search a version of permutation space

with a one-to-many constraint.

2.2 ITG Space

Inversion Transduction Grammars, or ITGs (Wu,

1997) provide an efficient formalism to syn-

chronously parse bitext. This produces a parse tree

that decomposes both sentences and also implies

a word alignment. ITGs are transduction gram-

mars because their terminal symbols can produce

tokens in both the English and Foreign sentences.

Inversions occur when the order of constituents is

reversed in one of the two sentences.

In this paper, we consider the alignment space

induced by parsing with a binary bracketing ITG,

such as:

A → [AA] | 〈AA〉 | e/f (1)

1This is a simplification that ignores null links. The actual
number of possible alignments lies between n! and (n+1)n.

The terminal symbol e/f represents tokens output

to the English and Foreign sentences respectively.

Square brackets indicate a straight combination of

non-terminals, while angle brackets indicate an in-

verted combination: 〈A1A2〉 means that A1A2 ap-

pears in the English sentence, while A2A1 appears

in the Foreign sentence.

Used as a word aligner, an ITG parser searches

a subspace of permutation space: the ITG requires

that any movement that occurs during translation

be explained by a binary tree with inversions.

Alignments that allow no phrases to be formed in

bitext are not attempted. This results in two for-

bidden alignment structures, shown in Figure 1,

called “inside-out” transpositions in (Wu, 1997).

Note that no pair of contiguous tokens in the top

� � � �

� � � � � � � �

� � � �

Figure 1: Forbidden alignments in ITG

sentence remain contiguous when projected onto

the bottom sentence. Zens and Ney (2003) explore

the re-orderings allowed by ITGs, and provide a

formulation for the number of structures that can

be built for a sentence pair of size n. ITGs explore

almost all of permutation space when n is small,

but their coverage of permutation space falls off

quickly for n > 5 (Wu, 1997).

2.3 Dependency Space

Dependency space defines the set of all align-

ments that maintain phrasal cohesion with respect

to a dependency tree provided for the English sen-

tence. The space is constrained so that the phrases

in the dependency tree always move together.

Fox (2002) introduced the notion of head-

modifier and modifier-modifier crossings. These

occur when a phrase’s image in the Foreign sen-

tence overlaps with the image of its head, or one of

its siblings. An alignment with no crossings main-

tains phrasal cohesion. Figure 2 shows a head-

modifier crossing: the image c of a head 2 overlaps

with the image (b, d) of 2’s modifier, (3, 4). Lin

� 	
 �

�
 � �

Figure 2: A phrasal cohesion violation.

and Cherry (2003) used the notion of phrasal cohe-

146

sion to constrain a beam search aligner, conduct-

ing a heuristic search of the dependency space.

The number of alignments in dependency space

depends largely on the provided dependency tree.

Because all permutations of a head and its modi-

fiers are possible, a tree that has a single head with

n − 1 modifiers provides no guidance; the align-

ment space is the same as permutation space. If

the tree is a chain (where every head has exactly

one modifier), alignment space has only 2n per-

mutations, which is by far the smallest space we

have seen. In general, there are
∏

θ [(mθ + 1)!]
permutations for a given tree, where θ stands for a

head node in the tree, and mθ counts θ’s modifiers.

Dependency space is not a subspace of ITG space,

as it can create both the forbidden alignments in

Figure 1 when given a single-headed tree.

3 Dependency constrained ITG

In this section, we introduce a new alignment

space defined by a dependency constrained ITG,

or D-ITG. The set of possible alignments in this

space is the intersection of the dependency space

for a given dependency tree and ITG space. Our

goal is an alignment search that respects the

phrases specified by the dependency tree, but at-

tempts all ITG orderings of those phrases, rather

than all permutations. The intuition is that most

ordering decisions involve only a small number

of phrases, so the search should still cover a large

portion of dependency space.

This new space has several attractive computa-

tional properties. Since it is a subspace of ITG

space, we will be able to search the space com-

pletely using a polynomial time ITG parser. This

places an upper bound on the search complexity

equal to ITG complexity. This upper bound is

very loose, as the ITG will often be drastically

constrained by the phrasal structure of the depen-

dency tree. Also, by working in the ITG frame-

work, we will be able to take advantage of ad-

vances in ITG parsing, and we will have access

to the forward-backward algorithm to implicitly

count events over all alignments.

