
Inheritance and the CCG Lexicon

Mark McConville

Institute for Communicating and Collaborative Systems

School of Informatics

University of Edinburgh

2 Buccleuch Place, Edinburgh, EH8 9LW, Scotland

Mark.McConville@ed.ac.uk

Abstract

I propose a uniform approach to the elim-

ination of redundancy in CCG lexicons,

where grammars incorporate inheritance

hierarchies of lexical types, defined over

a simple, feature-based category descrip-

tion language. The resulting formalism is

partially ‘constraint-based’, in that the cat-

egory notation is interpreted against an un-

derlying set of tree-like feature structures.

I argue that this version of CCG subsumes

a number of other proposed category no-

tations devised to allow for the construc-

tion of more efficient lexicons. The for-

malism retains desirable properties such

as tractability and strong competence, and

provides a way of approaching the prob-

lem of how to generalise CCG lexicons

which have been automatically induced

from treebanks.

1 The CCG formalism

In its most basic conception, a CCG over alpha-

bet Σ of terminal symbols is an ordered triple

〈A,S, L〉, where A is an alphabet of saturated cat-

egory symbols, S is a distinguished element of A,

and L is a lexicon, i.e. a mapping from Σ to cate-

gories over A. The set of categories over alphabet

A is the closure of A under the binary infix con-

nectives / and \ and the associated ‘modalities’ of

Baldridge (2002). For example, assuming the sat-

urated category symbols ‘S’ and ‘NP’, here is a

simple CCG lexicon (modalities omitted):

John ` NP(1)

Mary ` NP

loves ` (S\NP)/NP

The combinatory projection of a CCG lexicon is

its closure under a finite set of resource-sensitive

combinatory operations such as forward applica-

tion (2), backward application (3), forward type

raising (4), and forward composition (5):

X/Y Y ⇒ X(2)

Y X\Y ⇒ X(3)

X ⇒ Y/(Y \X)(4)

X/Y Y/Z ⇒ X/Z(5)

CCG 〈A,S, L〉 over alphabet Σ generates string

s ∈ Σ∗ just in case 〈s, S〉 is in the combinatory

projection of lexicon L. The derivation in Figure

1 shows that CCG (1) generates the sentence John

loves Mary, assuming that ‘S’ is the distinguished

symbol, and where >T, >B and > denote in-

stances of forward raising, forward composition

and forward application respectively:

John loves Mary

NP (S\NP)/NP NP
>T

S/(S\NP)
>B

S/NP
>

S

Figure 1: A CCG derivation

2 Lexical redundancy in CCG

CCG has many advantages both as a theory of

human linguistic competence and as a tool for

practical natural language processing applications

(Steedman, 2000). However, in many cases de-

velopment has been hindered by the absence of

an agreed uniform approach to eliminating redun-

dancy in CCG lexicons. This poses a particular

problem for a radically lexicalised formalism such

as CCG, where it is customary to handle bounded

1

dependency constructions such as case, agreement

and binding by means of multiple lexical cate-

gory assignments. Take for example, the language

schematised in Table 1. This fragment of English,

though small, exemplifies certain non-trivial as-

pects of case and number agreement:

John John
he loves me

the girl you
girls him

I us
you love them
we the girl

they girls
girls girls

Table 1: A fragment of English

The simplest CCG lexicon for this fragment is pre-

sented in Table 2:

John ` NP
sg
sbj, NPobj

girl ` Nsg

s ` Npl\Nsg, NP
pl
sbj\Nsg, NPobj\Nsg

the ` NP
sg
sbj/Nsg, NPobj/Nsg,

NP
pl
sbj/Npl, NPobj/Npl

I,we, they ` NP
pl
sbj

me, us, them, him ` NPobj

you ` NP
pl
sbj, NPobj

he ` NP
sg
sbj

love ` (S\NP
pl
sbj)/NPobj

s ` ((S\NP
sg
sbj)/NPobj)\((S\NP

pl
sbj)/NPobj)

Table 2: A CCG lexicon

This lexicon exhibits a number of multiple cate-

gory assignments: (a) the proper noun John and

the second person pronoun you are each assigned

to two categories, one for each case distinction;

