An Open Source Environment for Compiling Typed Unification
Grammars into Speech Recognisers

Manny Rayner, Beth Ann Hockey and John Dowding
RIACS, Mail Stop T27A-2
NASA Ames Research Center
Moffett Field, CA 94035-1000, USA
{mrayner, bahockey, jdowding}@riacs.edu

Abstract

We present REGULUS, an Open Source
environment which compiles typed uni-
fication grammars into context free
grammar language models compatible
with the Nuance Toolkit. The environ-
ment includes a large general unification
grammar of English and corpus-based
tools for creating efficient domain-
specific recognisers from it. We will
demo applications built using the sys-
tem, including a speech translator and a
command and control system for a sim-
ulated robotic domain, and show how
the development environment can be
used to edit and extend them.

1 Introduction

This demo presents REGULUS, an Open Source
environment that supports efficient compilation of
typed unification grammars into speech recognis-
ers. The basic intent is to provide a set of tools
to support rapid prototyping of spoken dialogue
applications in situations where little or no cor-
pus data exists. The environment has already been
used to build over half a dozen applications with
vocabularies of between 100 and 500 words. We
will be demoing some of them here, along with ex-
amples of how the development environment can
be used to edit and extend them.

The rest of this document is organised as fol-
lows. Section 2 describes the grammar formalism
and the grammar-to-recogniser compiler process.

This includes a tool which allows construction of
domain-specific grammars by corpus-based spe-
cialisation of a large general unification grammar
for English. Section 3 describes the interactive de-
velopment environment. Section 4 describes how
we intend to structure the actual demo. The final
section contains instructions for downloading and
installing REGULUS.

2 Compiling Unification Grammars into
Recognisers

The core functionality provided by the REGU-
LUS environment is compilation of typed unifica-
tion grammars into annotated context-free gram-
mar language models expressed in Nuance Gram-
mar Specification Language (GSL) notation (Nu-
ance, 2002). GSL language models can be con-
verted into runnable speech recognisers by invok-
ing the Nuance Toolkit compiler utility, so the net
result is the ability to compile a unification gram-
mar into a speech recogniser.

The REGULUS unification grammar formalism
is closely related to the one used in the SRI Core
Language Engine (CLE) and Gemini systems (Al-
shawi, 1992; Dowding et al., 1993), and it is most
reasonable to compare it with Gemini, which of-
fers a broadly similar range of functionalities. One
important difference relates to the treatment of
semantics. CLE and Gemini support a general
unification-based semantics; REGULUS, however,
does not permit the use of unification when con-
structing semantic representations. Although this
involves a slight loss of expressive power, it of-
fers the very significant advantage of allowing the

223

semantics of the original grammar to be compiled
into semantic annotations on the target GSL rules.
The resulting recogniser can thus be used as a
stand-alone system, which both recognises spoken
utterances and produces semantic representations
for them. In contrast, recognisers compiled by the
Gemini system only produce word-string output,
which then has to be parsed by a separate process.

The basic algorithm used by REGULUS to com-
pile unification grammars into CFG form is de-
scribed in (Rayner et al., 2001). The central idea is
simply to perform an enumerative expansion of the
unification grammar by non-deterministically in-
stantiating each feature to all of its possible values;
the resulting grammar is then filtered to remove
non-reachable rules. As described in (Rayner et
al., 2001), the efficiency of the naive algorithm can
be greatly improved by adding a pre-processing
step which performs a suitable factoring of the
grammar. The current version of REGULUS fur-
ther refines the naive method by iteratively al-
ternating the expansion and filtering stages, non-
deterministically expanding each feature in turn
and then filtering the result before proceeding to
the next feature. On large grammars, this “iterative
expansion” technique can reduce time and space
requirements of the compilation algorithm by sev-
eral orders of magnitude. Use of iterative expan-
sion has allowed REGULUS successfully to com-
pile several grammars which exceeded resource
bounds for the Gemini compiler (Moore et al.,
1997; Moore, 1998).

2.1 Using Grammar Specialisation

Experience with grammar-based spoken dialogue
systems shows that there is usually a substan-
tial overlap between the structures of grammars
for different domains. This is hardly surprising,
since they all ultimately have to model general
facts about the linguistic structure of English and
other natural languages. It is consequently natu-
ral to consider strategies which attempt to exploit
the overlap between domains by building a single,
general grammar valid for a wide variety of ap-
plications. A grammar of this kind will probably
offer more coverage (and hence lower accuracy)
than is desirable for any given specific application.
It is however feasible to address the problem us-

224

ing corpus-based techniques which extract a spe-
cialised version of the original general grammar.

