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Abstract

The degree of dominance of a sense of a

word is the proportion of occurrences of

that sense in text. We propose four new

methods to accurately determine word

sense dominance using raw text and a pub-

lished thesaurus. Unlike the McCarthy

et al. (2004) system, these methods can

be used on relatively small target texts,

without the need for a similarly-sense-

distributed auxiliary text. We perform an

extensive evaluation using artificially gen-

erated thesaurus-sense-tagged data. In the

process, we create a word–category co-

occurrence matrix, which can be used for

unsupervised word sense disambiguation

and estimating distributional similarity of

word senses, as well.

1 Introduction

The occurrences of the senses of a word usually

have skewed distribution in text. Further, the dis-

tribution varies in accordance with the domain or

topic of discussion. For example, the ‘assertion

of illegality’ sense of charge is more frequent in

the judicial domain, while in the domain of eco-

nomics, the ‘expense/cost’ sense occurs more of-

ten. Formally, the degree of dominance of a par-

ticular sense of a word (target word) in a given

text (target text) may be defined as the ratio of the

occurrences of the sense to the total occurrences of

the target word. The sense with the highest domi-

nance in the target text is called the predominant

sense of the target word.

Determination of word sense dominance has

many uses. An unsupervised system will benefit

by backing off to the predominant sense in case

of insufficient evidence. The dominance values

may be used as prior probabilities for the differ-

ent senses, obviating the need for labeled train-

ing data in a sense disambiguation task. Natural

language systems can choose to ignore infrequent

senses of words or consider only the most domi-

nant senses (McCarthy et al., 2004). An unsuper-

vised algorithm that discriminates instances into

different usages can use word sense dominance to

assign senses to the different clusters generated.

Sense dominance may be determined by sim-

ple counting in sense-tagged data. However, dom-

inance varies with domain, and existing sense-

tagged data is largely insufficient. McCarthy

et al. (2004) automatically determine domain-

specific predominant senses of words, where the

domain may be specified in the form of an un-

tagged target text or simply by name (for exam-

ple, financial domain). The system (Figure 1) au-

tomatically generates a thesaurus (Lin, 1998) us-

ing a measure of distributional similarity and an

untagged corpus. The target text is used for this

purpose, provided it is large enough to learn a the-

saurus from. Otherwise a large corpus with sense

distribution similar to the target text (text pertain-

ing to the specified domain) must be used.

The thesaurus has an entry for each word type,

which lists a limited number of words (neigh-

bors) that are distributionally most similar to it.

Since Lin’s distributional measure overestimates

the distributional similarity of more-frequent word

pairs (Mohammad and Hirst, Submitted), the

neighbors of a word corresponding to the predom-

inant sense are distributionally closer to it than

those corresponding to any other sense. For each

sense of a word, the distributional similarity scores

of all its neighbors are summed using the semantic

similarity of the word with the closest sense of the
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Figure 2: Our system.

neighbor as weight. The sense that gets the highest

score is chosen as the predominant sense.

The McCarthy et al. system needs to re-train

(create a new thesaurus) every time it is to de-

termine predominant senses in data from a differ-

ent domain. This requires large amounts of part-

of-speech-tagged and chunked data from that do-

main. Further, the target text must be large enough

to learn a thesaurus from (Lin (1998) used a 64-

million-word corpus), or a large auxiliary text with

a sense distribution similar to the target text must

be provided (McCarthy et al. (2004) separately

used 90-, 32.5-, and 9.1-million-word corpora).

By contrast, in this paper we present a method

that accurately determines sense dominance even

in relatively small amounts of target text (a few

hundred sentences); although it does use a corpus,

it does not require a similarly-sense-distributed

corpus. Nor does our system (Figure 2) need

any part-of-speech-tagged data (although that may

improve results further), and it does not need to

generate a thesaurus or execute any such time-

intensive operation at run time. Our method stands

on the hypothesis that words surrounding the tar-

get word are indicative of its intended sense, and

that the dominance of a particular sense is pro-

portional to the relative strength of association be-

tween it and co-occurring words in the target text.

We therefore rely on first-order co-occurrences,

which we believe are better indicators of a word’s

characteristics than second-order co-occurrences

(distributionally similar words).