(b) the plural suffix -s is assigned to three cate-

gories, depending on both the case and ‘bar level’

of the resulting nominal; and (c) the definite arti-

cle the is assigned to four categories, one for each

combination of case and number agreement dis-

tinctions. Since in each of these three cases there

is no pretheoretical ambiguity involved, it is clear

that this lexicon violates the following efficiency-

motivated ideal on human language lexicons, in

the Chomskyan sense of locus of non-systematic

information:

ideal of functionality a lexicon is ideally a func-

tion from morphemes to category labels, modulo

genuine ambiguity

Another efficiency-motivated ideal which the

CCG lexicon in Table 2 can be argued to violate

is the following:

ideal of atomicity a lexicon is a mapping from

morphemes ideally to atomic category labels

In the above example, the transitive verb love is

mapped to the decidedly non-atomic category la-

bel (S\NP
pl
sbj)/NPobj. Lexicons which violate the

criteria of functionality and atomicity are not just

inefficient in terms of storage space and develop-

ment time. They also fail to capture linguistically

significant generalisations about the behaviour of

the relevant words or morphemes.

The functionality and atomicity of a CCG lexi-

con can be easily quantified. The functionality ra-

tio of the lexicon in Table 2, with 22 lexical entries

for 14 distinct morphemes, is 22

14
= 1.6. The atom-

icity ratio is calculated by dividing the number of

saturated category symbol-tokens by the number

of lexical entries, i.e. 36

22
= 1.6.

Various, more or less ad hoc generalisations of

the basic CCG category notation have been pro-

posed with a view to eliminating these kinds of

lexical redundancy. One area of interest has in-

volved the nature of the saturated category sym-

bols themselves. Bozsahin (2002) presents a ver-

sion of CCG where saturated category symbols

are modified by unary modalities annotated with

morphosyntactic features. The features are them-

selves ordered according to a language-particular

join semi-lattice. This technique, along with the

insistence that lexicons of agglutinating languages

are necessarily morphemic, allows generalisations

involving the morphological structure of nouns

and verbs in Turkish to be captured in an elegant,

non-redundant format. Erkan (2003) generalises

this approach, modelling saturated category labels

as typed feature structures, constrained by under-

specified feature structure descriptions in the usual

manner.

Hoffman (1995) resolves other violations of the

ideal of functionality in CCG lexicons for lan-

guages with ‘local scrambling’ constructions by

means of ‘multiset’ notation for unsaturated cat-

egories, where scope and direction of arguments

can be underspecified. For example, a multiset

category label like S{\NPsbj, \NPobj} is to be un-

derstood as incorporating both (S\NPsbj)\NPobj

and (S\NPobj)\NPsbj.

Computational implementations of the CCG

formalism, including successive versions of the

2

Grok/OpenCCG system1, have generally dealt

with violations of the ideal of atomicity by allow-

ing for the definition of macro-style abbreviations

for unsaturated categories, e.g. using the macro

‘TV’ as an abbreviation for (S\NPsbj)/NPobj.

One final point of note involves the project re-

ported in Beavers (2004), who implements CCG

within the LKB system, i.e. as an application of

the Typed Feature Structure Grammar formalism

of Copestake (2002), with the full apparatus of un-

restricted typed feature structures, default inheri-

tance hierarchies, and lexical rules.

3 Type-hierarchical CCG

One of the aims of the project reported here has

been to take a bottom-up approach to the prob-

lem of redundancy in CCG lexicons, adding just

enough formal machinery to allow the relevant

generalisations to be formulated, whilst retaining a

restrictive theory of human linguistic competence

which satisfies the ‘strong competence’ require-

ment, i.e. the competence grammar and the pro-

cessing grammar are identical.

I start with a generalisation of the CCG for-

malism where the alphabet of saturated category

symbols is organised into a ‘type hierarchy’ in

the sense of Carpenter (1992), i.e. a weak order

〈A,vA〉, where A is an alphabet of types, vA is

the ‘subsumption’ ordering on A (with a least ele-

ment), and every subset of A with an upper bound

has a least upper bound. An example type hi-

erarchy is in Figure 2, where for example types

‘Nomsg’ and ‘NP’ are compatible since they have

a non-empty set of upper bounds, the least upper

bound (or ‘unifier’) being ‘NPsg’.

