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Abstract

We propose a backoff model for phrase-

based machine translation that translates

unseen word forms in foreign-language

text by hierarchical morphological ab-

stractions at the word and the phrase level.

The model is evaluated on the Europarl

corpus for German-English and Finnish-

English translation and shows improve-

ments over state-of-the-art phrase-based

models.

1 Introduction

Current statistical machine translation (SMT) usu-

ally works well in cases where the domain is

fixed, the training and test data match, and a large

amount of training data is available. Nevertheless,

standard SMT models tend to perform much bet-

ter on languages that are morphologically simple,

whereas highly inflected languages with a large

number of potential word forms are more prob-

lematic, particularly when training data is sparse.

SMT attempts to find a sentence ê in the desired

output language given the corresponding sentence

f in the source language, according to

ê = argmaxeP (f |e)P (e) (1)

Most state-of-the-art SMT adopt a phrase-based

approach such that e is chunked into I phrases

ē1, ..., ēI and the translation model is defined

over mappings between phrases in e and in f .

i.e. P (f̄ |ē). Typically, phrases are extracted from

a word-aligned training corpus. Different inflected

forms of the same lemma are treated as different

words, and there is no provision for unseen forms,

i.e. unknown words encountered in the test data

are not translated at all but appear verbatim in the

output. Although the percentage of such unseen

word forms may be negligible when the training

set is large and matches the test set well, it may rise

drastically when training data is limited or from

a different domain. Many current and future ap-

plications of machine translation require the rapid

porting of existing systems to new languages and

domains without being able to collect appropri-

ate training data; this problem can therefore be

expected to become increasingly more important.

Furthermore, untranslated words can be one of the

main factors contributing to low user satisfaction

in practical applications.

Several previous studies (see Section 2 below)

have addressed issues of morphology in SMT, but

most of these have focused on the problem of word

alignment and vocabulary size reduction. Princi-

pled ways of incorporating different levels of mor-

phological abstraction into phrase-based models

have mostly been ignored so far. In this paper we

propose a hierarchical backoff model for phrase-

based translation that integrates several layers of

morphological operations, such that more specific

models are preferred over more general models.

We experimentally evaluate the model on transla-

tion from two highly-inflected languages, German

and Finnish, into English and present improve-

ments over a state-of-the-art system. The rest of

the paper is structured as follows: The following

section discusses related background work. Sec-

tion 4 describes the proposed model; Sections 5

and 6 provide details about the data and baseline

system used in this study. Section 7 provides ex-

perimental results and discussion. Section 8 con-

cludes.
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2 Morphology in SMT Systems

Previous approaches have used morpho-syntactic

knowledge mainly at the low-level stages of a ma-

chine translation system, i.e. for preprocessing.

(Niessen and Ney, 2001a) use morpho-syntactic

knowledge for reordering certain syntactic con-

structions that differ in word order in the source

vs. target language (German and English). Re-

ordering is applied before training and after gener-

ating the output in the target language. Normaliza-

tion of English/German inflectional morphology

to base forms for the purpose of word alignment is

performed in (Corston-Oliver and Gamon, 2004)

and (Koehn, 2005), demonstrating that the vocab-

ulary size can be reduced significantly without af-

fecting performance.

Similar morphological simplifications have

been applied to other languages such as Roma-

nian (Fraser and Marcu, 2005) in order to de-

crease word alignment error rate. In (Niessen

and Ney, 2001b), a hierarchical lexicon model is

used that represents words as combinations of full

forms, base forms, and part-of-speech tags, and

that allows the word alignment training procedure

to interpolate counts based on the different lev-

els of representation. (Goldwater and McCloskey,

2005) investigate various morphological modifi-

cations for Czech-English translations: a subset

of the vocabulary was converted to stems, pseu-

dowords consisting of morphological tags were in-

troduced, and combinations of stems and morpho-

logical tags were used as new word forms. Small

improvements were found in combination with a

word-to-word translation model. Most of these

techniques have focused on improving word align-

ment or reducing vocabulary size; however, it is

often the case that better word alignment does not

improve the overall translation performance of a

standard phrase-based SMT system.