2 Thesauri

Published thesauri, such as Roget’s and Mac-

quarie, divide the English vocabulary into around

a thousand categories. Each category has a list

of semantically related words, which we will call

category terms or c-terms for short. Words with

multiple meanings may be listed in more than one

category. For every word type in the vocabulary

of the thesaurus, the index lists the categories that

include it as a c-term. Categories roughly cor-

respond to coarse senses of a word (Yarowsky,

1992), and the two terms will be used interchange-

ably. For example, in the Macquarie Thesaurus,

bark is a c-term in the categories ‘animal noises’

and ‘membrane’. These categories represent the

coarse senses of bark. Note that published the-

sauri are structurally quite different from the “the-

saurus” automatically generated by Lin (1998),

wherein a word has exactly one entry, and its

neighbors may be semantically related to it in any

of its senses. All future mentions of thesaurus will

refer to a published thesaurus.

While other sense inventories such as WordNet

exist, use of a published thesaurus has three dis-

tinct advantages: (i) coarse senses—it is widely

believed that the sense distinctions of WordNet are

far too fine-grained (Agirre and Lopez de Lacalle

Lekuona (2003) and citations therein); (ii) compu-

tational ease—with just around a thousand cate-

gories, the word–category matrix has a manage-

able size; (iii) widespread availability—thesauri

are available (or can be created with relatively

less effort) in numerous languages, while Word-

Net is available only for English and a few ro-

mance languages. We use the Macquarie The-

saurus (Bernard, 1986) for our experiments. It

consists of 812 categories with around 176,000

c-terms and 98,000 word types. Note, however,

that using a sense inventory other than WordNet

will mean that we cannot directly compare perfor-

mance with McCarthy et al. (2004), as that would

require knowing exactly how thesaurus senses

map to WordNet. Further, it has been argued that

such a mapping across sense inventories is at best

difficult and maybe impossible (Kilgarriff and Yal-

lop (2001) and citations therein).
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3 Co-occurrence Information

3.1 Word–Category Co-occurrence Matrix

The strength of association between a particular

category of the target word and its co-occurring

words can be very useful—calculating word sense

dominance being just one application. To this

end we create the word–category co-occurrence

matrix (WCCM) in which one dimension is the

list of all words (w1;w2; : : :) in the vocabulary,

and the other dimension is a list of all categories

(c1;c2; : : :).

c1 c2 : : : c j : : :

w1 m11 m12 : : : m1 j : : :

w2 m21 m22 : : : m2 j : : :

...
...

...
. . . : : : : : :

wi mi1 mi2 : : : mi j : : :

...
...

...
...

...
. . .

A particular cell, mi j, pertaining to word wi and

category c j, is the number of times wi occurs in

a predetermined window around any c-term of c j

in a text corpus. We will refer to this particular

WCCM created after the first pass over the text

as the base WCCM. A contingency table for any

particular word w and category c (see below) can

be easily generated from the WCCM by collaps-

ing cells for all other words and categories into

one and summing up their frequencies. The ap-

plication of a suitable statistic will then yield the

strength of association between the word and the

category.

c :c

w nwc nw:

:w n:c n::

Even though the base WCCM is created from

unannotated text, and so is expected to be noisy,

we argue that it captures strong associations rea-

sonably accurately. This is because the errors

in determining the true category that a word co-

occurs with will be distributed thinly across a

number of other categories (details in Section 3.2).

Therefore, we can take a second pass over the cor-

pus and determine the intended sense of each word

using the word–category co-occurrence frequency

(from the base WCCM) as evidence. We can

thus create a newer, more accurate, bootstrapped

WCCM by populating it just as mentioned ear-

lier, except that this time counts of only the co-

occurring word and the disambiguated category

are incremented. The steps of word sense disam-

biguation and creating new bootstrapped WCCMs

can be repeated until the bootstrapping fails to im-

prove accuracy significantly.

The cells of the WCCM are populated using a

large untagged corpus (usually different from the

target text) which we will call the auxiliary cor-

pus. In our experiments we use a subset (all except

every twelfth sentence) of the British National

Corpus World Edition (BNC) (Burnard, 2000) as

the auxiliary corpus and a window size of �5

words. The remaining one twelfth of the BNC is

used for evaluation purposes. Note that if the tar-

get text belongs to a particular domain, then the

creation of the WCCM from an auxiliary text of

the same domain is expected to give better results

than the use of a domain-free text.

3.2 Analysis of the Base WCCM

The use of untagged data for the creation of the

base WCCM means that words that do not re-

ally co-occur with a certain category but rather

do so with a homographic word used in a differ-

ent sense will (erroneously) increment the counts

corresponding to the category. Nevertheless, the

strength of association, calculated from the base

WCCM, of words that truly and strongly co-occur

with a certain category will be reasonably accurate

despite this noise.