3.1 A simple solution

Wu (1997) suggests that in order to have an ITG

take advantage of a known partial structure, one

can simply stop the parser from using any spans

that would violate the structure. In a chart parsing

framework, this can be accomplished by assigning

the invalid spans a value of −∞ before parsing

begins. Our English dependency tree qualifies as a

partial structure, as it does not specify a complete

binary decomposition of the English sentence. In

this case, any ITG span that would contain part,

but not all, of two adjacent dependency phrases

can be invalidated. The sentence pair can then be

parsed normally, automatically respecting phrases

specified by the dependency tree.

For example, Figure 3a shows an alignment for

the sentence pair, “His house in Canada, Sa mai-

son au Canada” and the dependency tree provided

for the English sentence. The spans disallowed by

the tree are shown using underlines. Note that the

illegal spans are those that would break up the “in

Canada” subtree. After invalidating these spans in

the chart, parsing the sentence pair with the brack-

eting ITG in (1) will produce the two structures

shown in Figure 3b, both of which correspond to

the correct alignment.

This solution is sufficient to create a D-ITG that

obeys the phrase structure specified by a depen-

dency tree. This allows us to conduct a complete

search of a well-defined subspace of the depen-

dency space described in Section 2.3.

3.2 Avoiding redundant derivations with a

recursive ITG

The above solution can derive two structures for

the same alignment. It is often desirable to

eliminate redundant structures when working with

ITGs. Having a single, canonical tree structure for

each possible alignment can help when flattening

binary trees, as it indicates arbitrary binarization

decisions (Wu, 1997). Canonical structures also

eliminate double counting when performing tasks

like EM (Zhang and Gildea, 2004). The nature of

null link handling in ITGs makes eliminating all

redundancies difficult, but we can at least elimi-

nate them in the absence of nulls.

Normally, one would eliminate the redundant

structures produced by the grammar in (1) by re-

placing it with the canonical form grammar (Wu,

1997), which has the following form:

S → A | B | C
A → [AB] | [BB] | [CB] |

[AC] | [BC] | [CC]
B → 〈AA〉 | 〈BA〉 | 〈CA〉 |

〈AC〉 | 〈BC〉 | 〈CC〉
C → e/f

(2)

By design, this grammar allows only one struc-

147

� � � � � � � � � � � � � � 	 �

� �
 � � � � � � � � � � � 	 �

� � � �

� � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 �

 �

Figure 3: An example of how dependency trees interact with ITGs. (a) shows the input, dependency

tree, and alignment. Invalidated spans are underlined. (b) shows valid binary structures. (c) shows the

canonical ITG structure for this alignment.

� � � � � � � � � �

� � � � � � � �

� � �

� � �

Figure 4: A recursive ITG.

ture per alignment. It works by restricting right-

recursion to specific inversion combinations.

The canonical structure for a given alignment

is fixed by this grammar, without awareness of the

dependency tree. When the dependency tree inval-

idates spans that are used in canonical structures,

the parser will miss the corresponding alignments.

The canonical structure corresponding to the cor-

rect alignment in our running example is shown in

Figure 3c. This structure requires the underlined

invalid span, so the canonical grammar fails to

produce the correct alignment. Our task requires a

new canonical grammar that is aware of the depen-

dency tree, and will choose among valid structures

deterministically.

Our ultimate goal is to fall back to ITG re-

ordering when the dependency tree provides no

guidance. We can implement this notion directly

with a recursive ITG. Let a local tree be the tree

formed by a head node and its immediate modi-

fiers. We begin our recursive process by consid-

ering the local tree at the root of our dependency

tree, and marking each phrasal modifier with a

labeled placeholder. We then create a string by

flattening the local tree. The top oval of Fig-

ure 4 shows the result of this operation on our

running example. Because all phrases have been

collapsed to placeholders, an ITG built over this

string will naturally respect the dependency tree’s

phrasal boundaries. Since we do not need to in-

validate any spans, we can parse this string using

the canonical ITG in (2). The phrasal modifiers

can in turn be processed by applying the same al-

gorithm recursively to their root nodes, as shown

in the lower oval of Figure 4. This algorithm will

explore the exact same alignment space as the so-

lution presented in Section 3.1, but because it uses

a canonical ITG at every ordering decision point, it

will produce exactly one structure for each align-

ment. Returning to our running example, the algo-

rithm will produce the left structure of Figure 3b.