NP
sg

sbj
NP

pl

sbj
NP

sg

obj
NP

pl

obj

Q
QQ

Q
QQ

PPPPPP

������

������
NPsbj NPobj NPsg NPpl Nsg Npl

#
##

L
L

HHHH

PPPPPPP

�
�

�
�

PPPPPP

HHHH
�

�
NP Nomsg Nompl N
������

�
�

@
@

PPPPPP
NomS

!!!!
PPPP

top

Figure 2: Type hierarchy of saturated categories

A type-hierarchical CCG (T-CCG) over alpha-

bet Σ is an ordered 4-tuple 〈A,vA, S, L〉, where

1http://openccg.sourceforge.net

〈A,vA〉 is a type hierarchy of saturated category

symbols, S is a distinguished element of A, and

lexicon L is a mapping from Σ to categories over

A. Given an appropriate vA-compatibility rela-

tion on the categories over A, the combinatory

projection of T-CCG 〈A,vA, S, L〉 can again be

defined as the closure of L under the CCG com-

binatory operations, assuming that variable Y in

the type raising rule (4) is restricted to maximally

specified categories.

The T-CCG lexicon in Table 3, in tandem with

the type hierarchy in Figure 2, generates the frag-

ment of English in Table 1:

John ` NPsg

girl ` Nsg

s ` Nompl\Nsg

the ` NPsg/Nsg, NPpl/Npl

I,we, they ` NP
pl
sbj

me, us, them ` NP
pl
obj

you ` NPpl

he ` NP
sg
sbj

him ` NP
sg
obj

love ` (S\NP
pl
sbj)/NPobj

s ` ((S\NP
sg
sbj)/NPobj)\((S\NP

pl
sbj)/NPobj)

Table 3: A T-CCG lexicon

Using this lexicon, the sentence girls love John is

derived as in Figure 3:

girl s love John

Nsg Nompl\Nsg (S\NP
pl

sbj)/NPobj NPsg

<

Nompl
>T

S/(S\Nompl)
>B

S/NPobj
>

S

Figure 3: A T-CCG derivation

The T-CCG lexicon in Table 3 comes closer to sat-

isfying the ideal of functionality than does the lex-

icon in Table 2. While the latter has a functionality

ratio of 1.6, the former’s is 16

14
= 1.1.

This improved functionality ratio results from

the underspecification of saturated category sym-

bols inherent in the subsumption relation. For ex-

ample, whereas the proper noun John is assigned

to two distinct categories in the lexicon in Table

2, in the T-CCG lexicon it is assigned to a sin-

gle non-maximal type ‘NPsg’ which subsumes the

two maximal types ‘NP
sg
sbj’ and ‘NP

sg
obj’. In other

3

words, the phenomenon of case syncretism in En-

glish proper nouns is captured by having a general

singular noun phrase type, which subsumes a plu-

rality of case distinctions.

The T-CCG formalism is equivalent to the ‘mor-

phosyntactic CCG’ formalism of Bozsahin (2002),

where features are ordered in a join semi-lattice.

Any generalisation which can be expressed in a

morphosyntactic CCG can also be expressed in a

T-CCG, since any lattice of morphosyntactic fea-

tures can be converted into a type hierarchy. In

addition, T-CCG is equivalent to the formalism

described in Erkan (2003), where saturated cat-

egories are modelled as typed feature structures.

Any lexicon from either of these formalisms can

be translated into a T-CCG lexicon whose func-

tionality ratio is either equivalent or lower.

4 Inheritance-driven CCG

A second generalisation of the CCG formalism in-

volves adding a second alphabet of non-terminals,

in this case a set of ‘lexical types’. The lexical

types are organised into an ‘inheritance hierarchy’,

constrained by expressions of a simple feature-

based category description language, inspired by

previous attempts to integrate categorial grammars

and unification-based grammars, e.g. Uszkoreit

(1986) and Zeevat et al. (1987).

4.1 Simple category descriptions

The set of simple category descriptions over al-

phabet A of saturated category symbols is defined

as the smallest set Φ such that:

1. A ⊆ Φ

2. for all δ ∈ {f, b}, (SLASH δ) ∈ Φ

3. for all φ ∈ Φ, (ARG φ) ∈ Φ

4. for all φ ∈ Φ, (RES φ) ∈ Φ

Note that category descriptions may be infinitely

embedded, in which case they are considered to

be right-associative, e.g. RES ARG RES SLASH f.

