
Weakly Supervised Approaches for Ontology Population

Hristo Tanev Tanev

ITC-irst

38050, Povo

Trento, Italy

htanev@yahoo.co.uk

Bernardo Magnini

ITC-irst

38050, Povo

Trento, Italy

magnini@itc.it

Abstract

We present a weakly supervised approach

to automatic Ontology Population from

text and compare it with other two unsu-

pervised approaches. In our experiments

we populate a part of our ontology of

Named Entities. We considered two high

level categories - geographical locations

and person names and ten sub-classes for

each category. For each sub-class, from

a list of training examples and a syntac-

tically parsed corpus, we automatically

learn a syntactic model - a set of weighted

syntactic features, i.e. words which typ-

ically co-occur in certain syntactic posi-

tions with the members of that class. The

model is then used to classify the unknown

Named Entities in the test set. The method

is weakly supervised, since no annotated

corpus is used in the learning process. We

achieved promising results, i.e. 65% accu-

racy, outperforming significantly previous

unsupervised approaches.

1 Introduction

Automatic Ontology Population (OP) from texts

has recently emerged as a new field of application

for knowledge acquisition techniques (see, among

others, (Buitelaar et al., 2005)). Although there

is no a univocally accepted definition for the OP

task, a useful approximation has been suggested

(Bontcheva and Cunningham, 2003) as Ontology

Driven Information Extraction, where, in place of

a template to be filled, the goal of the task is the ex-

traction and classification of instances of concepts

and relations defined in a Ontology. The task has

been approached in a variety of similar perspec-

tives, including term clustering (e.g. (Lin, 1998a)

and (Almuhareb and Poesio, 2004)) and term cat-

egorization (e.g. (Avancini et al., 2003)).

A rather different task is Ontology Learning

(OL), where new concepts and relations are sup-

posed to be acquired, with the consequence of

changing the definition of the Ontology itself (see,

for instance, (Velardi et al., 2005)).

In this paper OP is defined in the following sce-

nario. Given a set of terms T = t1, t2, ..., tn, a

document collection D, where terms in T are sup-

posed to appear, and a set of predefined classes

C = c1, c2, ..., cm denoting concepts in an Ontol-

ogy, each term ti has to be assigned to the proper

class in C. For the purposes of the experiments

presented in this paper we assume that (i) classes

in C are mutually disjoint and (ii) each term is as-

signed to just one class.

As we have defined it, OP shows a strong sim-

ilarity with Named Entity Recognition and Clas-

sification (NERC). However, a major difference is

that in NERC each occurrences of a recognized

term has to be classified separately, while in OP it

is the term, independently of the context in which

it appears, that has to be classified.

While Information Extraction, and NERC in

particular, have been addressed prevalently by

means of supervised approaches, Ontology Popu-

lation is typically attacked in an unsupervised way.

As many authors have pointed out (e.g. (Cimiano

and Völker, 2005)), the main motivation is the fact

that in OP the set of classes is usually larger and

more fine grained than in NERC (where the typ-

ical set includes Person, Location, Organization,

GPE, and a Miscellanea class for all other kind

of entities). In addition, by definition, the set of

classes in C changes as a new ontology is consid-

ered, making the creation of annotated data almost

impossible practically.

17

According with the demand for weakly super-

vised approaches to OP, we propose a method,

called Class − Example, which learns a classi-

fication model from a set of classified terms, ex-

ploiting lexico-syntactic features. Unlike most of

the approaches which consider pair wise similarity

between terms ((Cimiano and Völker, 2005); (Lin,

1998a)), the Class-Example method considers the

similarity between a term ti and a set of training

examples which represent a certain class. This re-

sults in a great number of class features and opens

the possibility to exploit more statistical data, such

as the frequency of appearance of a class feature in

different training terms.

In order to show the effectiveness of the Class-

Example approach, it has been compared against

two different approaches: (i) a Class-Pattern unsu-

pervised approach, in the style of (Hearst, 1998);

(ii) an unsupervised approach that considers the

word of the class as a pivot word for acquiring

relevant contexts for the class (we refer to this

method as Class−Word). Results of the compar-

ison show that the Class-Example method outper-

forms significantly the other two methods, making

it appealing even considering the need of supervi-

sion.

