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Abstract

In this paper we compare two ap-
proaches to natural language under-
standing (NLU). The first approach is
derived from the field of statistical ma-
chine translation (MT), whereas the
other uses the maximum entropy (ME)
framework.  Starting with an anno-
tated corpus, we describe the problem of
NLU as a translation from a source sen-
tence to a formal language target sen-
tence. We mainly focus on the qual-
ity of the different alignment and ME
models and show that the direct ME ap-
proach outperforms the alignment tem-
plates method.

1 Introduction

The objective of natural language understanding
(NLU) is to extract all the information from a nat-
ural language based input which are relevant for
a specific task. Typical applications using NLU
components are spoken dialogue systems (Levin
and Pieraccini, 1995) or speech-to-speech transla-
tion systems (Zhou et al., 2002).

In this paper we present two approaches for an-
alyzing the semantics of natural language inputs
and discuss their advantages and drawbacks. The
first approach is derived from the field of statis-
tical machine translation (MT) and is based on
the source-channel paradigm (Brown et al., 1993).
Here, we apply a method called alignment tem-
plates (Och et al., 1999). The alternative ap-

ich wilirde gerne von K&ln nach Minchen fahren
@want_question Qorigin @destination @going

Figure 1: Example of a word / concept mapping.

proach uses the maximum entropy (ME) frame-
work (Berger et al., 1996). For both frameworks,
the objective can be described as follows. Given
a natural source sentence f{ = fifjfy we
choose the formal target language sentence e! =
ej...e;...er with the highest probability among all
possible target sentences:

el = argrflax{PT(eﬂflJ)} (1)

“

Pr(f{ |e]) - Pr(e}) }
Pr(f{)
= argmax { Pr(f{lel) - Pr(el) }.@

1

= argmax {
el

Using Bayes’ theorem, Eq. 1 can be rewritten to
Eq. 2, where the denominator can be neglected.
The argmax operation denotes the search prob-
lem, i.e. the generation of the sequence of for-
mal semantic concepts in the target language. An
example is depicted in Figure 1. The main dif-
ference between both approaches is that the ME
framework directly models the posterior proba-
bilities whereas the statistical machine transla-
tion approach applies Bayes’ theorem resulting
in two distributions: the translation probability
Pr(f{|el) and the language model probability
Pr(el). In the following, we compare both ap-
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proaches for two NLU tasks which are derived
from two different domains and show that the ME
approach clearly outperforms the statistical ma-
chine translation approach within these settings.

1.1 Related Work

The use of statistical machine translation for NLU
tasks was firstly proposed by (Epstein et al.,
1996). Whereas (Epstein et al., 1996) model hid-
den clumpings, we use a method called alignment
templates. Alignment templates have been proven
to be very powerful for statistical machine trans-
lation tasks since they allow for many-to-many
alignments between source and target words (Och
et al., 1999). Alignment templates for NLU tasks
were firstly proposed by (Macherey et al., 2001).

Applying ME translation models to NLU has
been firstly suggested by (Papineni et al., 1997;
Papineni et al., 1998). Here, we use a concept-
based meaning representation as formal target lan-
guage and propose different features and structural
constraints in order to improve the NLU results.

The remainder of the paper is organized as fol-
lows: in the following section, we briefly describe
the concept based meaning representation as used
for the NLU task. Section 3 describes the training
and search procedure of the alignment templates
approach. In section 4, we outline the ME frame-
work and describe the features that were used for
the experiments. Section 5 presents results for
both the alignment templates approach and the
ME framework. For both approaches, experiments
were carried out on two different German NLU
tasks.

2 Concept-based semantic representation

A crucial decision, when designing an NLU sys-
tem, is the choice of a suitable semantic represen-
tation, since interpreting a user’s request requires
an appropriate formalism to represent the mean-
ing of an utterance. Different semantic represen-
tations have been proposed. Among them, case
frames (Issar and Ward, 1993), semantic frames
(Bennacef et al., 1994), and variants of hierarchi-
cal concepts (Miller et al., 1994) as well as flat
concepts (Levin and Pieraccini, 1995) are the most
prominent. Since we regard NLU as a special case
of a translation problem, we have chosen a flat
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concept-based target language as meaning repre-
sentation.

A semantic concept (in the following briefly
termed as concept) is defined as the smallest unit
of meaning that is relevant to a specific task (Levin
and Pieraccini, 1995). Figure 1 depicts an example
of a concept-based meaning representation for the
input utterance ‘I would like to go from Munich
to Cologne’ from the domain of a German train-
timetable information system. The first line shows
the source sentence, the last line depicts the target
sentence consisting of several concepts, marked
by the preceding @-symbol. The connections be-
tween the words describe the alignments between
source and target words.

