
Constraints on Non-Projective Dependency Parsing

Joakim Nivre

Växjö University, School of Mathematics and Systems Engineering

Uppsala University, Department of Linguistics and Philology

joakim.nivre@msi.vxu.se

Abstract

We investigate a series of graph-theoretic

constraints on non-projective dependency

parsing and their effect on expressivity,

i.e. whether they allow naturally occurring

syntactic constructions to be adequately

represented, and efficiency, i.e. whether

they reduce the search space for the parser.

In particular, we define a new measure

for the degree of non-projectivity in an

acyclic dependency graph obeying the

single-head constraint. The constraints are

evaluated experimentally using data from

the Prague Dependency Treebank and the

Danish Dependency Treebank. The results

indicate that, whereas complete linguistic

coverage in principle requires unrestricted

non-projective dependency graphs, limit-

ing the degree of non-projectivity to at

most 2 can reduce average running time

from quadratic to linear, while excluding

less than 0.5% of the dependency graphs

found in the two treebanks. This is a sub-

stantial improvement over the commonly

used projective approximation (degree 0),

which excludes 15–25% of the graphs.

1 Introduction

Data-driven approaches to syntactic parsing has

until quite recently been limited to representations

that do not capture non-local dependencies. This

is true regardless of whether representations are

based on constituency, where such dependencies

are traditionally represented by empty categories

and coindexation to avoid explicitly discontinuous

constituents, or on dependency, where it is more

common to use a direct encoding of so-called non-

projective dependencies.

While this “surface dependency approximation”

(Levy and Manning, 2004) may be acceptable

for certain applications of syntactic parsing, it is

clearly not adequate as a basis for deep semantic

interpretation, which explains the growing body of

research devoted to different methods for correct-

ing this approximation. Most of this work has so

far focused either on post-processing to recover

non-local dependencies from context-free parse

trees (Johnson, 2002; Jijkoun and De Rijke, 2004;

Levy and Manning, 2004; Campbell, 2004), or on

incorporating nonlocal dependency information in

nonterminal categories in constituency represen-

tations (Dienes and Dubey, 2003; Hockenmaier,

2003; Cahill et al., 2004) or in the categories used

to label arcs in dependency representations (Nivre

and Nilsson, 2005).

By contrast, there is very little work on parsing

methods that allow discontinuous constructions to

be represented directly in the syntactic structure,

whether by discontinuous constituent structures

or by non-projective dependency structures. No-

table exceptions are Plaehn (2000), where discon-

tinuous phrase structure grammar parsing is ex-

plored, and McDonald et al. (2005b), where non-

projective dependency structures are derived using

spanning tree algorithms from graph theory.

One question that arises if we want to pursue the

structure-based approach is how to constrain the

class of permissible structures. On the one hand,

we want to capture all the constructions that are

found in natural languages, or at least to provide

a much better approximation than before. On the

other hand, it must still be possible for the parser

not only to search the space of permissible struc-

tures in an efficient way but also to learn to select

the most appropriate structure for a given sentence

with sufficient accuracy. This is the usual tradeoff

73



between expressivity and complexity, where a less

restricted class of permissible structures can cap-

ture more complex constructions, but where the

enlarged search space makes parsing harder with

respect to both accuracy and efficiency.

Whereas extensions to context-free grammar

have been studied quite extensively, there are very

few corresponding results for dependency-based

systems. Since Gaifman (1965) proved that his

projective dependency grammar is weakly equiva-

lent to context-free grammar, Neuhaus and Bröker

(1997) have shown that the recognition problem

for a dependency grammar that can define arbi-

trary non-projective structures is NP complete,

but there are no results for systems of intermedi-

ate complexity. The pseudo-projective grammar

proposed by Kahane et al. (1998) can be parsed

in polynomial time and captures non-local depen-

dencies through a form of gap-threading, but the

structures generated by the grammar are strictly

projective. Moreover, the study of formal gram-

mars is only partially relevant for research on data-

driven dependency parsing, where most systems

are not grammar-based but rely on inductive infer-

ence from treebank data (Yamada and Matsumoto,

2003; Nivre et al., 2004; McDonald et al., 2005a).

For example, despite the results of Neuhaus and

Bröker (1997), McDonald et al. (2005b) perform

parsing with arbitrary non-projective dependency

structures in O(n2) time.