Although the Class-Example method we pro-

pose is applicable in general, in this paper we

show its usefulness when applied to terms denot-

ing Named Entities. The motivation behind this

choice is the practical value of Named Entity clas-

sifications, as, for instance, in applications such as

Questions Answering and Information Extraction.

Moreover, some Named Entity classes, including

names of writers, athletes and organizations, dy-

namically change over the time, which makes it

impossible to capture them in a static Ontology.

The rest of the paper is structured as follows.

Section 2 describes the state-of-the-art methods in

Ontology Population. Section 3 presents the three

approaches to the task we have compared. Section

4 introduces Syntactic Network, a formalism used

for the representation of syntactic information and

exploited in both the Class-Word and the Class-

Example approaches. Section 5 reports on the

experimental settings, results obtained, and dis-

cusses the three approaches. Section 6 concludes

the paper and suggests directions for future work.

2 Related Work

There are two main paradigms distinguishing On-

tology Population approaches. In the first one

Ontology Population is performed using patterns

(Hearst, 1998) or relying on the structure of terms

(Velardi et al., 2005). In the second paradigm the

task is addressed using contextual features (Cimi-

ano and Völker, 2005).

Pattern-based approaches search for phrases

which explicitly show that there is an “is-a” re-

lation between two words, e.g. “the ant is an in-

sect” or “ants and other insects”. However, such

phrases do not appear frequently in a text cor-

pus. For this reason, some approaches use the Web

(Schlobach et al., 2004). (Velardi et al., 2005) ex-

perimented several head-matching heuristics ac-

cording to which if a term1 is in the head of

term2, then there is an “is-a” relation between

them: For example “Christmas tree” is a kind of

“tree”.

Context feature approaches use a corpus to ex-

tract features from the context in which a se-

mantic class tends to appear. Contextual features

may be superficial (Fleischman and Hovy, 2002)

or syntactic (Lin, 1998a), (Almuhareb and Poe-

sio, 2004). Comparative evaluation in (Cimiano

and Völker, 2005) shows that syntactic features

lead to better performance. Feature weights can

be calculated either by Machine Learning algo-

rithms (Fleischman and Hovy, 2002) or by statisti-

cal measures, like Point Wise Mutual Information

or the Jaccard coefficient (Lin, 1998a).

A hybrid approach using both pattern-based,

term structure, and contextual feature methods is

presented in (Cimiano et al., 2005).

State-of-the-art approaches may be divided in

two classes, according to different use of train-

ing data: Unsupervised approaches (see (Cimi-

ano et al., 2005) for details) and supervised ap-

proaches which use manually tagged training data,

e.g. (Fleischman and Hovy, 2002). While state-

of-the-art unsupervised methods have low perfor-

mance, supervised approaches reach higher ac-

curacy, but require the manual construction of a

training set, which impedes them from large scale

applications.

3 Weakly supervised approaches for

Ontology Population

In this Section we present three Ontology Popula-

tion approaches. Two of them are unsupervised:

18

(i) a pattern-based approach described in (Hearst,

1998), which we refer to as Class-Pattern and (ii)

a feature similarity method reported in (Cimiano

and Völker, 2005) to which we will refer as Class-

Word. Finally, we describe a new weakly super-

vised approach for ontology population which ac-

cepts as a training data lists of instances for each

class under consideration. This method we call

Class-Example.

3.1 Class-Pattern approach

This approach was described first in (Hearst,

1998). The main idea is that if a term t belongs

to a class c, then in a text corpus we may expect

the occurrence of phrases like such c as t,.... In our

experiments for ontology population we used the

patterns described in the Hearst’s paper plus the

pattern t is (a | the) c:

1. t is (a | the) c

2. such c as t

3. such c as (NP,)*, (and | or) t

4. t (,NP)* (and | or) other c

5. c, (especially | including) (NP,)* t

For each instance from the test set t and for each

concept c we instantiated the patterns and searched

with them in the corpus. If a pattern which is in-

stantiated with a concept c and a term t appears

in the corpus, then we assume the t belongs to c.