A simple category description like (SLASH f) or

(SLASH b) denotes the set of all expressions which

seek their argument to the right/left. A description

of the form (ARG φ) denotes the set of expressions

which take an argument of category φ, and one

like (RES φ) denotes the set of expressions which

combine with an argument to yield an expression

of category φ.

Complex category descriptions are simply sets

of simple category descriptions, where the as-

sumed semantics is simply that of conjunction.

4.2 Lexical inheritance hierarchies

Lexical inheritance hierarchies (Flickinger, 1987)

are type hierarchies where each type is associated

with a set of expressions drawn from some cate-

gory description language Φ. Formally, they are

ordered triples 〈B,vB, b〉, where 〈B,vB〉 is a

type hierarchy, and b is a function fromB to ℘(Φ).

An example lexical inheritance hierarchy over

the set of category descriptions over the alpha-

bet of saturated category symbols in Table 2 is

presented in Figure 4. The intuition underlying

these (monotonic) inheritance hierarchies is that

instances of a type must satisfy all the constraints

associated with that type, as well as all the con-

straints it inherits from its supertypes.

verbpl

RES ARG Nompl

��

verbsg

RES ARG Nomsg

detsg
ARG Nomsg
RES Nomsg

detpl

ARG Nompl
RES Nompl

B
B

BB
suffixsg

ARG verbpl
RES verbsg

�
�

suffixpl

ARG Nsg
RES Nompl

C
C
CC

verb
SLASH f

ARG NPobj
RES SLASH b
RES ARG NPsbj
RES RES S

�����

det
SLASH f
ARG N
RES NP

suffix
SLASH b

HHHHHHH
top

Figure 4: A lexical inheritance hierarchy

This example hierarchy is a single inheritance hi-

erarchy, since every lexical type has no more than

one immediate supertype. However, multiple in-

heritance hierarchies are also allowed, where a

given type can inherit constraints from two super-

types, neither of which subsumes the other.

4.3 I-CCGs

An inheritance-driven CCG (I-CCG) over alpha-

bet Σ is an ordered 7-tuple 〈A,vA, B,vB, b,
S, L〉, where 〈A,vA〉 is a type hierarchy of sat-

urated category symbols, 〈B,vB, b〉 is an inheri-

tance hierarchy of lexical types over the set of cat-

egory descriptions overA∪B, S is a distinguished

symbol inA, and lexicon L is a function from Σ to

A ∪ B. Given an appropriate vA,B-compatibility

relation on the categories overA∪B, the combina-

tory projection of I-CCG 〈A,vA, B,vB, b, S, L〉
can again be defined as the closure of L under the

4

CCG combinatory operations.

The I-CCG lexicon in Table 4, along with the

type hierarchy of saturated category symbols in

Figure 2 and the inheritance hierarchy of lexical

types in Figure 4, generates the fragment of En-

glish in Table 1. Using this lexicon, the sentence

John ` NPsg

girl ` Nsg

s ` suffix

the ` det

I,we, they ` NP
pl
sbj

me, us, them ` NP
pl
obj

you ` NPpl

he ` NP
sg
sbj

him ` NP
sg
obj

love ` verbpl

Table 4: An I-CCG lexicon

girls love John is derived as in Figure 5, where

derivational steps involve ‘cache-ing out’ sets of

constraints from lexical types.

girl s love John

Nsg suffix verbpl NPsg

SLASH b RES ARG Nompl

suffixpl verb
ARG Nsg SLASH f

RES Nompl ARG NPobj

< RES SLASH b
Nompl RES ARG NPsbj

>T RES RES S
RES S

SLASH f
ARG RES S

ARG ARG Nompl
ARG SLASH b

>B
RES S

ARG NPobj
SLASH f

>

S

Figure 5: An I-CCG derivation

This derivation relies on a version of the CCG

combinatory rules defined in terms of the I-CCG

category description language. For example, for-

ward application is expressed as follows — for all

compex category descriptions Φ and Ψ such that

(SLASH b) 6∈ Φ, and {φ | (ARG φ) ∈ Φ} ∪ Ψ is

compatible, the following is a valid inference:

Φ Ψ
>

{φ | (RES φ) ∈ Φ}

The functionality ratio of the I-CCG lexicon in Ta-

ble 4 is 14

14
= 1 and the atomicity ratio is 14

14
= 1.