In this paper, we will therefore approach the

problem from a slightly different angle. Instead

of investigating formal dependency grammars and

their complexity, we will impose a series of graph-

theoretic constraints on dependency structures and

see how these constraints affect expressivity and

parsing efficiency. The approach is mainly ex-

perimental and we evaluate constraints using data

from two dependency-based treebanks, the Prague

Dependency Treebank (Hajič et al., 2001) and the

Danish Dependency Treebank (Kromann, 2003).

Expressivity is investigated by examining how

large a proportion of the structures found in the

treebanks are parsable under different constraints,

and efficiency is addressed by considering the

number of potential dependency arcs that need to

be processed when parsing these structures. This

is a relevant metric for data-driven approaches,

where parsing time is often dominated by the com-

putation of model predictions or scores for such

arcs. The parsing experiments are performed with

a variant of Covington’s algorithm for dependency

parsing (Covington, 2001), using the treebank as

an oracle in order to establish an upper bound

on accuracy. However, the results are relevant

for a larger class of algorithms that derive non-

projective dependency graphs by treating every

possible word pair as a potential dependency arc.

The paper is structured as follows. In section 2

we define dependency graphs, and in section 3

we formulate a number of constraints that can

be used to define different classes of dependency

graphs, ranging from unrestricted non-projective

to strictly projective. In section 4 we introduce the

parsing algorithm used in the experiments, and in

section 5 we describe the experimental setup. In

section 6 we present the results of the experiments

and discuss their implications for non-projective

dependency parsing. We conclude in section 7.

2 Dependency Graphs

A dependency graph is a labeled directed graph,

the nodes of which are indices corresponding to

the tokens of a sentence. Formally:

Definition 1 Given a set R of dependency types

(arc labels), a dependency graph for a sentence

x = (w1, . . . , wn) is a labeled directed graph

G = (V,E,L), where:

1. V = Zn+1

2. E ⊆ V × V

3. L : E → R

Definition 2 A dependency graph G is well-

formed if and only if:

1. The node 0 is a root (ROOT).

2. G is connected (CONNECTEDNESS).1

The set of V of nodes (or vertices) is the set

Zn+1 = {0, 1, 2, . . . , n} (n ∈ Z
+), i.e., the set of

non-negative integers up to and including n. This

means that every token index i of the sentence is a

node (1 ≤ i ≤ n) and that there is a special node

0, which does not correspond to any token of the

sentence and which will always be a root of the

dependency graph (normally the only root).

The set E of arcs (or edges) is a set of ordered

pairs (i, j), where i and j are nodes. Since arcs are

used to represent dependency relations, we will

1To be more exact, we require G to be weakly connected,
which entails that the corresponding undirected graph is con-
nected, whereas a strongly connected graph has a directed
path between any pair of nodes.

74



(“Only one of them concerns quality.”)

0 1
R
Z

(Out-of

� �

?

AuxP

2
P

nich

them

� �

?

Atr

3
VB
je

is

� �

?

Pred

4
T

jen

only

� �

?

AuxZ

5
C

jedna

one-FEM-SG

� �

?

Sb

6
R
na

to

� �

?

AuxP

7
N4

kvalitu

quality

?

� �

Adv

8
Z:
.

.)

� �

?

AuxK

Figure 1: Dependency graph for Czech sentence from the Prague Dependency Treebank

say that i is the head and j is the dependent of

the arc (i, j). As usual, we will use the notation

i → j to mean that there is an arc connecting i

and j (i.e., (i, j) ∈ E) and we will use the nota-

tion i→∗ j for the reflexive and transitive closure

of the arc relation E (i.e., i →∗ j if and only if

i = j or there is a path of arcs connecting i to j).

The function L assigns a dependency type (arc

label) r ∈ R to every arc e ∈ E. Figure 1 shows

a Czech sentence from the Prague Dependency

Treebank with a well-formed dependency graph

according to Definition 1–2.

3 Constraints

The only conditions so far imposed on dependency

graphs is that the special node 0 be a root and that

the graph be connected. Here are three further

constraints that are common in the literature:

3. Every node has at most one head, i.e., if i→j

then there is no node k such that k 6= i and

k → j (SINGLE-HEAD).

4. The graph G is acyclic, i.e., if i→ j then not

j →∗ i (ACYCLICITY).

5. The graph G is projective, i.e., if i → j then

i→∗ k, for every node k such that i < k < j

or j < k < i (PROJECTIVITY).