This recursive approach can be implemented in-

side a traditional ITG framework using grammar

templates. The templates take the form of what-

ever grammar will be used to permute the local

trees. They are instantiated over each local tree

before ITG parsing begins. Each instantiation has

its non-terminals marked with its corresponding

span, and its pre-terminal productions are cus-

tomized to match the modifiers of the local tree.

Phrasal modifiers point to another instantiation of

the template. In our case, the template corresponds

to the canonical form grammar in (2). The result

of applying the templates to our running example

is:

S0,4 → A0,4 | B0,4 | C0,4

A0,4 → [A0,4B0,4] | [B0,4B0,4] | [C0,4B0,4] |
[A0,4C0,4] | [B0,4C0,4] | [C0,4C0,4]

B0,4 → 〈A0,4A0,4〉 | 〈B0,4A0,4〉 | 〈C0,4A0,4〉 |
〈A0,4C0,4〉 | 〈B0,4C0,4〉 | 〈C0,4C0,4〉

C0,4 → his/f | house/f | S2,4

S2,4 → A2,4 | B2,4 | C2,4

A2,4 → [A2,4B2,4] | [B2,4B2,4] | [C2,4B2,4] |
[A2,4C2,4] | [B2,4C2,4] | [C2,4C2,4]

B2,4 → 〈A2,4A2,4〉 | 〈B2,4A2,4〉 | 〈C2,4A2,4〉 |
〈A2,4C2,4〉 | 〈B2,4C2,4〉 | 〈C2,4C2,4〉

C2,4 → in/f | Canada/f

Recursive ITGs and grammar templates provide

a conceptual framework to easily transfer gram-

mars for flat sentence pairs to situations with fixed

phrasal structure. We have used the framework

here to ensure only one structure is constructed

for each possible alignment. We feel that this re-

cursive view of the solution also makes it easier

to visualize the space that the D-ITG is searching.

It is trying all ITG orderings of each head and its

modifiers.

148

� � � � � � � � � � � � � 	
 �

Figure 5: A counter-intuitive ITG structure.

3.3 Head constrained ITG

D-ITGs can construct ITG structures that do not

completely agree with the provided dependency

tree. If a head in the dependency tree has more

than one modifier on one of its sides, then those

modifiers may form a phrase in the ITG that

should not exist according to the dependency tree.

For example, the ITG structure shown in Figure 5

will be considered by our D-ITG as it searches

alignment space. The resulting “here quickly”

subtree disagrees with our provided dependency

tree, which specifies that “ran” is modified by each

word individually, and not by a phrasal concept

that includes both. This is allowed by the parser

because we have made the ITG aware of the de-

pendency tree’s phrasal structure, but it still has

no notion of heads or modifiers. It is possible that

by constraining our ITG according to this addi-

tional syntactic information, we can provide fur-

ther guidance to our alignment search.

The simplest way to eliminate these modifier

combinations is to parse with the redundant brack-

eting grammar in (1), and to add another set of

invalid spans to the set described in Section 3.1.

These new invalidated chart entries eliminate all

spans that include two or more modifiers without

their head. With this solution, the structure in Fig-

ure 5 is no longer possible. Unfortunately, the

grammar allows multiple structures for each align-

ment: to represent an alignment with no inver-

sions, this grammar will produce all three struc-

tures shown in Figure 6.

If we can develop a grammar that will produce

canonical head-aware structures for local trees, we

can easily extend it to complete dependency trees

using the concept of recursive ITGs. Such a gram-

mar requires a notion of head, so we can ensure

that every binary production involves the head or

a phrase containing the head. A redundant, head-

aware grammar is shown here:

A → [MA] | 〈MA〉 | [AM] | 〈AM〉 |H
M → he/f | here/f | quickly/f
H → ran/f

(3)

Note that two modifiers can never be combined

without also including the A symbol, which al-

ways contains the head. This grammar still con-

siders all the structures shown in Figure 6, but it

requires no chart preprocessing.

We can create a redundancy-free grammar by

expanding (3). Inspired by Wu’s canonical form

grammar, we will restrict the productions so that

certain structures are formed only when needed

for specific inversion combinations. To specify the

necessary inversion combinations, our ITG will

need more expressive non-terminals. Split A into

two non-terminals, L and R, to represent genera-

tors for left modifiers and right modifiers respec-

tively. Then split L into L̄ and L̂, for generators

that produce straight and inverted left modifiers.