Phrase-based models themselves have not ben-

efited much from additional morpho-syntactic

knowledge; e.g. (Lioma and Ounis, 2005) do not

report any improvement from integrating part-of-

speech information at the phrase level. One suc-

cessful application of morphological knowledge is

(de Gispert et al., 2005), where knowledge-based

morphological techniques are used to identify un-

seen verb forms in the test text and to generate

inflected forms in the target language based on

annotated POS tags and lemmas. Phrase predic-

tion in the target language is conditioned on the

phrase in the source language as well the corre-

sponding tuple of lemmatized phrases. This tech-

nique worked well for translating from a morpho-

logically poor language (English) to a more highly

inflected language (Spanish) when applied to un-

seen verb forms. Treating both known and un-

known verbs in this way, however, did not result

in additional improvements. Here we extend the

notion of treating known and unknown words dif-

ferently and propose a backoff model for phrase-

based translation.

3 Backoff Models

Generally speaking, backoff models exploit rela-

tionships between more general and more spe-

cific probability distributions. They specify under

which conditions the more specific model is used

and when the model “backs off” to the more gen-

eral distribution. Backoff models have been used

in a variety of ways in natural language process-

ing, most notably in statistical language modeling.

In language modeling, a higher-order n-gram dis-

tribution is used when it is deemed reliable (deter-

mined by the number of occurrences in the train-

ing data); otherwise, the model backs off to the

next lower-order n-gram distribution. For the case

of trigrams, this can be expressed as:

pBO(wt|wt−1, wt−2) (2)

=

{

dcpML(wt|wt−1, wt−2) if c > τ

α(wt−1, wt−2)pBO(wt|wt−1) otherwise

where pML denotes the maximum-likelihood

estimate, c denotes the count of the triple

(wi, wi−1, wi−2) in the training data, τ is the count

threshold above which the maximum-likelihood

estimate is retained, and dN(wi,wi−1,wi−2) is a dis-

counting factor (generally between 0 and 1) that is

applied to the higher-order distribution. The nor-

malization factor α(wi−1, wi−2) ensures that the

distribution sums to one. In (Bilmes and Kirch-

hoff, 2003) this method was generalized to a back-

off model with multiple paths, allowing the com-

bination of different backed-off probability esti-

mates. Hierarchical backoff schemes have also

been used by (Zitouni et al., 2003) for language

modeling and by (Gildea, 2001) for semantic role

labeling. (Resnik et al., 2001) used backoff trans-

lation lexicons for cross-language information re-

trieval. More recently, (Xi and Hwa, 2005) have

used backoff models for combining in-domain and
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out-of-domain data for the purpose of bootstrap-

ping a part-of-speech tagger for Chinese, outper-

forming standard methods such as EM.

4 Backoff Models in MT

In order to handle unseen words in the test data

we propose a hierarchical backoff model that uses

morphological information. Several morphologi-

cal operations, in particular stemming and com-

pound splitting, are interleaved such that a more

specific form (i.e. a form closer to the full word

form) is chosen before a more general form (i.e. a

form that has undergone morphological process-

ing). The procedure is shown in Figure 1 and can

be described as follows: First, a standard phrase

table based on full word forms is trained. If an

unknown word fi is encountered in the test data

with context cfi
= fi−n, ..., fi−1, fi+1, ..., fi+m,

the word is first stemmed, i.e. f ′

i = stem(fi).
The phrase table entries for words sharing the

same stem are then modified by replacing the

respective words with their stems. If an en-

try can be found among these such that the

source language side of the phrase pair consists of

fi−n, ..., fi−1, stem(fi), fi+1, ..., fi+m, the corre-

sponding translation is used (or, if several pos-

sible translations occur, the one with the high-

est probability is chosen). Note that the con-

text may be empty, in which case a single-word

phrase is used. If this step fails, the model backs

off to the next level and applies compound split-

ting to the unknown word (further described be-

low), i.e.(f ′′

i1, f
′′

i2) = split(fi). The match with

the original word-based phrase table is then per-

formed again. If this step fails for either of the

two parts of f ′′, stemming is applied again: f ′′′

i1 =
stem(f ′′

i1) and f ′′′

i2 = stem(f ′′

i2), and a match with

the stemmed phrase table entries is carried out.

Only if the attempted match fails at this level is the

input passed on verbatim in the translation output.