For example, if the term to be classified is “Etna”

and the concept is “mountain”, one of the instan-

tiated patterns will be “mountains such as Etna”;

if this pattern is found in the text, then “Etna” is

considered to be a “mountain”. If the algorithm

assigns a term to several categories, we choose the

one which co-occurs most often with the term.

3.2 Class-Word approach

(Cimiano and Völker, 2005) describes an unsu-

pervised approach for ontology population based

on vector-feature similarity between each concept

c and a term to be classified t. For example,

in order to conclude how much “Etna” is an ap-

propriate instance of the class “mountain”, this

method finds the feature-vector similarity between

the word “Etna” and the word “mountain”. Each

instance from the test set T is assigned to one of

the classes in the set C. Features are collected

from Corpus and the classification algorithm on

classify(T , C, Corpus)

foreach(t in T) do{
vt = getContextV ector(t, Corpus);}

foreach(c in C) do{
vc = getContextV ector(c, Corpus);}

foreach(t in T) do{
classes[t] = argmaxc∈Csim(vt, vc);}

return classes[];
end classify

Figure 1: Unsupervised algorithm for Ontology

Population.

figure 1 is applied. The problem with this ap-

proach is that the context distribution of a name

(e.g. “Etna”) is sometimes different than the con-

text distribution of the class word (e.g. “moun-

tain”). Moreover, a single word provides a limited

quantity of contextual data.

In this algorithm the context vectors vt and

vc are feature vectors whose elements represent

weighted context features from Corpus of the

term t (e.g. “Etna”) or the concept word c (e.g.

“mountain”). Cimiano and Völker evaluate differ-

ent context features and prove that syntactic fea-

tures work best. Therefore, in our experimen-

tal settings we considered only such features ex-

tracted from a corpus parsed with a dependency

parser. Unlike the original approach which relies

on pseudo-syntactic features, we used features ex-

tracted from dependency parse trees. Moreover,

we used virtually all the words connected syntacti-

cally to a term, not only the modifiers. A syntactic

feature is a pair: (word, syntactic relation) (Lin,

1998a). We use two feature types: First order fea-

tures, which are directly connected to the training

or test examples in the dependency parse trees of

Corpus; second order features, which are con-

nected to the training or test instances indirectly

by skipping one word (the verb) in the dependency

tree. As an example, let’s consider two sentences:

“Edison invented the phonograph” and “Edison

created the phonograph”. If “Edison” is a name

to be classified, then two first order features of this

name exist - (“invent”, subject-of) and (“create”,

subject-of). One second order feature can be ex-

tracted - (“phonograph”, object-of+subject); it co-

occurs two times with the word “Edison”. In our

experiments second order features are considered

only those words which are governed by the same

verb whose subject is the name which is a training

19

or test instance (in this example “Edison”).

3.3 Weakly Supervised Class-Example

Approach

The approach we put forward here uses the same

processing stages as the one presented in Fig-

ure 1 and relies on syntactic features extracted

from a corpus. However, the Class-Example al-

gorithm receives as an additional input parame-

ter the sets of training examples for each class

c ∈ C. These training sets are simple lists of

instances (i.e. terms denoting Named Entities),

without context, and can be acquired automati-

cally or semi-automatically from an existing on-

tology or gazetteer. To facilitate their acquisition,

the Class-Example approach imposes no restric-

tions to the training examples - they can be am-

biguous and have different frequencies. However,

they have to appear in Corpus (in our experimen-

tal settings - at least twice). For example, for the

class “mountain” training examples are: “Ever-

est”, “Mauna Loa”, etc.

The algorithm learns from each training set

Train(c) a single feature vector vc, called the syn-

tactic model of the class. Therefore, in our algo-

rithm, the statement

vc = getContextV ector(c, Corpus)

in Figure 1 is substituted with

vc = getSyntacticModel(Train(c), Corpus).

For each class c, a set of syntactic features F (c)
are collected by finding the union of the features

extracted from each occurrence in the corpus of

each training instance in Train(c). Next, the fea-

ture vector vc is constructed: If a feature is not

present in F (c), then its corresponding coordinate

in vc has value 0; otherwise, it has a value equal to

the feature weight.