Note that these conditions are independent in that

none of them is entailed by any (combination)

of the others. However, the conditions SINGLE-

HEAD and ACYCLICITY together with the basic

well-formedness conditions entail that the graph

is a tree rooted at the node 0. These constraints

are assumed in almost all versions of dependency

grammar, especially in computational systems.

By contrast, the PROJECTIVITY constraint is

much more controversial. Broadly speaking, we

can say that whereas most practical systems for

dependency parsing do assume projectivity, most

dependency-based linguistic theories do not. More

precisely, most theoretical formulations of depen-

dency grammar regard projectivity as the norm

but also recognize the need for non-projective

representations to capture non-local dependencies

(Mel’čuk, 1988; Hudson, 1990).

In order to distinguish classes of dependency

graphs that fall in between arbitrary non-projective

and projective, we define a notion of degree of

non-projectivity, such that projective graphs have

degree 0 while arbitrary non-projective graphs

have unbounded degree.

Definition 3 Let G = (V,E,L) be a well-formed

dependency graph, satisfying SINGLE-HEAD and

ACYCLICITY, and let Ge be the subgraph of G

that only contains nodes between i and j for the

arc e = (i, j) (i.e., Ve = {i+1, . . . , j−1} if i < j

and Ve = {j+1, . . . , i−1} if i > j).

1. The degree of an arc e ∈ E is the number of

connected components c in Ge such that the

root of c is not dominated by the head of e.

2. The degree of G is the maximum degree of

any arc e ∈ E.

To exemplify the notion of degree, we note that

the dependency graph in Figure 1 (which satisfies

SINGLE-HEAD and ACYCLICITY) has degree 1.

The only non-projective arc in the graph is (5, 1)
and G(5,1) contains three connected components,

each of which consists of a single root node (2, 3

and 4). Since only one of these, 3, is not domi-

nated by 5, the arc (5, 1) has degree 1.

4 Parsing Algorithm

Covington (2001) describes a parsing strategy for

dependency representations that has been known

75



since the 1960s but not presented in the literature.

The left-to-right (or incremental) version of this

strategy can be formulated in the following way:

PARSE(x = (w1, . . . , wn))
1 for i = 1 up to n

2 for j = i− 1 down to 1
3 LINK(i, j)

The operation LINK(i, j) nondeterministically

chooses between (i) adding the arc i → j (with

some label), (ii) adding the arc j → i (with some

label), and (iii) adding no arc at all. In this way, the

algorithm builds a graph by systematically trying

to link every pair of nodes (i, j) (i > j). This

graph will be a well-formed dependency graph,

provided that we also add arcs from the root node

0 to every root node in {1, . . . , n}. Assuming that

the LINK(i, j) operation can be performed in some

constant time c, the running time of the algorithm

is
∑n

i=1 c(n − 1) = c(n2

2 −
n
2 ), which in terms of

asymptotic complexity is O(n2).
In the experiments reported in the following

sections, we modify this algorithm by making the

performance of LINK(i, j) conditional on the arcs

(i, j) and (j, i) being permissible under the given

graph constraints:

PARSE(x = (w1, . . . , wn))
1 for i = 1 up to n

2 for j = i− 1 down to 1
3 if PERMISSIBLE(i, j, C)

4 LINK(i, j)

The function PERMISSIBLE(i, j, C) returns true

iff i → j and j → i are permissible arcs relative

to the constraint C and the partially built graph

G. For example, with the constraint SINGLE-

HEAD, LINK(i, j) will not be performed if both

i and j already have a head in the dependency

graph. We call the pairs (i, j) (i > j) for which

LINK(i, j) is performed (for a given sentence and

set of constraints) the active pairs, and we use

the number of active pairs, as a function of sen-

tence length, as an abstract measure of running

time. This is well motivated if the time required

to compute PERMISSIBLE(i, j, C) is insignificant

compared to the time needed for LINK(i, j), as is

typically the case in data-driven systems, where

LINK(i, j) requires a call to a trained classifier,

while PERMISSIBLE(i, j, C) only needs access to

the partially built graph G.

The results obtained in this way will be partially

dependent on the particular algorithm used, but

they can in principle be generalized to any algo-

rithm that tries to link all possible word pairs and

that satisfies the following condition:

For any graph G = (V,E,L) derived by

the algorithm, if e, e′ ∈ E and e covers

e′, then the algorithm adds e′ before e.