The backoff procedure could in principle be

performed on demand by a specialized decoder;

however, since we use an off-the-shelf decoder

(Pharaoh (Koehn, 2004)), backoff is implicitly en-

forced by providing a phrase-table that includes

all required backoff levels and by preprocessing

the test data accordingly. The phrase table will

thus include entries for phrases based on full word

forms as well as for their stemmed and/or split

counterparts.

For each entry with decomposed morphological

i

i i

i1 i2 i

i1 i1

i2 i2

i1 i2

Figure 1: Backoff procedure.

forms, four probabilities need to be provided: two

phrasal translation scores for both translation di-

rections, p(ē|f̄) and p(f̄ |ē), and two correspond-

ing lexical scores, which are computed as a prod-

uct of the word-by-word translation probabilities

under the given alignment a:

plex(ē|f̄) =
J

∏

j=1

1

|j|a(i) = j|

I
∑

a(i)=j

p(fj |ei) (3)

where j ranges of words in phrase f̄ and i ranges

of words in phrase ē. In the case of unknown

words in the foreign language, we need the prob-

abilities p(ē|stem(f̄)), p(stem(f̄)|ē) (where the

stemming operation stem(f̄) applies to the un-

known words in the phrase), and their lexical

equivalents. These are computed by relative fre-

quency estimation, e.g.

p(ē|stem(f̄)) =
count(ē, stem(f̄))

count(stem(f̄))
(4)

The other translation probabilities are computed

analogously. Since normalization is performed

over the entire phrase table, this procedure has

the effect of discounting the original probability

porig(ē|f̄) since ē may now have been generated

by either f̄ or by stem(f̄). In the standard formu-

lation of backoff models shown in Equation 3, this

amounts to:

pBO(ē|f̄) (5)

=

{

dē,f̄porig(ē|f̄) if c(ē, f̄) > 0

p(ē|stem(f̄)) otherwise
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where

dē,f̄ =
1 − p(ē, stem(f̄))

p(ē, f̄)
(6)

is the amount by which the word-based phrase

translation probability is discounted. Equiva-

lent probability computations are carried out for

the lexical translation probabilities. Similar to

the backoff level that uses stemming, the trans-

lation probabilities need to be recomputed for

the levels that use splitting and combined split-

ting/stemming.

In order to derive the morphological decompo-

sition we use existing tools. For stemming we

use the TreeTagger (Schmid, 1994) for German

and the Snowball stemmer1 for Finnish. A vari-

ety of ways for compound splitting have been in-

vestigated in machine translation (Koehn, 2003).

Here we use a simple technique that considers all

possible ways of segmenting a word into two sub-

parts (with a minimum-length constraint of three

characters on each subpart). A segmentation is ac-

cepted if the subparts appear as individual items

in the training data vocabulary. The only linguis-

tic knowledge used in the segmentation process is

the removal of final <s> from the first part of the

compound before trying to match it to an existing

word. This character (Fugen-s) is often inserted as

“glue” when forming German compounds. Other

glue characters were not considered for simplic-

ity (but could be added in the future). The seg-

mentation method is clearly not linguistically ad-

equate: first, words may be split into more than

two parts. Second, the method may generate mul-

tiple possible segmentations without a principled

way of choosing among them; third, it may gener-

ate invalid splits. However, a manual analysis of

300 unknown compounds in the German develop-

ment set (see next section) showed that 95.3% of

them were decomposed correctly: for the domain

at hand, most compounds need not be split into

more than two parts; if one part is itself a com-

pound it is usually frequent enough in the train-

ing data to have a translation. Furthermore, lexi-

calized compounds, whose decomposition would

lead to wrong translations, are also typically fre-

quent words and have an appropriate translation in

the training data.

1http://snowball.tartarus.org

5 Data

Our data consists of the Europarl training, devel-

opment and test definitions for German-English

and Finnish-English of the 2005 ACL shared data

task (Koehn and Monz, 2005). Both German

and Finnish are morphologically rich languages:

German has four cases and three genders and

shows number, gender and case distinctions not

only on verbs, nouns, and adjectives, but also

on determiners. In addition, it has notoriously

many compounds. Finnish is a highly agglutina-

tive language with a large number of inflectional

paradigms (e.g. one for each of its 15 cases). Noun

compounds are also frequent. On the 2005 ACL

shared MT data task, Finnish to English trans-

lation showed the lowest average performance

(17.9% BLEU) and German had the second low-

est (21.9%), while the average BLEU scores for

French-to-English and Spanish-to-English were

much higher (27.1% and 27.8%, respectively).