The weight of a feature fc ∈ F (c) is calculated

in three steps:

1. First, the co-occurrence of fc with the train-

ing set is calculated:

weight1(fc) =
∑

t∈Train(c)

α.log(
P (fc, t)

P (fc).P (t)
)

where P (fc, t) is the probability that feature

fc co-occurs with t, P (fc) and P (t) are the

probabilities that fc and t appear in the cor-

pus, α = 14 for syntactic features with lexi-

cal element noun and α = 1 for all the other

syntactic features. The α parameter reflects

the linguistic intuition that nouns are more in-

formative than verbs and adjectives which in

most cases represent generic predicates. The

values of α were automatically learned from

the training data.

2. We normalize the feature weights, since we

observed that they vary a lot between dif-

ferent classes: for each class c we find the

feature with maximal weight and denote its

weight with mxW (c),

mxW (c) = maxfc∈F (c)weight1(fc)

Next, the weight of each feature fc ∈ F (c) is

normalized by dividing it with mxW (c):

weightN (fc) =
weight1(fc)

mxW (c)

3. To obtain the final weight of fc, we divide

weightN (fc) by the number of classes in

which this feature appears. This is motivated

by the intuition that a feature which appears

in the syntactic models of many classes is not

a good class predictor.

weight(fc) =
weightN (fc)

|Classes(fc)|

where |Classes(fc)| is the number of classes

for which fc is present in the syntactic model.

As shown in Figure 1, the classification uses a

similarity function sim(vt, vc) whose arguments

are the feature vector of a term vt and the feature

vector vc for a class c. We defined the similarity

function as the dot product of the two feature vec-

tors: sim(vt, vc) = vc.vt. Vectors vt are binary

(i.e. the feature value is 1 if the feature is present

and, 0-otherwise), while the features in the syntac-

tic model vectors vc receive weights according to

the approach described in this Section.

4 Representing Syntactic Information

Since both the Class-Word and the Class-Example

methods work with syntactic features, the main

source of information is a syntactically parsed cor-

pus. We parsed about half a gigabyte of a news

corpus with MiniPar (Lin, 1998b). It is a statis-

tically based dependency parser which is reported

to reach 89% precision and 82% recall on press re-

portage texts. MiniPar generates syntactic depen-

dency structures - directed labeled graphs whose

20

g1 g2 SyntNet(g1, g2)

loves|1

s

²²
o

%%J

J

J

J

J

J

J

J

J

J

J

loves|4 o
//

s

²²

Jane|6 loves|1,4

(1,2)(4,5)

²²

(4,6)

o
//

(1,3)

o
**T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Jane|6

John|2 Mary|3 John|5 John|2,5 Mary|3

Figure 2: Two syntactic graphs and their Syntactic Network.

vertices represent words and the edges between

them represent syntactic relations like subject, ob-

ject, modifier, etc. Examples for two dependency

structures - g1 and g2, are shown in Figure 2:

They represent the sentences “John loves Mary”

and “John loves Jane”; labels s and o on their

edges stand for subject and object respectively.

The syntactic structures generated by MiniPar are

dendroid (tree-like), but still cycles appear in some

cases.

In order to extract information from the parsed

corpus, we had to choose a model for represent-

ing dependency trees which allows to search ef-

ficiently for syntactic structures and to calculate

their frequencies. Building a classic index at word

level was not an option, since we have to search for

syntactic structures, not words. On the other hand,

indexing syntactic relations (i.e. word pair and the

relation between the words) would be useful, but

still does not resolve the problem, since in many

cases we search for more complex structures than

a relation between two words: for example, when

we have to find which words are syntactically re-

lated to a Named Entity composed by two words,

we have to search for syntactic structures which

consists of three vertices and two edges.

In order to trace efficiently more complex struc-

tures in the corpus, we put forward a model for

representation of a set of labeled graphs, called

Syntactic Network (SyntNet for short). The model

is inspired by a model presented earlier in (Szpek-

tor et al., 2004), however our model allows more

efficient construction of the representation. The

scope of SyntNet is to represent a set of labeled

graphs through one aggregate structure in which

the isomorphic sub-structures overlap. When

SyntNet represents a syntactically parsed text cor-

pus, its vertices are labeled with words from the

text while edges represent syntactic relations from

the corpus and are labeled accordingly.