We demonstrate this through an example. As-

sume that category c has 100 c-terms and each c-

term has 4 senses, only one of which corresponds

to c while the rest are randomly distributed among

other categories. Further, let there be 5 sentences

each in the auxiliary text corresponding to every

c-term–sense pair. If the window size is the com-

plete sentence, then words in 2,000 sentences will

increment co-occurrence counts for c. Observe

that 500 of these sentences truly correspond to cat-

egory c, while the other 1500 pertain to about 300

other categories. Thus on average 5 sentences cor-

respond to each category other than c. Therefore

in the 2000 sentences, words that truly co-occur

with c will likely occur a large number of times,

while the rest will be spread out thinly over 300 or

so other categories.

We therefore claim that the application of a

suitable statistic, such as odds ratio, will result

in significantly large association values for word–

category pairs where the word truly and strongly

co-occurs with the category, and the effect of noise
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will be insignificant. The word–category pairs

having low strength of association will likely be

adversely affected by the noise, since the amount

of noise may be comparable to the actual strength

of association. In most natural language applica-

tions, the strength of association is evidence for a

particular proposition. In that case, even if associ-

ation values from all pairs are used, evidence from

less-reliable, low-strength pairs will contribute lit-

tle to the final cumulative evidence, as compared

to more-reliable, high-strength pairs. Thus even if

the base WCCM is less accurate when generated

from untagged text, it can still be used to provide

association values suitable for most natural lan-

guage applications. Experiments to be described

in section 6 below substantiate this.

3.3 Measures of Association

The strength of association between a sense or

category of the target word and its co-occurring

words may be determined by applying a suitable

statistic on the corresponding contingency table.

Association values are calculated from observed

frequencies (nwc;n:c;nw:; and n::), marginal fre-

quencies (nw�= nwc+nw:; n:�= n:c+n::; n�c =
nwc + n:c; and n�: = nw:+ n::), and the sample

size (N = nwc +n:c+nw:+n::). We provide ex-

perimental results using Dice coefficient (Dice),

cosine (cos), pointwise mutual information (pmi),

odds ratio (odds), Yule’s coefficient of colligation

(Yule), and phi coefficient (φ)1.

4 Word Sense Dominance

We examine each occurrence of the target word

in a given untagged target text to determine dom-

inance of any of its senses. For each occurrence

t 0 of a target word t, let T 0 be the set of words

(tokens) co-occurring within a predetermined win-

dow around t 0; let T be the union of all such T 0

and let Xt be the set of all such T 0. (Thus jXt j is

equal to the number of occurrences of t, and jT j is

equal to the total number of words (tokens) in the

windows around occurrences of t.) We describe

1Measures of association (Sheskin, 2003):

cos(w;c) =
nwcp

nw��pn�c
; pmi(w;c) = log

nwc�N

nw��n�c
;

odds(w;c) =
nwc�n::

nw:�n:c
; Yule(w;c) =

p
odds(w;c)�1

p
odds(w;c)+1

;

Dice(w;c) =
2�nwc

nw�+n�c
; φ(w;c) =

(nwc�n::)� (nw:�n:c)p
nw��n:��n�c�n�:

UnweightedWeighted

disambiguation

Implicit sense

Explicit sense

disambiguation

votingvoting

DI,W

DE,W

DI,U

E,UD

Figure 3: The four dominance methods.

four methods (Figure 3) to determine dominance

(DI;W ;DI;U ;DE ;W ; and DE ;U ) and the underlying

assumptions of each.

DI;W is based on the assumption that the more

dominant a particular sense is, the greater the

strength of its association with words that co-occur

with it. For example, if most occurrences of bank

in the target text correspond to ‘river bank’, then

the strength of association of ‘river bank’ with all

of bank’s co-occurring words will be larger than

the sum for any other sense. Dominance DI;W of a

sense or category (c) of the target word (t) is:

DI;W (t;c) =
∑w2T A(w;c)

∑c02senses(t) ∑w2T A(w;c0)
(1)

where A is any one of the measures of association

from section 3.3. Metaphorically, words that co-

occur with the target word give a weighted vote to

each of its senses. The weight is proportional to

the strength of association between the sense and

the co-occurring word. The dominance of a sense

is the ratio of the total votes it gets to the sum of

votes received by all the senses.