The data was preprocessed by lowercasing and

filtering out sentence pairs whose length ratio

(number of words in the source language divided

by the number of words in the target language,

or vice versa) was > 9. The development and

test sets consist of 2000 sentences each. In order

to study the effect of varying amounts of training

data we created several training partitions consist-

ing of random selections of a subset of the full

training set. The sizes of the partitions are shown

in Table 1, together with the resulting percentage

of out-of-vocabulary (OOV) words in the develop-

ment and test sets (“type” refers to a unique word

in the vocabulary, “token” to an instance in the ac-

tual text).

6 System

We use a two-pass phrase-based statistical MT

system using GIZA++ (Och and Ney, 2000) for

word alignment and Pharaoh (Koehn, 2004) for

phrase extraction and decoding. Word alignment

is performed in both directions using the IBM-

4 model. Phrases are then extracted from the

word alignments using the method described in

(Och and Ney, 2003). For first-pass decoding we

use Pharaoh in n-best mode. The decoder uses a

weighted combination of seven scores: 4 transla-

tion model scores (phrase-based and lexical scores

for both directions), a trigram language model

score, a distortion score, and a word penalty. Non-

monotonic decoding is used, with no limit on the
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German-English

Set # sent # words oov dev oov test

train1 5K 101K 7.9/42.6 7.9/42.7

train2 25K 505K 3.8/22.1 3.7/21.9

train3 50K 1013K 2.7/16.1 2.7/16.1

train4 250K 5082K 1.3/8.1 1.2/7.5

train5 751K 15258K 0.8/4.9 0.7/4.4

Finnish-English

Set # sent # words oov dev oov test

train1 5K 78K 16.6/50.6 16.4/50.6

train2 25K 395K 8.6/28.2 8.4/27.8

train3 50K 790K 6.3/21.0 6.2/20.8

train4 250K 3945K 3.1/10.4 3.0/10.2

train5 717K 11319K 1.8/6.2 1.8/6.1

Table 1: Training set sizes and percentages of

OOV words (types/tokens) on the development

and test sets.

dev test

Finnish-English 22.2 22.0

German-English 24.6 24.8

Table 2: Baseline system BLEU scores (%) on dev

and test sets.

number of moves. The score combination weights

are trained by a minimum error rate training pro-

cedure similar to (Och and Ney, 2003). The tri-

gram language model uses modified Kneser-Ney

smoothing and interpolation of trigram and bigram

estimates and was trained on the English side of

the bitext. In the first pass, 2000 hypotheses are

generated per sentence. In the second pass, the

seven scores described above are combined with

4-gram language model scores. The performance

of the baseline system on the development and test

sets is shown in Table 2. The BLEU scores ob-

tained are state-of-the-art for this task.

7 Experiments and Results

We first investigated to what extent the OOV rate

on the development data could be reduced by our

backoff procedure. Table 3 shows the percentage

of words that are still untranslatable after back-

off. A comparison with Table 1 shows that the

backoff model reduces the OOV rate, with a larger

reduction effect observed when the training set

is smaller. We next performed translation with

backoff systems trained on each data partition. In

each case, the combination weights for the indi-

German-English

dev set test set

train1 5.2/27.7 5.1/27.3

train2 2.0/11.7 2.0/11.6

train3 1.4/8.1 1.3/7.6

train4 0.5/3.1 0.5/2.9

train5 0.3/1.7 0.2/1.3

Finnish-English

dev set test set

train1 9.1/28.5 9.2/28.9

train2 3.8/12.4 3.7/12.3

train3 2.5/8.2 2.4/8.0

train4 0.9/3.2 0.9/3.0

train5 0.4/1.4 0.4/1.5

Table 3: OOV rates (%) on the development

and test sets under the backoff model (word

types/tokens).