We now have a rich enough non-terminal set

to design a grammar with a default behavior: it

will generate all right modifiers deeper in the

bracketing structure than all left modifiers. This

rule is broken only to create a re-ordering that is

not possible with the default structure, such as

[〈MH〉M]. A grammar that accomplishes this

goal is shown here:

S → L̄|L̂|R

R →
[

L̂M
]

|
〈

L̄M
〉

| [RM] | 〈RM〉 |H

L̄ →
[

ML̄
]

|
[

ML̂
]

| [MR]

L̂ →
〈

ML̄
〉

|
〈

ML̂
〉

| 〈MR〉

M → he/f | here/f | quickly/f
H → ran/f

(4)

This grammar will generate one structure for each

alignment. In the case of an alignment with no

inversions, it will produce the tree shown in Fig-

ure 6c. The grammar can be expanded into a recur-

sive ITG by following a process similar to the one

explained in Section 3.2, using (4) as a template.

3.3.1 The head-constrained alignment space

Because we have limited the ITG’s ability to

combine them, modifiers of the same head can no

longer occur at the same level of any ITG tree.

In Figure 6, we see that in all three valid struc-

tures, “quickly” is attached higher in the tree than

“here”. As a result of this, no combination of in-

versions can bring “quickly” between “here” and

“ran”. In general, the alignment space searched

by this ITG is constrained so that, among mod-

ifiers, relative distance from head is maintained.

More formally, let Mi and Mo be modifiers of H
such that Mi appears between Mo and H in the

dependency tree. No alignment will ever place the

149

� � � � � � � � � � � � � 	
 � � � � � � � � � � � � � � 	
 � � � � � � � � � � � � � � 	
 �

�
 �
 �

Figure 6: Structures allowed by the head constraint.

outer modifier Mo between H and the inner mod-

ifier Mi.

4 Experiments and Results

We compare the alignment spaces described in this

paper under two criteria. First we test the guid-

ance provided by a space, or its capacity to stop

an aligner from selecting bad alignments. We also

test expressiveness, or how often a space allows an

aligner to select the best alignment.

In all cases, we report our results in terms of

alignment quality, using the standard word align-

ment error metrics: precision, recall, F-measure

and alignment error rate (Och and Ney, 2003). Our

test set is the 500 manually aligned sentence pairs

created by Franz Och and Hermann Ney (2003).

These English-French pairs are drawn from the

Canadian Hansards. English dependency trees are

supplied by Minipar (Lin, 1994).

4.1 Objective Function

In our experiments, we hold all variables constant

except for the alignment space being searched,

and in the case of imperfect searches, the search

method. In particular, all of the methods we test

will use the same objective function to select the

“best” alignment from their space. Let A be an

alignment for an English, Foreign sentence pair,

(E,F). A is represented as a set of links, where

each link is a pair of English and Foreign posi-

tions, (i, j), that are connected by the alignment.

The score of a proposed alignment is:

falign(A,E,F) =
∑

a∈A

flink (a,E, F) (5)

Note that this objective function evaluates each

link independently, unaware of the other links se-

lected. Taskar et al (2005) have shown that with

a strong flink , one can achieve state of the art re-

sults using this objective function and the maxi-

mum matching algorithm. Our two experiments

will vary the definition of flink to test different as-

pects of alignment spaces.

All of the methods will create only one-to-one

alignments. Phrasal alignment would introduce

unnecessary complications that could mask some

of the differences in the re-orderings defined by

these spaces.

4.2 Search methods tested

We test seven methods, one for each of the four

syntactic spaces described in this paper, and three

variations of search in permutation space:

Greedy: A greedy search of permutation space.

Links are added in the order of their link

scores. This corresponds to the competitive

linking algorithm (Melamed, 2000).

Beam: A beam search of permutation space,

where links are added to a growing align-

ment, biased by their link scores. Beam width

is 2 and agenda size is 40.

Match: The weighted maximum matching algo-

rithm (West, 2001). This is a perfect search

of permutation space.

ITG: The alignment resulting from ITG parsing

with the canonical grammar in (2). This is a

perfect search of ITG space.

Dep: A beam search of the dependency space.

This is equivalent to Beam plus a dependency

constraint.

D-ITG: The result of ITG parsing as described in

Section 3.2. This is a perfect search of the in-

tersection of the ITG and dependency spaces.

HD-ITG: The D-ITG method with an added head

constraint, as described in Section 3.3.