This condition is satisfied not only by Covington’s

incremental algorithm but also by algorithms that

add arcs strictly in order of increasing length, such

as the algorithm of Eisner (2000) and other algo-

rithms based on dynamic programming.

5 Experimental Setup

The experiments are based on data from two tree-

banks. The Prague Dependency Treebank (PDT)

contains 1.5M words of newspaper text, annotated

in three layers (Hajič, 1998; Hajič et al., 2001)

according to the theoretical framework of Func-

tional Generative Description (Sgall et al., 1986).

Our experiments concern only the analytical layer

and are based on the dedicated training section of

the treebank. The Danish Dependency Treebank

(DDT) comprises 100K words of text selected

from the Danish PAROLE corpus, with annotation

of primary and secondary dependencies based on

Discontinuous Grammar (Kromann, 2003). Only

primary dependencies are considered in the exper-

iments, which are based on 80% of the data (again

the standard training section).

The experiments are performed by parsing each

sentence of the treebanks while using the gold

standard dependency graph for that sentence as an

oracle to resolve the nondeterministic choice in the

LINK(i, j) operation as follows:

LINK(i, j)

1 if (i, j) ∈ Eg

2 E ← E ∪ {(i, j)}
3 if (j, i) ∈ Eg

4 E ← E ∪ {(j, i)}

where Eg is the arc relation of the gold standard

dependency graph Gg and E is the arc relation of

the graph G built by the parsing algorithm.

Conditions are varied by cumulatively adding

constraints in the following order:

1. SINGLE-HEAD

2. ACYCLICITY

3. Degree d ≤ k (k ≥ 1)

4. PROJECTIVITY

76



Table 1: Proportion of dependency arcs and complete graphs correctly parsed under different constraints

in the Prague Dependency Treebank (PDT) and the Danish Dependency Treebank (DDT)

PDT DDT

Constraint Arcs Graphs Arcs Graphs

n = 1255590 n = 73088 n = 80193 n = 4410

PROJECTIVITY 96.1569 76.8498 97.7754 84.6259

d ≤ 1 99.7854 97.7507 99.8940 98.0272

d ≤ 2 99.9773 99.5731 99.9751 99.5238

d ≤ 3 99.9956 99.9179 99.9975 99.9546

d ≤ 4 99.9983 99.9863 100.0000 100.0000

d ≤ 5 99.9987 99.9945 100.0000 100.0000

d ≤ 10 99.9998 99.9986 100.0000 100.0000

ACYCLICITY 100.0000 100.0000 100.0000 100.0000

SINGLE-HEAD 100.0000 100.0000 100.0000 100.0000

None 100.0000 100.0000 100.0000 100.0000

The purpose of the experiments is to study how

different constraints influence expressivity and

running time. The first dimension is investigated

by comparing the dependency graphs produced

by the parser with the gold standard dependency

graphs in the treebank. This gives an indication of

the extent to which naturally occurring structures

can be parsed correctly under different constraints.

The results are reported both as the proportion of

individual dependency arcs (per token) and as the

proportion of complete dependency graphs (per

sentence) recovered correctly by the parser.

In order to study the effects on running time,

we examine how the number of active pairs varies

as a function of sentence length. Whereas the

asymptotic worst-case complexity remains O(n2)
under all conditions, the average running time will

decrease with the number of active pairs if the

LINK(i, j) operation is more expensive than the

call to PERMISSIBLE(i, j, C). For data-driven

dependency parsing, this is relevant not only for

parsing efficiency, but also because it may improve

training efficiency by reducing the number of pairs

that need to be included in the training data.

6 Results and Discussion

Table 1 displays the proportion of dependencies

(single arcs) and sentences (complete graphs) in

the two treebanks that can be parsed exactly with

Covington’s algorithm under different constraints.

Starting at the bottom of the table, we see that

the unrestricted algorithm (None) of course repro-

duces all the graphs exactly, but we also see that

the constraints SINGLE-HEAD and ACYCLICITY

do not put any real restrictions on expressivity

with regard to the data at hand. However, this is

primarily a reflection of the design of the treebank

annotation schemes, which in themselves require

dependency graphs to obey these constraints.2

If we go to the other end of the table, we see

that PROJECTIVITY, on the other hand, has a very

noticeable effect on the parser’s ability to capture

the structures found in the treebanks. Almost 25%

of the sentences in PDT, and more than 15% in

DDT, are beyond its reach. At the level of indi-

vidual dependencies, the effect is less conspicu-

ous, but it is still the case in PDT that one depen-

dency in twenty-five cannot be found by the parser

even with a perfect oracle (one in fifty in DDT). It

should be noted that the proportion of lost depen-

dencies is about twice as high as the proportion

of dependencies that are non-projective in them-

selves (Nivre and Nilsson, 2005). This is due to

error propagation, since some projective arcs are

blocked from the parser’s view because of missing

non-projective arcs.