A slightly different assumption is that the more

dominant a particular sense is, the greater the num-

ber of co-occurring words having highest strength

of association with that sense (as opposed to any

other). This leads to the following methodol-

ogy. Each co-occurring word casts an equal, un-

weighted vote. It votes for that sense (and no

other) of the target word with which it has the

highest strength of association. The dominance

DI;U of the sense is the ratio of the votes it gets

to the total votes cast for the word (number of co-

occurring words).

DI;U(t;c) =
jfw 2 T : Sns1(w; t) = cgj

jT j
(2)

Sns1(w; t) = argmax
c02senses(t)

A(w;c0) (3)

Observe that in order to determine DI;W or

DI;U , we do not need to explicitly disambiguate
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the senses of the target word’s occurrences. We

now describe alternative approaches that may be

used for explicit sense disambiguation of the target

word’s occurrences and thereby determine sense

dominance (the proportion of occurrences of that

sense). DE ;W relies on the hypothesis that the in-

tended sense of any occurrence of the target word

has highest strength of association with its co-

occurring words.

DE ;W (t;c) =
jfT 0 2Xt : Sns2(T

0; t) = cgj

jXt j

(4)

Sns2(T
0
; t) = argmax

c02senses(t)
∑

w2T 0

A(w;c0) (5)

Metaphorically, words that co-occur with the tar-

get word give a weighted vote to each of its senses

just as in DI;W . However, votes from co-occurring

words in an occurrence are summed to determine

the intended sense (sense with the most votes) of

the target word. The process is repeated for all

occurrences that have the target word. If each

word that co-occurs with the target word votes as

described for DI;U , then the following hypothesis

forms the basis of DE ;U : in a particular occurrence,

the sense that gets the maximum votes from its

neighbors is the intended sense.

DE ;U(t;c) =
jfT 0 2Xt : Sns3(T

0; t) = cgj

jXt j
(6)

Sns3(T
0
; t) = argmax

c02senses(t)

jfw 2 T 0 : Sns1(w; t) = c0gj

(7)

In methods DE ;W and DE ;U , the dominance of

a sense is the proportion of occurrences of that

sense.

The degree of dominance provided by all four

methods has the following properties: (i) The

dominance values are in the range 0 to 1—a score

of 0 implies lowest possible dominance, while a

score of 1 means that the dominance is highest.

(ii) The dominance values for all the senses of a

word sum to 1.

5 Pseudo-Thesaurus-Sense-Tagged Data

To evaluate the four dominance methods we would

ideally like sentences with target words annotated

with senses from the thesaurus. Since human an-

notation is both expensive and time intensive, we

present an alternative approach of artificially gen-

erating thesaurus-sense-tagged data following the

ideas of Leacock et al. (1998). Around 63,700

of the 98,000 word types in the Macquarie The-

saurus are monosemous—listed under just one

of the 812 categories. This means that on aver-

age around 77 c-terms per category are monose-

mous. Pseudo-thesaurus-sense-tagged (PTST)

data for a non-monosemous target word t (for

example, brilliant) used in a particular sense or

category c of the thesaurus (for example, ‘intel-

ligence’) may be generated as follows. Identify

monosemous c-terms (for example, clever) be-

longing to the same category as c. Pick sentences

containing the monosemous c-terms from an un-

tagged auxiliary text corpus.

Hermione had a clever plan.

In each such sentence, replace the monosemous

word with the target word t. In theory the c-

terms in a thesaurus are near-synonyms or at least

strongly related words, making the replacement of

one by another acceptable. For the sentence above,

we replace clever with brilliant. This results in

(artificial) sentences with the target word used

in a sense corresponding to the desired category.

Clearly, many of these sentences will not be lin-

guistically well formed, but the non-monosemous

c-term used in a particular sense is likely to have

similar co-occurring words as the monosemous c-

term of the same category.2 This justifies the use

of these pseudo-thesaurus-sense-tagged data for

the purpose of evaluation.

We generated PTST test data for the head words

in SENSEVAL-1 English lexical sample space3 us-

ing the Macquarie Thesaurus and the held out sub-

set of the BNC (every twelfth sentence).

6 Experiments

We evaluate the four dominance methods, like

McCarthy et al. (2004), through the accuracy of

a naive sense disambiguation system that always

gives out the predominant sense of the target word.

In our experiments, the predominant sense is de-

termined by each of the four dominance methods,

individually. We used the following setup to study

the effect of sense distribution on performance.

2Strong collocations are an exception to this, and their ef-
fect must be countered by considering larger window sizes.
Therefore, we do not use a window size of just one or two
words on either side of the target word, but rather windows
of �5 words in our experiments.