In other words, the lexicon is maximally non-

redundant, since all the linguistically significant

generalisations are encodable within the lexical in-

heritance hierarchy.

The optimal atomicity ratio of the I-CCG lexi-

con is a direct result of the introduction of lexical

types. In the T-CCG lexicon in Table 3, the transi-

tive verb love was assigned to a non-atomically la-

belled category (S\NP
pl
sbj)/NPobj. In the I-CCG’s

inheritance hierarchy in Figure 4, there is a lexical

type ‘verbpl’ which inherits six constraints whose

conjunction picks out exactly the same category.

It is with this atomic label that the verb is paired

in the I-CCG lexicon in Table 4.

The lexical inheritance hierarchy also has a role

to play in constructing lexicons with optimal func-

tionality ratios. The T-CCG lexicon in Table 3

assigned the definite article to two distinct cate-

gories, one for each grammatical number distinc-

tion. The I-CCG utilises the disjunction inherent

in inheritance hierarchies to give each of these a

common supertype ‘det’, which is associated with

the properties all determiners share.

Finally, the I-CCG formalism can be argued

to subsume the multiset category notation of

Hoffman (1995), in the sense that every mul-

tiset CCG lexicon can be converted into an I-

CCG lexicon with an equivalent or better func-

tionality ratio. Recall that Hoffman uses gener-

alised category notation like S{\NPsbj, \NPobj}
to subsume two standard CCG category labels

(S\NPsbj)\NPobj and (S\NPobj)\NPsbj. Again it

should be clear that this is just another way of

representing disjunction in a categorial lexicon,

and can be straightforwardly converted into a lexi-

cal inheritance hierarchy over I-CCG category de-

scriptions.

5 Semantics of the category notation

In the categorial grammar tradition initiated by

Lambek (1958), the standard way of providing a

semantics for category notation defines the deno-

tation of a category description as a set of strings

of terminal symbols. Thus, assuming an alphabet

Σ and a denotation function [[. . .]] from the sat-

urated category symbols to ℘(Σ), the denotata of

unsaturated category descriptions can be defined

as follows, assuming that the underlying logic is

simply that of string concatenation:

[[φ/ψ]] = {s | ∀s′ ∈ [[ψ]], ss′ ∈ [[φ]]}(6)

[[φ\ψ]] = {s | ∀s′ ∈ [[ψ]], s′s ∈ [[φ]]}

This suggests an obvious way of interpreting the

I-CCG category notation defined above. Let’s

5

start by assuming that, given some I-CCG 〈A,vA,
B,vB, b, S, L〉 over alphabet Σ, there is a deno-

tation function [[. . .]] from the maximal types in

the hierarchy of saturated categories 〈A,vA〉 to

℘(Σ). For all non-maximal saturated category

symbols φ in A, the denotation of φ is then the

set of all strings in any of φ’s subcategories, i.e.

[[φ]] =
⋃
φvAψ

[[ψ]]. The denotata of the simple

category descriptions can be defined by universal

quantification over the set of simple category de-

scriptions Φ:

• [[SLASH f]] =
⋃
φ,ψ∈Φ[[φ/ψ]]

• [[SLASH b]] =
⋃
φ,ψ∈Φ[[φ\ψ]]

• [[ARG φ]] =
⋃
ψ∈Φ[[ψ/φ]] ∪ [[ψ\φ]]

• [[RES φ]] =
⋃
ψ∈Φ[[φ/ψ]] ∪ [[φ\ψ]]

This just leaves the simple descrip-

tions which consist of a type in the

lexical inheritance hierarchy 〈B,vB,
b〉. If we define the constraint set of some

lexical type φ ∈ B as the set Φ of all category

descriptions either associated with or inherited

by φ, then the denotation of φ is defined as
⋂
ψ∈Φ[[ψ]].

Unfortunately, this approach to interpreting I-

CCG category descriptions is insufficient, since

the logic underlying CCG is not simply the logic

of string concatenation, i.e. CCG allows a limited

degree of permutation by dint of the crossed com-

position and substitution operations. In fact, there

appears to be no categorial type logic, in the sense

of Moortgat (1997), for which the CCG combi-

natory operations provide a sound and complete

derivation system, even in the resource-sensitive

system of Baldridge (2002). An alternative ap-

proach involves interpreting I-CCG category de-

scriptions against totally well-typed, sort-resolved

feature structures, as in the HPSG formalism of

Pollard and Sag (1994).