Considering different bounds on the degree of

non-projectivity, finally, we see that even the tight-

est possible bound (d ≤ 1) gives a much better

approximation than PROJECTIVITY, reducing the

2It should be remembered that we are only concerned with
one layer of each annotation scheme, the analytical layer in
PDT and the primary dependencies in DDT. Taking several
layers into account simultaneously would have resulted in
more complex structures.

77



Table 2: Quadratic curve estimation for y = ax+ bx2 (y = number of active pairs, x = number of words)

PDT DDT

Constraint a b r2 a b r2

PROJECTIVITY 1.9181 0.0093 0.979 1.7591 0.0108 0.985

d ≤ 1 3.2381 0.0534 0.967 2.2049 0.0391 0.969

d ≤ 2 3.1467 0.1192 0.967 2.0273 0.0680 0.964

ACYCLICITY 0.3845 0.2587 0.971 1.4285 0.1106 0.967

SINGLE-HEAD 0.7187 0.2628 0.976 1.9003 0.1149 0.967

None −0.5000 0.5000 1.000 −0.5000 0.5000 1.000

proportion of non-parsable sentences with about

90% in both treebanks. At the level of individual

arcs, the reduction is even greater, about 95% for

both data sets. And if we allow a maximum degree

of 2, we can capture more than 99.9% of all depen-

dencies, and more than 99.5% of all sentences, in

both PDT and DDT. At the same time, there seems

to be no principled upper bound on the degree of

non-projectivity, since in PDT not even an upper

bound of 10 is sufficient to correctly capture all

dependency graphs in the treebank.3

Let us now see how different constraints affect

running time, as measured by the number of ac-

tive pairs in relation to sentence length. A plot of

this relationship for a subset of the conditions can

be found in Figure 2. For reasons of space, we

only display the data from DDT, but the PDT data

exhibit very similar patterns. Both treebanks are

represented in Table 2, where we show the result

of fitting the quadratic equation y = ax + bx2 to

the data from each condition (where y is the num-

ber of active words and x is the number of words in

the sentence). The amount of variance explained is

given by the r2 value, which shows a very good fit

under all conditions, with statistical significance

beyond the 0.001 level.4

Both Figure 2 and Table 2 show very clearly

that, with no constraints, the relationship between

words and active pairs is exactly the one predicted

by the worst case complexity (cf. section 4) and

that, with each added constraint, this relationship

becomes more and more linear in shape. When we

get to PROJECTIVITY, the quadratic coefficient b

is so small that the average running time is prac-

tically linear for the great majority of sentences.

3The single sentence that is not parsed correctly at d ≤ 10

has a dependency arc of degree 12.
4The curve estimation has been performed using SPSS.

However, the complexity is not much worse for

the bounded degrees of non-projectivity (d ≤ 1,

d ≤ 2). More precisely, for both data sets, the

linear term ax dominates the quadratic term bx2

for sentences up to 50 words at d ≤ 1 and up to

30 words at d ≤ 2. Given that sentences of 50

words or less represent 98.9% of all sentences in

PDT and 98.3% in DDT (the corresponding per-

centages for 30 words being 88.9% and 86.0%), it

seems that the average case running time can be

regarded as linear also for these models.

7 Conclusion

We have investigated a series of graph-theoretic

constraints on dependency structures, aiming to

find a better approximation than PROJECTIVITY

for the structures found in naturally occurring

data, while maintaining good parsing efficiency.

In particular, we have defined the degree of non-

projectivity in terms of the maximum number of

connected components that occur under a depen-

dency arc without being dominated by the head

of that arc. Empirical experiments based on data

from two treebanks, from different languages and

with different annotation schemes, have shown

that limiting the degree d of non-projectivity to

1 or 2 gives an average case running time that is

linear in practice and allows us to capture about

98% of the dependency graphs actually found in

the treebanks with d ≤ 1, and about 99.5% with

d ≤ 2. This is a substantial improvement over

the projective approximation, which only allows

75–85% of the dependency graphs to be captured

exactly. This suggests that the integration of such

constraints into non-projective parsing algorithms

will improve both accuracy and efficiency, but we

have to leave the corroboration of this hypothesis

as a topic for future research.