3SENSEVAL-1 head words have a wide range of possible
senses, and availability of alternative sense-tagged data may
be exploited in the future.
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Figure 4: Best results: four dominance methods

6.1 Setup

For each target word for which we have PTST

data, the two most dominant senses are identified,

say s1 and s2. If the number of sentences annotated

with s1 and s2 is x and y, respectively, where x > y,

then all y sentences of s2 and the first y sentences

of s1 are placed in a data bin. Eventually the bin

contains an equal number of PTST sentences for

the two most dominant senses of each target word.

Our data bin contained 17,446 sentences for 27

nouns, verbs, and adjectives. We then generate dif-

ferent test data sets dα from the bin, where α takes

values 0; :1; :2; : : : ;1, such that the fraction of sen-

tences annotated with s1 is α and those with s2 is

1�α. Thus the data sets have different dominance

values even though they have the same number of

sentences—half as many in the bin.

Each data set dα is given as input to the naive

sense disambiguation system. If the predominant

sense is correctly identified for all target words,

then the system will achieve highest accuracy,

whereas if it is falsely determined for all target

words, then the system achieves the lowest ac-

curacy. The value of α determines this upper

bound and lower bound. If α is close to 0:5, then

even if the system correctly identifies the predom-

inant sense, the naive disambiguation system can-

not achieve accuracies much higher than 50%. On

the other hand, if α is close to 0 or 1, then the

system may achieve accuracies close to 100%. A

disambiguation system that randomly chooses one

of the two possible senses for each occurrence of

the target word will act as the baseline. Note that

no matter what the distribution of the two senses

(α), this system will get an accuracy of 50%.
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Figure 5: Best results: base vs. bootstrapped

6.2 Results

Highest accuracies achieved using the four dom-

inance methods and the measures of association

that worked best with each are shown in Figure 4.

The table below the figure shows mean distance

below upper bound (MDUB) for all α values

considered. Measures that perform almost iden-

tically are grouped together and the MDUB val-

ues listed are averages. The window size used was

�5 words around the target word. Each dataset

dα, which corresponds to a different target text in

Figure 2, was processed in less than 1 second on

a 1.3GHz machine with 16GB memory. Weighted

voting methods, DE ;W and DI;W , perform best with

MDUBs of just .02 and .03, respectively. Yule’s

coefficient, odds ratio, and pmi give near-identical,

maximal accuracies for all four methods with a

slightly greater divergence in DI;W , where pmi

does best. The φ coefficient performs best for

unweighted methods. Dice and cosine do only

slightly better than the baseline. In general, re-

sults from the method–measure combinations are

symmetric across α= 0:5, as they should be.

Marked improvements in accuracy were

achieved as a result of bootstrapping the WCCM

(Figure 5). Most of the gain was provided by

the first iteration itself, whereas further iterations

resulted in just marginal improvements. All

bootstrapped results reported in this paper pertain

to just one iteration. Also, the bootstrapped

WCCM is 72% smaller, and 5 times faster at

processing the data sets, than the base WCCM,

which has many non-zero cells even though the

corresponding word and category never actually

co-occurred (as mentioned in Section 3.2 earlier).
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6.3 Discussion

Considering that this is a completely unsupervised

approach, not only are the accuracies achieved us-

ing the weighted methods well above the baseline,

but also remarkably close to the upper bound. This

is especially true for α values close to 0 and 1. The

lower accuracies for α near 0.5 are understandable

as the amount of evidence towards both senses of

the target word are nearly equal.

Odds, pmi, and Yule perform almost equally

well for all methods. Since the number of times

two words co-occur is usually much less than

the number of times they occur individually, pmi

tends to approximate the logarithm of odds ra-

tio. Also, Yule is a derivative of odds. Thus all

three measures will perform similarly in case the

co-occurring words give an unweighted vote for

the most appropriate sense of the target as in DI;U

and DE ;U . For the weighted voting schemes, DI;W

and DE ;W , the effect of scale change is slightly

higher in DI;W as the weighted votes are summed

over the complete text to determine dominance. In

DE ;W the small number of weighted votes summed

to determine the sense of the target word may be

the reason why performances using pmi, Yule, and

odds do not differ markedly. Dice coefficient and

cosine gave below-baseline accuracies for a num-

ber of sense distributions. This suggests that the

normalization4 to take into account the frequency

of individual events inherent in the Dice and co-

sine measures may not be suitable for this task.