Given some type hierarchy 〈A,vA〉 of saturated

category symbols and some lexical inheritance hi-

erarchy 〈B,vB, b〉, we define a class of ‘category

models’, i.e. binary trees where every leaf node

carries a maximal saturated category symbol in A,

every non-leaf node carries a directional slash, and

every branch is labelled as either a ‘result’ or an

‘argument’. In addition, nodes are optionally la-

belled with maximal lexical types from B. Note

that since only maximal types are permitted in a

model, they are by definition sort-resolved. As-

suming the hierarchies in Tables 2 and 4, an ex-

ample category model is given in Figure 6, where

arcs by convention point downwards:

S
�

��R

NP
pl

sbj

@
@@ A

\
�

�
��R

NP
sg

obj

Q
Q

QQ
A

/ : verbpl

Figure 6: A category model

Given some inheritance hierarchy 〈B,vB, b〉 of

lexical types, not all category models whose nodes

are labelled with maximal types from B are ‘well-

typed’. In fact, this property is restricted to those

models where, if node n carries lexical type φ,

then every category description in the constraint

set of φ is satisfied from n. Note that the root

of the model in Figure 6 carries the lexical type

‘verbpl’. Since all six constraints inherited by this

type in Figure 4 are satisfied from the root, and

since no other lexical types appear in the model,

we can state that the model is well-typed.

In sum, given an appropriate satisfaction rela-

tion between well-typed category models and I-

CCG category descriptions, along with a definition

of the CCG combinatory operations in terms of

category models, it is possible to provide a formal

interpretation of the language of I-CCG category

descriptions, in the same way as unification-based

formalisms like HPSG ground attribute-value no-

tation in terms of underlying totally well-typed,

sort-resolved feature structure models. Such a se-

mantics is necessary in order to prove the correct-

ness of eventual I-CCG implementations.

6 Extending the description language

The I-CCG formalism described here involves a

generalisation of the CCG category notation to in-

corporate the concept of lexical inheritance. The

primary motivation for this concerns the ideal of

non-redundant encoding of lexical information in

human language grammars, so that all kinds of lin-

guistically significant generalisation can be cap-

tured somewhere in the grammar. In order to fulfil

this goal, the simple category description language

defined above will need to be extended somewhat.

For example, imagine that we want to specify the

6

set of all expressions which take an NPobj argu-

ment, but not necessarily as their first argument,

i.e. the set of all ‘transitive’ expressions:

ARG NPobj(7)

∪ RES ARG NPobj

∪ RES RES ARG NPobj

∪ . . .

It should be clear that this category is not finitely

specifiable using the I-CCG category notation.

One way to allow such generalisations to be

made involves incorporating the ∗ modal itera-

tion operator used in Propositional Dynamic Logic

(Harel, 1984) to denote an unbounded number

of arc traversals in a Kripke structure. In other

words, category description (RES* φ) is satisfied

from node n in a model just in case some finite se-

quence of result arcs leads from n to a node where

φ is satisfied. In this way, the set of expressions

taking an NPobj argument is specified by means of

the category description RES* ARG NPobj.

7 Computational aspects

At least as far as the I-CCG category notation de-

fined in section 4.1 is concerned, it is a straight-

forward task to take the standard CKY approach

to parsing with CCGs (Steedman, 2000), and gen-

eralise it to take a functional, atomic I-CCG lex-

icon and ‘cache out’ the inherited constraints on-

line. As long as the inheritance hierarchy is non-

recursive and can thus be theoretically cached out

into a finite lexicon, the parsing problem remains

worst-case polynomial.

In addition, the I-CCG formalism satisfies

the ‘strong competence’ requirement of Bresnan

(1982), according to which the grammar used by

or implicit in the human sentence processor is

the competence grammar itself. In other words,

although the result of cache-ing out particularly

common lexical entries will undoubtedly be part

of a statistically optimised parser, it is not essen-

tial to the tractability of the formalism.

One obvious practical problem for which the

work reported here provides at least the germ of

a solution involves the question of how to gener-

alise CCG lexicons which have been automatically

induced from treebanks (Hockenmaier, 2003). To

take a concrete example, Cakici (2005) induces a

wide coverage CCG lexicon from a 6000 sentence

dependency treebank of Turkish. Since Turkish is

a pro-drop language, every transitive verb belongs

to both categories (S\NPsbj)\NPobj and S\NPobj.