An example is shown in Figure 2, where two

syntactic graphs, g1 and g2, are merged into

one aggregate representation SyntNet(g1, g2).
Vertices labeled with equal words in g1 and

g2 are merged into one generalizing vertex in

SyntNet(g1, g2). For example, the vertices with

label John in g1 and g2 are merged into one vertex

John in SyntNet(g1, g2).
Edges are merged in a similar way:

(loves, John) ∈ g1 and (loves, John) ∈ g2

are represented through one edge (loves, John)
in SyntNet(g1, g2).

Each vertex in g1 and g2 is labeled addition-

ally with a numerical index which is unique

for the graph set. Numbers on vertices in

SyntNet(g1, g2) show which vertices from g1

and g2 are merged in the corresponding Synt-

Net vertices. For example, vertex loves ∈
SyntNet(g1, g2) has a set {1, 4} which means

that vertices 1 and 4 are merged in it. In a similar

way the edge (loves, John) ∈ SyntNet(g1, g2)
is labeled with two pairs of indices (4, 5) and

(1, 2), which shows that it represents two edges:

the edge between vertices 4 and 5 and the edge

between 1 and 2.

Two properties of SyntNet are important: first

isomorphic sub-structures from all the graphs rep-

resented via a SyntNet are mapped into one struc-

ture. This allows us to easily find all the oc-

currences of multiword terms and named enti-

ties. Second, using the numerical indices on ver-

tices and edges, we can efficiently calculate which

structures are connected syntactically to the train-

ing and test terms. As an example, let’s try to cal-

culate in which constructions the word “Mary” ap-

pears considering SyntNet in Figure 2. First, in

SyntNet we can directly observe that there is the

relation loves → Mary labeled with the pair 1 → 3
- therefore this relation appears once in the corpus.

Next, tracing the numerical indices on the ver-

tices and edges we can find a path from “Mary” to

“John” through “loves”. The path passes through

the following numerical indices: 3 ← 1 → 2: this

means that there is one appearance of the structure

21

“John loves Mary” in the corpus, spanning through

vertices 1, 2, and 3. Such a path through the nu-

merical indices cannot be found between “Mary”

and “Jane” which means that they do not appear in

the same syntactic construction in the corpus.

SyntNet is built incrementally in a straightfor-

ward manner: Each new vertex or edge added to

the network is merged with the identical vertex or

edge, if such already exists in SyntNet. Otherwise,

a new vertex or edge is added to the network. The

time necessary for building a SyntNet is propor-

tional to the number of the vertices and the edges

in the represented graphs (and does not otherwise

depend on their complexity).

The efficiency of the SyntNet model when

representing and searching for labeled structures

makes it very appropriate for the representation of

a syntactically parsed corpus. We used the prop-

erties of SyntNet in order to trace efficiently the

occurrences of Named Entities in the parsed cor-

pus, to calculate their frequencies, to find the syn-

tactic features which co-occur with these Named

Entities, as well as the frequencies of these co-

occurrences. Moreover, the SyntNet model al-

lowed us to extract more complex, second order

syntactic features which are connected indirectly

to the terms in the training and the test set.

5 Experimental settings and results

We have evaluated all the three approaches de-

scribed in Section 3. The same evaluation settings

were used for the three experiments. The source

of features was a news corpus of about half a gi-

gabyte. The corpus was parsed with MiniPar and

a Syntactic Network representation was built from

the dependency parse trees produced by the parser.

Syntactic features were extracted from this Synt-

Net.

We considered two high-level Named Entity

categories: Locations and Persons. For each of

them five fine-grained sub-classes were taken into

consideration. For locations: mountain, lake,

river, city, and country; for persons: statesman,

writer, athlete, actor, and inventor.