3 Alignment Templates

The statistical machine translation approach de-
composes Pr(el|f;{) into two probability distri-
butions, the language model probability and the
translation probability. The architecture of this
method is depicted in figure 2. For the transla-
tion approach, we use the same training proce-
dure as for the automatic translation of natural lan-
guages. When rewriting the translation probabil-
ity Pr(f{|el) by introducing a "hidden’ alignment
ai =ay...aj...a;, with a; € {1,...,1}, we
obtain:

Pr(f{lel)

= > Pr(fi.afle]) (3)

J
= Y TI Prfiailfi tal ted).

ol =1

The IBM models as proposed by (Brown et al.,
1993) and the HMM model as suggested by (Vo-
gel et al., 1996) result from different decompo-
sitions of Pr(f{,a{|el). For training the align-
ment model, we train a sequence of models of in-
creasing complexity. Starting from the first model
IBM1, we proceed over the HMM model, IBM3
up to IBMS. Using the model IBMS as a result of
the last training step, we use the alignment tem-
plate approach to model whole word groups.



Source Language Text

Pr(f{le])

Global Search

Lexicon Model
Alignment Model

&l = argmax {Pr(e]) - Pr(f]|e])}
1 L

e1 Pr(e)
Language Model

Target Language Text

Figure 2: Architecture of the translation approach
based on the source-channel paradigm.

3.1 Model

The alignment templates approach provides a two-
level alignment: a phrase level alignment and a
word level alignment within the phrases. As a re-
sult, source and target sentence must be segmented
into K word-groups, describing the phrases:

I ~ ~
€1 = €1, €k =€iy 41,---,€, k=1,..., K

=0 o= fists s i E=1,.. K

By decomposing the translation probability with
the above-mentioned definitions, we arrive at:

Pr(f{le?)
= > Pr(fiafEx)

~K

K
> 11 p@klar—s, K) - p(frlea) -

ak k=1

I

Denote z = (&' JFla’ ) an alignment template,
we obtain p(f[e) = 3>, p(z[€) - p(f|z.€). The
phrase translation probability p(ﬂ z,e) is decom-
posed according to the following equation:

J
= 6(Z,¢) R | S
i=1
where (-, -) denotes the Kronecker-function. The

probability p(f;|@ ’,€) can be decomposed in the

@destination = * = * * * [ § |
gorigin * * + + + - -|HE

@train determination = * * * * nR- -

@want_question

@hello

@yes

ja-

guten

$DAYTIME
von *

ich)
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Verbindung -
$CITY -
nach -
$CITY -

Figure 3: Example of alignment templates for rep-
resenting a natural sentence as a sequence of con-
cepts.

following way:

I
p(fila’e) = > op(ilga’)-plfile:)
=0
~1/ .
e~ a (Z:])
p(ilj;a") = ————"—,
(il5;a") o
,L'/
~t 1 if (i,7) are linked in @’
a'(i,j) { 0 otherwise.

3.2 Training

During training, we proceed over all sentence pairs
and estimate the probabilities by determining the
relative frequencies of applying an alignment tem-
plate. Figure 3 shows an example of alignment
templates computed for a sentence pair from the
German TABA corpus.

3.3 Search

If we insert the alignment template model and
a standard left-to-right language model in the
source-channel approach (Eq. 2), we obtain the
following search criterion in maximum approxi-
mation which is used in combination with beam
search:

el = argmax{Pr(el)- Pr(f{leD}

— argmax{ max
K.eit=e

— I~K'ﬁ( K
6{ 1 s enk:zl

I K
{Hp(ez‘\ez‘ 1 H Ty

”2%}_@)

- p(2kl€a) - p(fr
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Figure 4: Architecture of the maximum entropy
model approach.

4 Maximum Entropy Models

As alternative to the source-channel approach,
we can directly model the posterior probability
Pr(ef|f{). A well-founded framework for doing
this is maximum entropy (Berger et al., 1996). In
this framework, we have a set of M feature func-
tions hy,(el, f{),m = 1,..., M. For each fea-
ture function h,,, there is a model parameter A,,.
The posterior probability can then be modeled as
follows:

Pr(ei| f{)

= pw(eflfi])
M
eXP[Z Amhm(el, f1)]
= = .6

M

S explY Ambm(e't, 1)
m=1

T
€

The architecture of the ME approach is summa-
rized in Figure 4.