The accuracies of the dominance methods re-

main the same if the target text is partitioned as per

the target word, and each of the pieces is given in-

dividually to the disambiguation system. The av-

erage number of sentences per target word in each

dataset dα is 323. Thus the results shown above

correspond to an average target text size of only

323 sentences.

We repeated the experiments on the base

WCCM after filtering out (setting to 0) cells with

frequency less than 5 to investigate the effect on

accuracies and gain in computation time (propor-

tional to size of WCCM). There were no marked

changes in accuracy but a 75% reduction in size

of the WCCM. Using a window equal to the com-

plete sentence as opposed to �5 words on either

side of the target resulted in a drop of accuracies.

4If two events occur individually a large number of times,
then they must occur together much more often to get sub-
stantial association scores through pmi or odds, as compared
to cosine or the Dice coefficient.

7 Related Work

The WCCM has similarities with latent semantic

analysis, or LSA, and specifically with work by

Schütze and Pedersen (1997), wherein the dimen-

sionality of a word–word co-occurrence matrix is

reduced to create a word–concept matrix. How-

ever, there is no non-heuristic way to determine

when the dimension reduction should stop. Fur-

ther, the generic concepts represented by the re-

duced dimensions are not interpretable, i.e., one

cannot determine which concepts they represent

in a given sense inventory. This means that LSA

cannot be used directly for tasks such as unsuper-

vised sense disambiguation or determining seman-

tic similarity of known concepts. Our approach

does not have these limitations.

Yarowsky (1992) uses the product of a mutual

information–like measure and frequency to iden-

tify words that best represent each category in the

Roget’s Thesaurus and uses these words for sense

disambiguation with a Bayesian model. We im-

proved the accuracy of the WCCM using sim-

ple bootstrapping techniques, used all the words

that co-occur with a category, and proposed four

new methods to determine sense dominance—

two of which do explicit sense disambiguation.

Véronis (2005) presents a graph theory–based ap-

proach to identify the various senses of a word in a

text corpus without the use of a dictionary. Highly

interconnected components of the graph represent

the different senses of the target word. The node

(word) with the most connections in a component

is representative of that sense and its associations

with words that occur in a test instance are used as

evidence for that sense. However, these associa-

tions are at best only rough estimates of the associ-

ations between the sense and co-occurring words,

since a sense in his system is represented by a

single (possibly ambiguous) word. Pantel (2005)

proposes a framework for ontologizing lexical re-

sources. For example, co-occurrence vectors for

the nodes in WordNet can be created using the co-

occurrence vectors for words (or lexicals). How-

ever, if a leaf node has a single lexical, then once

the appropriate co-occurring words for this node

are identified (coup phase), they are assigned the

same co-occurrence counts as that of the lexical.5

5A word may have different, stronger-than-chance
strengths of association with multiple senses of a lexical.
These are different from the association of the word with the
lexical.
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8 Conclusions and Future Directions

We proposed a new method for creating a word–

category co-occurrence matrix (WCCM) using a

published thesaurus and raw text, and applying

simple sense disambiguation and bootstrapping

techniques. We presented four methods to deter-

mine degree of dominance of a sense of a word us-

ing the WCCM. We automatically generated sen-

tences with a target word annotated with senses

from the published thesaurus, which we used to

perform an extensive evaluation of the dominance

methods. We achieved near-upper-bound results

using all combinations of the the weighted meth-

ods (DI;W and DE ;W ) and three measures of asso-

ciation (odds, pmi, and Yule).

We cannot compare accuracies with McCarthy

et al. (2004) because use of a thesaurus instead

of WordNet means that knowledge of exactly how

the thesaurus senses map to WordNet is required.

We used a thesaurus as such a resource, unlike

WordNet, is available in more languages, pro-

vides us with coarse senses, and leads to a smaller

WCCM (making computationally intensive oper-

ations viable). Further, unlike the McCarthy et

al. system, we showed that our system gives accu-

rate results without the need for a large similarly-

sense-distributed text or retraining. The target

texts used were much smaller (few hundred sen-

tences) than those needed for automatic creation

of a thesaurus (few million words).

The WCCM has a number of other applications,

as well. The strength of association between a

word and a word sense can be used to determine

the (more intuitive) distributional similarity of

word senses (as opposed to words). Conditional

probabilities of lexical features can be calculated

from the WCCM, which in turn can be used in un-

supervised sense disambiguation. In conclusion,

we provided a framework for capturing distribu-

tional properties of word senses from raw text and

demonstrated one of its uses—determining word

sense dominance.
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