REGULUS implements a version of the grammar
specialisation scheme which extends the Explana-
tion Based Learning method described in (Rayner
et al., 2002). There is a general unification gram-
mar, loosely based on the Core Language Engine
grammar for English (Pulman, 1992), which has
been developed over the course of about ten indi-
vidual projects. The current version of the gram-
mar contains 145 unification grammar rules, 465
function word entries, and 72 features. The gram-
mar for each individual domain also includes a
domain-specific content word lexicon, which typ-
ically contains 100 to 500 lexical entries. We have
intentionally used a variety of widely differing do-
mains, including a command and control system
for a simulated mobile robot, a speech enabled
home automation system, a travel planning system
and a medical speech translator.

The semantic representations produced by the
grammar are in a simplified version of the Core
Language Engine’s Quasi Logical Form notation
(van Eijck and Moore, 1992). Thus for example
the representation of “turn on the fan” is

[[imp,
form(imperative,

[[turn,
term(pro,vyou, [1),
term(the_sing, fan, []),
on]]

1]

and that for “ how long have you had headaches”
is

[[whq,
form([present,perfect],

[[have_symptom,
term(pro,you, [1),
term(null, headache, [1)],

[duration, how_long]]

)

11

A grammar built on top of the general grammar
is transformed into a specialised Nuance grammar
in the following processing stages:

1. The training corpus is converted into a “tree-
bank” of parsed representations. This is done
using a left-corner parser representation of
the grammar.

2. The treebank is used to produce a “raw” spe-
cialised grammar in REGULUS format, us-
ing the EBL algorithm (van Harmelen and
Bundy, 1988; Rayner, 1988). The granularity
of the learned rules is determined by a user-
supplied parameter. This parameter can cur-
rently be set to the following values:

Lexical The learned grammar is completely
“flat”, with each training example pro-
ducing exactly one rule.

NP The learned grammar has two levels,
with only NP nodes between root nodes
and pre-lexical nodes.

NP_PP The learned grammar has three lev-
els, with NP and PP nodes between root
nodes and pre-lexical nodes.

S_NP_PP The learned grammar has four lev-
els, with S, NP and PP nodes between
root nodes and pre-lexical nodes.

3. The “raw” specialised grammar is post-
processed into the final specialised grammar.
The post-processing stage consists of three
steps:

(a) Duplicate rules are merged, keeping the
different training examples as documen-
tation.

(b) Specialised rules are sorted by number
of training examples.

(c) If there are enough training examples
for a rule, it is further constrained to
unify with the the least common gener-
alisation of all the contexts in which it
has occurred. The threshold which de-
termines when this happens is defined
by another user-supplied parameter.

4. The final specialised grammar is compiled
into a Nuance GSL grammar.

For the applications we have so far worked with,
output GSL grammars vary in size from about 500
to about 15000 GSL rules. Compilation times on

a 2GHz PC vary from a few seconds to about 10
minutes, mainly depending on the size of the train-
ing corpus. Word error rates on in-coverage mate-
rial for the resulting recognisers vary from about
5% to about 15%. Interestingly, it appears that
there is no very strong correlation between recog-
nition performance and either vocabulary size or
size of the training corpus, with performance de-
pending rather more heavily on average utterance
length and the types of constructions covered by
the specialised grammar. We are actively investi-
gating these issues at the moment.

3 The Development Environment

All the functionalities in the REGULUS environ-
ment are available via a command-line interface,
and also from within a top-loop designed primar-
ily for interactive grammar debugging. In this
mode, the grammar is compiled into an efficient
left-corner parser, using the algorithm of (Moore,
2000), and also into a Definite Clause Grammar
(DCG) form; the advantage of the DCG represen-
tation is that it can often be used to help diagnose
grammar bugs by attempting to parse non-top con-
stituents. Each separate domain-specific grammar
is defined though a config file, which also speci-
fies settings for the various user-defined parame-
ters relevant to the compilation process.