For our approach, we determine the correspond-
ing formal target language concept for each word
of a natural language input. Therefore, we distin-
guish whether a word is an initial or a non-initial
word of a concept. This procedure yields a one-
to-one translation from source words to formal se-
mantic concepts, i.e. the length of both sequences
must be equal (/ = J). Figure 5 depicts a one-
to-one mapping applied to a sentence/concept pair
from the German TABA corpus.
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Figure 5: Example of a sentence/concept mapping
using maximum entropy (i’ denotes initial con-
cepts, 'n’ non-initial concepts resp.).

Further, we assume that the decisions only de-
pend on a limited window of f]in = fj—2..fit2
around the current source word f; and on the two
predecessor concepts. Thus, we obtain the follow-
ing second-order model:

J
pr(eflf!y = T Prieslel )
j=1

J
= o |pdTL g2
model ]1:11 p/\f\" (e]‘ej—Qn fj_g) .

Transition constraints: Due to the distinction
between initial and non-initial concepts, we have
to ensure that a non-initial concept must only fol-
low its corresponding initial one. To guarantee
this, a straightforward method is to implement a
feature function that models the transitions and to
set the feature values of all invalid transitions to
zero, so that they will be discarded during search.

4.1 Feature functions

We have implemented a set of binary valued fea-
ture functions for our system:

Lexical features: The words f;fg are compared
to a vocabulary. Words which are not found in the
vocabulary are mapped onto an “unknown word’.



Formally, the feature

h’fd(’( j— 276] f]+9) = 5(fj+daf>'5(ej7e);

de{-2,....2},

will fire if the word f;, matches the vocabulary
entry f and if the prediction for the current con-
cept equals e. &(+, ) again denotes the Kronecker-
function.

Word features: Word characteristics are cov-
ered by the word features, which test for:

- Capitalization: These features will fire if f;
is capitalized, has an internal capital letter, or
is fully capitalized.

- Pre- and suffixes: If the prefix (suffix) of f;
equals a given prefix (suffix), these features
will fire.

Transition features: Transition features model
the dependence on the two predecessor concepts:

hergel€] 3.5, f175) = Olej-are)-8(eje)
de{1,2}.
Prior features: The single concept priors are in-

corporated by prior features. They just fire for the
currently observed concept:

fj+2) = 6(€j7€)'

Compound features: Using the feature func-
tions defined so far, we can only specify features
that refer to a single word or concept. To en-
able also word phrases and word/concept com-
binations, we introduce the following compound
features:

h(g2’

h{zl 111}, zrdic e (e €5 fj+2>

42
H th,dk, ] Z*el*fj ) s

2k € {f,e}, dp € {—2,...,2}.

Feature selection: Feature selection plays a cru-
cial role in the ME framework. In our system we
use simple count-based feature reduction. Given
a threshold K, we only include those features that

have been observed on the training data at least K
times. Although this method is not minimal, i.e.
the reduced feature set may still contain features
that are redundant or non-informative, it turned out
to perform well in practice. Experiments were car-
ried out with different thresholds. It turned out that
for the NLU task, a threshold of 2 for all features
achieved the best results, except for the prefix and
suffix features, for which a threshold of 6 yielded
best resullts.

4.2 Training

For the purpose of training, we consider the set of
manually annotated and segmented training sen-
tences to form a single long sentence. As train-
ing criterion, we use the maximum class posterior
probability criterion:

/A\‘iw = algmax{ZIO PaM en|fn)} .

AAI

This corresponds to maximizing the likelihood of
the ME model. The direct optimization of the
posterior probability in Bayes’ decision rule is re-
ferred to as discriminative training in automatic
speech recognition since we directly take into ac-
count the overlap in the probability distributions.
Since the optimization criterion is convex, there is
only a single optimum and no convergence prob-
lems occur. To train the model parameters A we
use the Generalized Iterative Scaling (GIS) algo-
rithm (Darroch and Ratcliff, 1972).

In practice, the training procedure tends to re-
sult in an overfitted model. To avoid overfit-
ting, (Chen and Rosenfeld, 1999) have suggested
a smoothing method where a Gaussian prior on the
parameters is assumed. Instead of maximizing the
probability of the training data, we now maximize
the probability of the training data times the prior
probability of the model parameters:

N
M = argmax p(/\y)'sz\{”(en‘f“) ’
AM n=1
where
1 A
AMYy — ex [—ﬁ]
(A1) H V2o P 207
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4.3 Search

In the test phase, the search is performed using the
so called maximum approximation, i.e. the most
likely sequence of concepts é! is chosen among

all possible sequences e!:

el = argmax {PT’(G{‘flj)}

o
M
— argmax { Z >\mhm(€{a fi])} .
e m=1
Therefore, the time-consuming renormalization in
Eq. 5 is not needed during search. We run a
Viterbi search to find the highest probability se-
quence (Borthwick et al., 1998).