For each class under consideration we created

a test set of Named Entities using WordNet 2.0

and Internet sites like Wikipedia. For the Class-

Example approach we also provided training data

using the same resources. WordNet was the pri-

mary data source for training and test data. The ex-

amples from it were extracted automatically. We

P (%) R (%) F (%)

mountain 58 78 67

lake 75 50 60

river 69 55 61

city 56 76 65

country 86 93 89

locations macro 69 70 68

locations micro 78 78 78

statesman 42 72 53

writer 93 55 69

athlete 90 47 62

actor 90 73 80

inventor 12 33 18

persons macro 65 56 57

persons micro 57 57 57

total macro 67 63 62

total micro 65 65 65

category location 83 91 87

category person 95 89 92

Table 1: Performance of the Class-Example ap-

proach.

used Internet to get additional examples for some

classes. To do this, we created automatic text ex-

traction scripts for Web pages and manually fil-

tered their output when it was necessary.

Totally, the test data comprised 280 Named En-

tities which were not ambiguous and appeared at

least twice in the corpus.

For the Class-Example approach we provided

a training set of 1194 names. The only require-

ment to the names in the training set was that

they appear at least twice in the parsed corpus.

They were allowed to be ambiguous and no man-

ual post-processing or filtering was carried out on

this data.

For both context feature approaches (i.e. Class-

Word and Class-Example), we used the same type

of syntactic features and the same classification

function, namely the one described in Section 3.3.

This was done in order to compare better the ap-

proaches.

Results from the comparative evaluation are

shown in Table 2. For each approach we mea-

sured macro average precision, macro average re-

call, macro average F-measure and micro average

F; for Class-Word and Class-Example micro F is

equal to the overall accuracy, i.e. the percent of the

instances classified correctly. The first row shows

22

macro P (%) macro R (%) macro F (%) micro F(%)

Class-Patterns 18 6 9 10

Class-Word 32 41 33 42

Class-Example 67 63 62 65

Class-Example (sec. ord.) 65 61 62 68

Table 2: Comparison of different approaches.

the results obtained with superficial patterns. The

second row presents the results from the Class-

Word approach. The third row shows the results

of our Class-Example method. The fourth line

presents the results for the same approach but us-

ing second-order features for the person category.

The Class-Pattern approach showed low perfor-

mance, similar to the random classification, for

which macro and micro F=10%. Patterns suc-

ceeded to classify correctly only instances of the

classes “river” and “city”. For the class “city”

the patterns reached precision of 100% and recall

65%; for the class “river” precision was high (i.e.

75%), but recall was 15%.

The Class-Word approach showed significantly

better performance (macro F=33%, micro F=42%)

than the Class-Pattern approach.

The performance of the Class-Example (62%

macro F and 65%-68% micro F) is much higher

than the performance of Class-Word (29% in-

crease in macro F and 23% in micro F). The last

row of the table shows that second-order syntactic

features augment further the performance of the

Class-Example method in terms of micro average

F (68% vs. 65%).

A more detailed evaluation of the Class-

Example approach is shown in Table 1. In this

table we show the performance of the approach

without the second-order features. Results vary

between different classes: The highest F is mea-

sured for the class “country” - 89% and the low-

est is for the class “inventor” - 18%. However,

the class “inventor” is an exception - for all the

other classes the F measure is over 50%. Another

difference may be observed between the Location

and Person classes: Our approach performs sig-

nificantly better for the locations (68% vs. 57%

macro F and 78% vs. 57% micro F). Although

different classes had different number of training

examples, we observed that the performance for

a class does not depend on the size of its training

set. We think, that the variation in performance be-

tween categories is due to the different specificity

of their textual contexts. As a consequence, some

classes tend to co-occur with more specific syn-

tactic features, while for other classes this is not

true.

Additionally, we measured the performance

of our approach considering only the macro-

categories “Location” and “Person”. For this pur-

pose we did not run another experiment, we rather

used the results from the fine-grained classifica-

tion and grouped the already obtained classes. Re-

sults are shown in the last two rows of table 1: It

turns out that the Class-Example method makes

very well the difference between “location” and

“person” - 90% of the test instances were classi-

fied correctly between these categories.