4.3 Learned objective function

The link score flink is usually imperfect, because it

is learned from data. Appropriately defined align-

ment spaces may rule out bad links even if they

are assigned high flink values, based on other links

in the alignment. We define the following simple

link score to test the guidance provided by differ-

ent alignment spaces:

flink (a,E, F) = φ2(ei, fj) − C|i − j| (6)

Here, a = (i, j) is a link and φ2(ei, fj) returns

the φ2 correlation metric (Gale and Church, 1991)

150

Table 1: Results with the learned link score.

Method Prec Rec F AER

Greedy 78.1 81.4 79.5 20.47

Beam 79.1 82.7 80.7 19.32

Match 79.3 82.7 80.8 19.24

ITG 81.8 83.7 82.6 17.36

Dep 88.8 84.0 86.6 13.40

D-ITG 88.8 84.2 86.7 13.32

HD-ITG 89.2 84.0 86.9 13.15

between the English token at i and the Foreign

token at j. The φ2 scores were obtained using

co-occurrence counts from 50k sentence pairs of

Hansard data. The second term is an absolute po-

sition penalty. C is a small constant selected to be

just large enough to break ties in favor of similar

positions. Links to null are given a flat score of 0,

while token pairs with no value in our φ2 table are

assigned −1.

The results of maximizing falign on our test set

are shown in Table 1. The first thing to note is

that our flink is not artificially weak. Our func-

tion takes into account token pairs and position,

making it roughly equivalent to IBM Model 2.

Our weakest method outperforms Model 2, which

scores an AER of 22.0 on this test set when trained

with roughly twice as many sentence pairs (Och

and Ney, 2003).

The various search methods fall into three cat-

egories in terms of alignment accuracy. The

searches through permutation space all have AERs

of roughly 20, with the more complete searches

scoring better. The ITG method scores an AER of

17.4, a 10% reduction in error rate from maximum

matching. This indicates that the constraints es-

tablished by ITG space are beneficial, even before

adding an outside parse. The three dependency

tree-guided methods all have AERs of around

13.3. This is a 31% improvement over maximum

matching. One should also note that, with the ex-

ception of the HD-ITG, recall goes up as smaller

spaces are searched. In a one-to-one alignment,

enhancing precision can also enhance recall, as ev-

ery error of commission avoided presents two new

opportunities to avoid an error of omission.

The small gap between the beam search and

maximum matching indicates that for this flink ,

the beam search is a good approximation to com-

plete enumeration of a space. This is important, as

the only method we have available to search de-

pendency space is also a beam search.

The error rates for the three dependency-based

methods are similar; no one method provides

much more guidance than the other. Enforcing

head constraints produces only a small improve-

ment over the D-ITG. Assuming our beam search

is approximating a complete search, these results

also indicate that D-ITG space and dependency

space have very similar properties with respect to

alignment.

4.4 Oracle objective function

Any time we limit an alignment space, we risk rul-

ing out correct alignments. We now test the ex-

pressiveness of an alignment space according to

the best alignments that can be found there when

given an oracle link score. This is similar to the

experiments in (Fox, 2002), but instead of count-

ing crossings, we count how many links a maximal

alignment misses when confined to the space.

We create a tailored flink for each sentence

pair, based on the gold standard alignment for

that pair. Gold standard links are broken up into

two categories in Och and Ney’s evaluation frame-

work (2003). S links are used when the annotators

agree and are certain, while P links are meant to

handle ambiguity. Since only S links are used to

calculate recall, we define our flink to mirror the

S links in the gold standard:

flink (a,E, F) =











1 if a is an S in (E,F)
0 if a is a link to null

−1 otherwise

Table 2 shows the results of maximizing summed

flink values in our various alignment spaces.

The two imperfect permutation searches were left

out, as they are simply approximating maximum

matching. The precision column was left out, as

it is trivially 100 in all cases. A new column has

been added to count missed links.

Maximum matching sets the upper bound for

this task, with a recall of 96.4. It does not achieve

perfect recall due to the one-to-one constraint.

Note that its error rate is not a lower bound on the

AER of a one-to-one aligner, as systems can score

better by including P links.

Of the constrained systems, ITG fairs the best,

showing only a tiny reduction in recall, due to 3

missed links throughout the entire test set. Con-

sidering the non-trivial amount of guidance pro-

vided by the ITG in Section 4.3, this small drop in

151

Table 2: Results with the perfect link score.