However, data sparsity means that the automati-

cally induced lexicon assigns only a small minor-

ity of transitive verbs to both classes. One possi-

ble way of resolving this problem would involve

translating the automatically induced lexicon into

sets of fully specified I-CCG category descrip-

tions, generating an inheritance hierarchy of lex-

ical types from this lexicon (Sporleder, 2004), and

applying some more precise version of the follow-

ing heuristic: if a critical mass of words in the au-

tomatically induced lexicon belong to both CCG

categories X and Y , then in the derived I-CCG

lexicon assign all words belonging to either X or

Y to the lexical type which functions as the great-

est lower bound of X and Y in the lexical inheri-

tance hierarchy.

8 Acknowledgements

The author is indebted to the following people for

providing feedback on various drafts of this paper:

Mark Steedman, Cem Bozsahin, Jason Baldridge,

and three anonymous EACL reviewers.

References

Baldridge, J. (2002). Lexically Specified Deriva-

tional Control in Combinatory Categorial

Grammar. PhD thesis, University of Edinburgh.

Beavers, J. (2004). Type-inheritance Combina-

tory Categorial Grammar. In Proceedings of

the 20th International Conference on Compu-

tational Linguistics, University of Geneva.

Bozsahin, C. (2002). The combinatory morphemic

lexicon. Computational Linguistics, 28(2):145–

186.

Bresnan, J., editor (1982). The Mental Represen-

tation of Grammatical Relations. MIT Press,

Cambridge MA.

Cakici, R. (2005). Automatic induction of a CCG

grammar for Turkish. In Proceedings of the Stu-

dent Research Workshop, 43rd Annual Meeting

of the Association for Computational Linguis-

tics, University of Michigan, pages 73–78.

Carpenter, B. (1992). The Logic of Typed Fea-

ture Structures. Cambridge Tracts in Theoret-

ical Computer Science. Cambridge University

Press.

Copestake, A. (2002). Implementing Typed Fea-

ture Structure Grammars. CSLI Publications,

Stanford CA.

7

Erkan, G. (2003). A Type System for Combina-

tory Categorial Grammar. Master’s thesis, Mid-

dle East Technical University, Ankara.

Flickinger, D. P. (1987). Lexical Rules in the Hi-

erarchical Lexicon. PhD thesis, Stanford Uni-

versity.

Harel, D. (1984). Dynamic logic. In Gabbay, D.

and Guenthner, F., editors, Handbook of Philo-

sophical Logic, Volume 2, pages 497–604. Rei-

del, Dordrecht.

Hockenmaier, J. (2003). Data and Models for

Statistical Parsing with Combinatory Catego-

rial Grammar. PhD thesis, University of Ed-

inburgh.

Hoffman, B. (1995). The Computational Analy-

sis of the Syntax and Interpretation of ”Free”

Word Order in Turkish. PhD thesis, University

of Pennsylvania.

Lambek, J. (1958). The Mathematics of Sentence

Structure. American Mathematical Monthly,

65:154–170.

Moortgat, M. (1997). Categorial type logics. In

van Benthem, J. and ter Meulen, A., editors,

Handbook of Logic and Language, pages 93–

177. North Holland, Amsterdam, NL.

Pollard, C. J. and Sag, I. A. (1994). Head-Driven

Phrase Structure Grammar. The University of

Chicago Press.

Sporleder, C. (2004). Discovering Lexical Gener-

alisations: A Supervised Machine Learning Ap-

proach to Inheritance Hierarchy Construction.

PhD thesis, University of Edinburgh.

Steedman, M. (2000). The Syntactic Process. MIT

Press, Cambridge MA.

Uszkoreit, H. (1986). Categorial Unification

Grammars. In Proceedings of the 11th Inter-

national Conference on Computational Linguis-

tics, Bonn, pages 187–194.

Zeevat, H., Klein, E., and Calder, J. (1987). Uni-

fication Categorial Grammar. In Haddock, N.,

Klein, E., and Morrill, G., editors, Categorial

Grammar, Unification Grammar and Parsing,

Working Papers in Cognitive Science. Centre

for Cognitive Science, University of Edinburgh.

8