78



0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

1000.00

2000.00

3000.00

4000.00
P

a
ir

s

None

0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

P
a
ir

s

Single-Head

0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

P
a
ir

s

Acyclic

0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

200.00

400.00

600.00

800.00

P
a
ir

s

d <= 2

0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

100.00

200.00

300.00

400.00

500.00

600.00

P
a
ir

s

d <= 1

0.0 20.0 40.0 60.0 80.0 100.0

Words

0.00

50.00

100.00

150.00

200.00

250.00

P
a
ir

s

Projectivity

Figure 2: Number of active pairs as a function of sentence length under different constraints (DDT)

79



Acknowledgments

The research reported in this paper was partially

funded by the Swedish Research Council (621-

2002-4207). The insightful comments of three

anonymous reviewers helped improve the final

version of the paper.

References

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef
Van Genabith, and Andy Way. 2004. Long-
distance dependency resolution in automatically ac-
quired wide-coverage PCFG-based LFG approxima-
tions. Proceedings of ACL, pp. 320–327.

Richard Campbell. 2004. Using linguistic principles
to recover empty categories. Proceedings of ACL,
pp. 646–653.

Michael Collins, Jan Hajič, Eric Brill, Lance Ramshaw,
and Christoph Tillmann. 1999. A statistical parser
for Czech. Proceedings of ACL, pp. 505–512.

Michael A. Covington. 2001. A fundamental algo-
rithm for dependency parsing. Proceedings of the
39th Annual ACM Southeast Conference, pp. 95–
102.

Péter Dienes and Amit Dubey. 2003. Deep syntac-
tic processing by combining shallow methods. Pro-
ceedings of ACL, pp. 431–438.

Jason M. Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Harry Bunt and
Anton Nijholt, editors, Advances in Probabilistic
and Other Parsing Technologies, pp. 29–62. Kluwer.

Haim Gaifman. 1965. Dependency systems and
phrase-structure systems. Information and Control,
8:304–337.

Jan Hajič, Barbora Vidova Hladka, Jarmila Panevová,
Eva Hajičová, Petr Sgall, and Petr Pajas. 2001.
Prague Dependency Treebank 1.0. LDC, 2001T10.

Jan Hajič. 1998. Building a syntactically annotated
corpus: The Prague Dependency Treebank. Issues
of Valency and Meaning, pp. 106–132. Karolinum.

Julia Hockenmaier. 2003. Data and Models for Sta-
tistical Parsing with Combinatory Categorial Gram-
mar. Ph.D. thesis, University of Edinburgh.

Richard A. Hudson. 1990. English Word Grammar.
Blackwell.

Valentin Jijkoun and Maarten De Rijke. 2004. En-
riching the output of a parser using memory-based
learning. Proceedings of ACL, pp. 312–319.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. Proceedings of ACL, pp. 136–143.

Sylvain Kahane, Alexis Nasr and Owen Rambow.
Pseudo-Projectivity: A Polynomially Parsable Non-
Projective Dependency Grammar. Proceedings of
ACL-COLING, pp. 646–652.

Matthias Trautner Kromann. 2003. The Danish De-
pendency Treebank and the DTAG treebank tool.
Proceedings of TLT, pp. 217–220.

Roger Levy and Christopher Manning. 2004. Deep
dependencies from context-free statistical parsers:
Correcting the surface dependency approximation.
Proceedings of ACL, pp. 328–335.

Hiroshi Maruyama. 1990. Structural disambiguation
with constraint propagation. Proceedings of ACL,
pp. 31–38.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005a. Online large-margin training of de-
pendency parsers. Proceedings of ACL, pp. 91–98.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. Proceedings of
HLT/EMNLP, pp. 523–530.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Peter Neuhaus and Norbert Bröker. 1997. The com-
plexity of recognition of linguistically adequate de-
pendency grammars. Proceedings of ACL-EACL,
pages 337–343.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. Proceedings ACL,
pp. 99–106.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. Proceedings of
CoNLL, pp. 49–56.

Oliver Plaehn. 2000. Computing the most probably
parse for a discontinuous phrase structure grammar.
Proceedings of IWPT.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. 1986.
The Meaning of the Sentence in Its Pragmatic As-
pects. Reidel.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. Proceedings of IWPT, pp. 195–206.

80