vidual model scores were re-optimized. Table 4

shows the evaluation results on the dev set. Since

the BLEU score alone is often not a good indi-

cator of successful translations of unknown words

(the unigram or bigram precision may be increased

but may not have a strong effect on the over-

all BLEU score), position-independent word error

rate (PER) rate was measured as well. We see im-

provements in BLEU score and PERs in almost

all cases. Statistical significance was measured on

PER using a difference of proportions significance

test and on BLEU using a segment-level paired

t-test. PER improvements are significant almost

all training conditions for both languages; BLEU

improvements are significant in all conditions for

Finnish and for the two smallest training sets for

German. The effect on the overall development set

(consisting of both sentences with known words

only and sentences with unknown words) is shown

in Table 5. As expected, the impact on overall per-

formance is smaller, especially for larger training

data sets, due to the relatively small percentage of

OOV tokens (see Table 1). The evaluation results

for the test set are shown in Tables 6 (for the sub-

set of sentences with OOVs) and 7 (for the entire

test set), with similar conclusions.

The examples A and B in Figure 2 demon-

strate higher-scoring translations produced by the

backoff system as opposed to the baseline sys-

tem. An analysis of the backoff system output

showed that in some cases (e.g. examples C and
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German-English

baseline backoff

Set BLEU PER BLEU PER

train1 14.2 56.9 15.4 55.5

train2 16.3 55.2 17.3 51.8

train3 17.8 51.1 18.4 49.7

train4 19.6 51.1 19.9 47.6

train5 21.9 46.6 22.6 46.0

Finnish-English

baseline backoff

Set BLEU PER BLEU PER

Set BLEU PER BLEU PER

train1 12.4 59.9 13.6 57.8

train2 13.0 61.2 13.9 59.1

train3 14.0 58.0 14.7 57.8

train4 17.4 52.7 18.4 50.8

train5 16.8 52.7 18.7 50.2

Table 4: BLEU (%) and position-independent

word error rate (PER) on the subset of the devel-

opment data containing unknown words (second-

pass output). Here and in the following tables,

statistically significant differences to the baseline

model are shown in boldface (p < 0.05).

German-English

baseline backoff

Set BLEU PER BLEU PER

train1 15.3 56.4 16.3 55.1

train2 19.0 53.0 19.5 51.6

train3 20.0 49.9 20.5 49.3

train4 22.2 49.0 22.4 48.1

train5 24.6 46.5 24.7 45.6

Finnish-English

baseline backoff

Set BLEU PER BLEU PER

train1 13.1 59.3 14.4 57.4

train2 14.5 59.7 15.4 58.3

train3 16.0 56.5 16.5 56.5

train4 21.0 50.0 21.4 49.2

train5 22.2 50.5 22.5 49.7

Table 5: BLEU (%) and position-independent

word error rate (PER) for the entire development

set.

German-English

baseline backoff

Set BLEU PER BLEU PER

train1 14.3 56.2 15.5 55.1

train2 17.1 54.3 17.6 50.7

train3 17.4 50.8 18.1 49.7

train4 18.9 49.8 18.8 48.2

train5 19.1 46.3 19.4 46.2

Finnish-English

baseline backoff

Set BLEU PER BLEU PER

train1 12.4 59.5 13.5 57.5

train2 13.3 60.7 14.2 59.0

train3 14.1 58.2 15.1 57.3

train4 17.2 54.0 18.4 50.2

train5 16.6 51.8 19.0 49.4

Table 6: BLEU (%) and position-independent

word error rate (PER) for the test set (subset with

OOV words).

D in Figure 2), the backoff model produced a

good translation, but the translation was a para-

phrase rather than an identical match to the ref-

erence translation. Since only a single reference

translation is available for the Europarl data (pre-

venting the computation of a BLEU score based

on multiple hand-annotated references), good but

non-matching translations are not taken into ac-

count by our evaluation method. In other cases

the unknown word was translated correctly, but

since it was translated as single-word phrase the

segmentation of the entire sentence was affected.

This may cause greater distortion effects since the

sentence is segmented into a larger number of

smaller phrases, each of which can be reordered.