4 Structure of the demo

We will demo two recognisers built using REGU-
LUS, one for a command and control application
and one for a medical speech translation applica-
tion. The command and control recogniser is an
extended version of the one for the Personal Satel-
lite Assistant, a speech enabled mobile robot cur-
rently being developed at the NASA Ames Re-
search Center (PSA, 2002). The domain-specific
lexicon contains 313 entries; coverage includes
commands (“go to flight deck”), Y-N and WH-
questions (“has the temperature increased dur-
ing the last five minutes”, “when did you mea-
sure the pressure at storage lockers™), conjunctions
(“what were oxygen and carbon dioxide five min-
utes ago”) and pronouns (“go to crew hatch and
open it”). Word error rates for this application on
in-coverage data are around 10-11%.

225

The medical speech translator recogniser is an
extended English-language version of the system
described in (Rayner and Bouillon, 2002). The
domain-specific lexicon for this system contains
607 entries. Coverage includes Y-N and WH-
questions (“does the headache usually start sud-
denly”, “what makes your headache better”) and
elliptical phrases (“insomnia”, “in the left chest”,
“severe”). Although the medical speech applica-
tion has nearly twice as large a vocabulary, recog-
nition performance is in fact noticeably better than
for the command and control application; pre-
liminary results suggest a word error rate on in-
coverage data of around 6-7%.

We will demo speech recognition for each
recogniser, and show how the development envi-
ronment can be used to make rapid changes to cov-
erage by adding lexical entries and/or training ex-
amples.

5 Downloading and installation

REGULUS requires the Nuance Toolkit (Nuance,
2002) and SICStus Prolog (Programming Systems
Group, 1995), and runs under Windows 2000 and
NT. As a minimum hardware configuration, we
recommend a 400MHz machine with 256M of
RAM. The whole system, including source code,
documentation and examples, is publicly avail-
able and can used freely under the terms of the
Lesser General Public Licence (LGPL). The cur-
rent release can be obtained as a zip-file by mailing
the authors, or by download from SourceForge at
http://sourceforge.net/projects/leonlp/.

References

H. Alshawi, editor. 1992. The Core Language Engine.
MIT Press, Cambridge, Massachusetts.

J. Dowding, M. Gawron, D. Appelt, L. Cherny,
R. Moore, and D. Moran. 1993. Gemini: A nat-
ural language system for spoken language under-
standing. In Proceedings of the Thirty-First Annual
Meeting of the Association for Computational Lin-
guistics.

R. Moore, J. Dowding, H. Bratt, J. Gawron, Y. Gorfu,
and A. Cheyer. 1997. CommandTalk: A spoken-
language interface for battlefield simulations. In
Proceedings of the Fifth Conference on Applied Nat-
ural Language Processing, pages 1-7.

226

R. Moore. 1998. Using natural language knowledge
sources in speech recognition. In Proceedings of the
NATO Advanced Studies Institute.

R. Moore. 2000. Improved left-corner chart pars-
ing for large context-free grammars. In Proceedings
of the 6th International Workshop on Parsing Tech-
nologies, pages 171-182.

Nuance, 2002. http://www.nuance.com. As of 15
November 2002.

Programming Systems Group, 1995. SICStus Prolog
User’s Manual. Swedish Institute of Computer Sci-
ence, Kista, Sweden.

PSA, 2002. Personal Satellite Assistant (PSA) Project.
http://ic.arc.nasa.gov/ic/projects/psa/. As of 1 Feb
2002.

S.G. Pulman. 1992. Syntactic and semantic process-
ing. In Alshawi (Alshawi, 1992), pages 129-148.

M. Rayner and P. Bouillon. 2002. A phrasebook style
medical speech translator. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (demo track), Philadelphia, PA.

M. Rayner, J. Dowding, and B.A. Hockey. 2001.
A baseline method for compiling typed unification
grammars into context free language models. In
Proceedings of Eurospeech 2001, pages 729-732,
Aalborg, Denmark.

M. Rayner, B.A. Hockey, and J. Dowding. 2002.
Grammar specialisation meets language modelling.
In Proceedings of the 7th International Conference
on Spoken Language Processing (ICSLP), Denver,
CO.

M. Rayner. 1988. Applying explanation-based gen-
eralization to natural-language processing. In Pro-
ceedings of the International Conference on Fifth
Generation Computer Systems, pages 1267-1274,
Tokyo, Japan.

J. van Eijck and R. Moore. 1992. Semantic rules for
English. In H. Alshawi, editor, The Core Language
Engine, pages 83—116. MIT Press.

T. van Harmelen and A. Bundy. 1988. Explanation-
based generalization = partial evaluation (research
note). Artificial Intelligence, 36:401-412.

	Page 1
	Page 2
	Page 3
	Page 4