6 Conclusions and future work

In this paper we presented a new weakly super-

vised approach for Ontology Population, called

Class-Example, and confronted it with two other

methods. Experimental results show that the

Class-Example approach has best performance. In

particular, it reached 65% of accuracy, outper-

forming in our experimental framework the state-

of-the-art Class-Word method by 42%. Moreover,

for location names the method reached accuracy

of 78%. Although the experiments are not com-

parable, we would like to state that some super-

vised approaches for fine-grained Named Entity

classification, e.g. (Fleischman, 2001), have sim-

ilar accuracy. On the other hand, the presented

weakly supervised Class-Example approach re-

quires as a training data only a list of terms for

each class under consideration. Training exam-

ples can be automatically acquired from existing

ontologies or other sources, since the approach

imposes virtually no restrictions on them. This

makes our weakly supervised methodology appli-

cable on larger scale than supervised approaches,

still having significantly better performance than

the unsupervised ones.

In our experimental framework we used syntac-

tic features extracted from dependency parse trees

23

and we put forward a novel model for the repre-

sentation of a syntactically parsed corpus. This

model allows for performing a comprehensive ex-

traction of syntactic features from a corpus includ-

ing more complex second-order ones, which re-

sulted in an improvement of performance. This

and other empirical observations not described in

this paper lead us to the conclusion that the per-

formance of an Ontology Population system im-

proves with the increase of the types of syntactic

features under consideration.

In our future work we consider applying our

Ontology Population methodology to more se-

mantic categories and to experiment with other

types of syntactic features, as well as other types

of feature-weighting formulae and learning algo-

rithms. We consider also the integration of the

approach in a Question Answering or Information

Extraction system, where it can be used to perform

fine-grained type checking.

References

A. Almuhareb and M. Poesio. 2004. Attribute-
based and value-based clustering: An evaluation.
In Proceedings of EMNLP 2004, pages 158–165,
Barcelona, Spain.

H. Avancini, A. Lavelli, B. Magnini, F. Sebastiani, and
R. Zanoli. 2003. Expanding Domain-Specific Lex-
icons by Term Categorization. In Proceedings of
SAC 2003, pages 793–79.

K. Bontcheva and H. Cunningham. 2003. The Se-
mantic Web: A New Opportunity and Challenge for
HLT. In Proceedings of the Workshop HLT for the
Semantic Web and Web Services at ISWC 2003.

P. Buitelaar, P. Cimiano, and B. Magnini, editors.
2005. Ontology Learning from Text: Methods, Eval-
uation and Applications. IOS Press, Amsterdam,
The Netherlands.

P. Cimiano and J. Völker. 2005. Towards large-scale,
open-domain and ontology-based named entity clas-
sification. In Proceedings of RANLP’05, pages 166–
172, Borovets, Bulgaria.

P. Cimiano, A. Pivk, L.S. Thieme, and S. Staab. 2005.
Learning Taxonomic Relations from Heterogeneous
Sources of Evidence. In Ontology Learning from
Text: Methods, Evaluation and Applications. IOS
Press.

M. Fleischman and E. Hovy. 2002. Fine Grained
Classification of Named Entities. In Proceedings of
COLING 2002, Taipei, Taiwan, August.

M. Fleischman. 2001. Automated Subcategorization
of Named Entities. In 39th Annual Meeting of the

ACL, Student Research Workshop, Toulouse, France,
July.

M. Hearst. 1998. Automated Discovery of Word-
Net Relations. In WordNet: An Electronic Lexical
Database. MIT Press.

D. Lin. 1998a. Automatic Retrieval and Clustering of
Similar Words. In Proceedings of COLING-ACL98,
Montreal, Canada, August.

D. Lin. 1998b. Dependency-based Evaluation of Mini-
Par. In Proceedings of Workshop on the Evaluation
of Parsing Systems, Granada, Spain.

S. Schlobach, M. Olsthoorn, and M. de Rijke. 2004.
Type Checking in Open-Domain Question Answer-
ing. In Proceedings of ECAI 2004.

I. Szpektor, H. Tanev, I. Dagan, and B. Coppola. 2004.
Scaling Web-based Acquisition of Entailment Rela-
tions. In Proceedings of EMNLP 2004, Barcelona,
Spain.

P. Velardi, R.Navigli, A. Cuchiarelli, and F.Neri. 2005.
Evaluation of Ontolearn, a Methodology for Auto-
matic Population of Domain Ontologies. In P. Buite-
laar, P. Cimiano, and B. Magnini, editors, Ontology
Learning from Text: Methods, Evaluation and Ap-
plications. IOS Press.

24