We therefore added the possibility of translating

an unknown word in its phrasal context by stem-

ming up to m words to the left and right in the

original sentence and finding translations for the

entire stemmed phrase (i.e. the function stem()
is now applied to the entire phrase). This step

is inserted before the stemming of a single word

f in the backoff model described above. How-

ever, since translations for entire stemmed phrases

were found only in about 1% of all cases, there

was no significant effect on the BLEU score. An-

other possibility of limiting reordering effects re-

sulting from single-word translations of OOVs is

to restrict the distortion limit of the decoder. Our
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German-English

baseline backoff

Set BLEU PER BLEU PER

train1 15.3 55.8 16.3 54.8

train2 19.4 52.3 19.6 50.9

train3 20.3 49.6 20.7 49.2

train4 22.5 48.1 22.5 47.9

train5 24.8 46.3 25.1 45.5

Finnish-English

baseline backoff

Set BLEU PER BLEU PER

train1 12.9 58.7 14.0 57.0

train2 14.5 59.5 15.3 58.4

train3 15.6 56.6 16.4 56.2

train4 20.6 50.3 21.0 49.6

train5 22.0 50.0 22.3 49.5

Table 7: BLEU (%) and position-independent

word error rate (PER) for the test set (entire test

set).

experiments showed that this improves the BLEU

score slightly for both the baseline and the backoff

system; the relative difference, however, remained

the same.

8 Conclusions

We have presented a backoff model for phrase-

based SMT that uses morphological abstractions

to translate unseen word forms in the foreign lan-

guage input. When a match for an unknown word

in the test set cannot be found in the trained phrase

table, the model relies instead on translation prob-

abilities derived from stemmed or split versions

of the word in its phrasal context. An evalua-

tion of the model on German-English and Finnish-

English translations of parliamentary proceedings

showed statistically significant improvements in

PER for almost all training conditions and signifi-

cant improvements in BLEU when the training set

is small (100K words), with larger improvements

for Finnish than for German. This demonstrates

that our method is mainly relevant for highly in-

flected languages and sparse training data condi-

tions. It is also designed to improve human accep-

tance of machine translation output, which is par-

ticularly adversely affected by untranslated words.
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Example A: (German-English):
SRC: wir sind berzeugt davon, dass ein europa des friedens
nicht durch militärbündnisse geschaffen wird.
BASE: we are convinced that a europe of peace, not by
militärbündnisse is created.
BACKOFF: we are convinced that a europe of peace, not
by military alliance is created.
REF: we are convinced that a europe of peace will not be
created through military alliances.

Example B. (Finnish-English):
SRC: arvoisa puhemies, puhuimme täällä eilisiltana
serviasta ja siellä tapahtuvista vallankumouksellisista
muutoksista.
BASE: mr president, we talked about here last night, on
the subject of serbia and there, of vallankumouksellisista
changes.
BACKOFF: mr president, we talked about here last
night, on the subject of serbia and there, of revolutionary
changes.
REF: mr. president, last night we discussed the topic of
serbia and the revolutionary changes that are taking place
there.

Example C. (Finnish-English):
SRC: toivon tältä osin, että yhdistyneiden kansakuntien
alaisuudessa käytävissä neuvotteluissa päästäisiin sell-
aiseen lopputulokseen, että kyproksen kreikkalainen ja
turkkilainen väestönosa voisivat yhdessä nauttia liittymisen
mukanaan tuomista eduista yhdistetyssä tasavallassa.
BASE: i hope that the united nations in the negotiations
to reach a conclusion that the greek and turkish accession
to the benefi t of the benefi ts of the republic of ydistetyssä
brings together väestönosa could, in this respect, under the
auspices.
BACKOFF: i hope that the united nations in the nego-
tiations to reach a conclusion that the greek and turkish
communities can work together to bring the benefi ts of the
accession of the republic of ydistetyssä. in this respect,
under the
REF: in this connection, i would hope that the talks
conducted under the auspices of the united nations will be
able to come to a successful conclusion enabling the greek
and turkish cypriot populations to enjoy the advantages
of membership of the european union in the context of a
reunifi ed republic.

Example D. (German-English):
SRC:so sind wir beim durcharbeiten des textes verfahren,
wobei wir bei einer reihe von punkten versucht haben, noch
einige straffungen vorzunehmen.
BASE: we are in the durcharbeiten procedures of the text,
although we have tried to make a few straffungen to carry
out on a number of issues.
BACKOFF: we are in the durcharbeiten procedures, and
we have tried to make a few streamlining of the text in a
number of points.
REF: this is how we came to go through the text, and
attempted to cut down on certain items in the process.

Figure 2: Translation examples (SRC = source,

BASE = baseline system, BACKOFF = backoff

system, REF = reference). OOVs and their trans-

lation are marked in boldface.
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the Finnish language.
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