Method Rec Missed F AER

Dep 94.1 260 97.0 3.02

HD-ITG 94.2 258 97.0 3.00

D-ITG 94.8 232 97.3 2.69

ITG 96.3 165 98.1 1.90

Match 96.4 162 98.1 1.86

expressiveness is quite impressive. For the most

part, the ITG constraints appear to rule out only

incorrect alignments.

The D-ITG has the next highest recall, doing

noticeably better than the two other dependency-

based searches, but worse than the ITG. The 1.5%

drop in expressiveness may or may not be worth

the increased guidance shown in Section 4.3, de-

pending on the task. It may be surprising to see D-

ITG outperforming Dep, as the alignment space

of Dep is larger than that of D-ITG. The heuristic

nature of Dep’s search means that its alignment

space is only partially explored.

The HD-ITG makes 26 fewer correct links than

the D-ITG, each corresponding to a single missed

link in a different sentence pair. These misses oc-

cur in cases where two modifiers switch position

with respect to their head during translation. Sur-

prisingly, there are regularly occurring, systematic

constructs that violate the head constraints. An ex-

ample of such a construct is when an English noun

has both adjective and noun modifiers. Cases like

“Canadian Wheat Board” are translated as, “Board

Canadian of Wheat”, switching the modifiers’ rel-

ative positions. These switches correspond to dis-

continuous constituents (Melamed, 2003) in gen-

eral bitext parsing. The D-ITG can handle discon-

tinuities by freely grouping constituents to create

continuity, but the HD-ITG, with its fixed head

and modifiers, cannot. Given that the HD-ITG

provides only slightly more guidance than the D-

ITG, we recommend that this type of head infor-

mation be included only as a soft constraint.

5 Conclusion

We have presented two new alignment spaces

based on a dependency tree provided for one of the

sentences in a sentence pair. We have given gram-

mars to conduct a perfect search of these spaces

using an ITG parser. The grammars derive exactly

one structure for each alignment.

We have shown that syntactic constraints alone

can have a very positive effect on alignment er-

ror rate. With a learned objective function, ITG

constraints reduce maximum matching’s error rate

by 10%, while D-ITG constraints produce a 31%

reduction. This gap in error rate demonstrates

that a dependency tree over the English sentence

can be a very powerful tool when making align-

ment decisions. We have also shown that while

dependency constraints might limit alignment ex-

pressiveness too much for some tasks, enforcing

ITG constraints results in almost no reduction in

achievable recall.

References
P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.

Mercer. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational Lin-
guistics, 19(2):263–312.

H. J. Fox. 2002. Phrasal cohesion and statistical machine
translation. In Proceedings of EMNLP, pages 304–311.

W. A. Gale and K. W. Church. 1991. Identifying word cor-
respondences in parallel texts. In 4th Speech and Natural
Language Workshop, pages 152–157. DARPA.

D. Lin and C. Cherry. 2003. Word alignment with cohesion
constraint. In HLT-NAACL 2003: Short Papers, pages 49–
51, Edmonton, Canada, May.

D. Lin. 1994. Principar - an efficient, broad-coverage,
principle-based parser. In Proceedings of COLING, pages
42–48, Kyoto, Japan.

I. D. Melamed. 2000. Models of translational equivalence
among words. Computational Linguistics, 26(2):221–
249.

I. D. Melamed. 2003. Multitext grammars and synchronous
parsers. In HLT-NAACL 2003: Main Proceedings, pages
158–165, Edmonton, Canada, May.

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational Lin-
guistics, 29(1):19–52, March.

B. Taskar, S. Lacoste-Julien, and D. Klein. 2005. A discrimi-
native matching approach to word alignment. In Proceed-
ings of HLT-EMNLP, pages 73–80, Vancouver, Canada.

D. West. 2001. Introduction to Graph Theory. Prentice Hall,
2nd edition.

D. Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora. Computational
Linguistics, 23(3):374.

K. Yamada and K. Knight. 2001. A syntax-based statisti-
cal translation model. In Meeting of the Association for
Computational Linguistics, pages 523–530.

R. Zens and H. Ney. 2003. A comparative study on re-
ordering constraints in statistical machine translation. In
Meeting of the Association for Computational Linguistics,
pages 144–151.

H. Zhang and D. Gildea. 2004. Syntax-based alignment:
Supervised or unsupervised? In Proceedings of COLING,
Geneva, Switzerland, August.

152