5 Results

Experiments were performed on the German in-
house Philips TABA corpus' and the German in-
house TELDIR corpus®>. The TABA corpus is a
text corpus in the domain of a train timetable infor-
mation system (Aust et al., 1995). The TELDIR
corpus is derived from the domain of a tele-
phone directory assistance. Along with the bilin-
gual annotation consisting of the source and tar-
get sentences, the corpora also provide the affil-
iated alignments between source words and con-
cepts. The corpora allocations are summarized in
table 1 and table 2. For the TABA corpus, the tar-
get language consists of 27 flat semantic concepts
(23 concepts for the TELDIR application, resp.),
including a filler concept. Table 3 summarizes an
excerpt of the most frequently observed concepts.

In order to improve the quality of both ap-
proaches, we used a set of word categories. Since
it is unlikely that every city name is observed dur-
ing training, all city names were mapped onto the
category $CITY{city name}. Table 4 shows
an excerpt of different categories which were used
for both the training and the testing corpora.

We have computed three different evaluation
criteria:

- The concept error rate (CER), which is

equally defined to the well known word error

'"The TABA corpus was kindly provided by Philips
Forschungslaboratorien Aachen.

2The data-collection was partially funded by Ericsson Eu-
rolab Deutschland GmbH.
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Table 1: Training and testing conditions for the
TABA corpus.

Natural Concept
Language | Language

Train  Sentences 25009
Tokens 87213 48 325
Vocabulary 1911 27
Singletons 621 0

Test  Sentences 8015
Tokens 22963 12745
(016)% 283 0
Trigram PP - 4.36

Table 2: Training and testing conditions for the
TELDIR corpus.

Natural Concept
Language | Language

Train Sentences 1189
Tokens 6850 3356
Vocabulary 752 23
Singletons 276 2

Test  Sentences 510
Tokens 3041 1480
(0]0)% 194 0
Trigram PP - 4.49

rate. The CER describes the ratio of the sum
of deleted, inserted, and substituted concepts
w.r.t. a Levenshtein-alignment for a given ref-
erence concept-string, and the total number
of concepts in all reference strings.

- The sentence error rate (SER), which is de-
fined as ratio between the number of falsely
translated sentences and the total number of
sentences w.r.t. the concept-level.

- The concept-alignment error rate (C-AER),
which is defined as the ratio of the sum of
falsely aligned words, i.e. words mapped
onto the wrong concept, and the total num-
ber of words in the reference (Macherey et
al., 2001).

The error rates obtained by using the align-
ment templates method are summarized in table 5



Table 3: Excerpt of the most frequently observed
concept for the TABA and the TELDIR corpus.

‘ Concept Example |
@origin von $CITY
@destination ~ nach $CITY
@person mit Herrn $SURNAME
@organization mit der SCOMPANY

Table 4: Excerpt of used word categories.

‘ Category Examples
$CITY e Berlin
e K6ln
$DAYTIME e Morgen
e Vormittag
$COMPANY e BASF AG
e Porsche
$SURNAME e Schlegel
e Wagner

and table 6. Table 7 and table 8 show the per-
formance of the ME approach for different types
of ME features. Starting with only lexical fea-
tures, we successively extend our model by in-
cluding additional feature functions. As can be
seen from these results, the ME models clearly
outperform the alignment models. The quality of
the translation approach is achieved within the ME
framework by just including lexical and transition
features, and is significantly improved by adding
further feature functions. Comparing the perfor-
mance on the TABA task and on the TELDIR task,
we see that the error rates are much lower for the
TABA task than for the TELDIR task; the reason
is due to the very limited training data.

One of the advantages of the ME approach re-
sults from the property that the ME framework
directly models the posterior probability and al-
lows for integrating structural information by us-
ing appropriate feature functions. Furthermore,
the ME approach is consistent with the features
observed on the training data, but otherwise makes
the fewest possible assumptions about the distri-
bution. Since the optimization criterion is con-
vex, there is only a single optimum and no con-

Table 5: Effect of alignment templates on different
error rates for the TABA corpus (Model 5* uses a
given alignment in training).

Alignment [%]

Model SER | CER | C-AER
Model 5 42| 43 4.3
Model 5% || 39| 3.9 33

Table 6: Effect of alignment templates on different
error rates for the TELDIR corpus (Model 5* uses
a given alignment in training).

Alignment [%]

Model SER | CER | C-AER
Model 5 || 16.1 | 6.9 13.6
Model 5% || 145 | 5.9 6.7

Table 7: Dependence on the number of included
feature types on different error rates for the TABA
corpus.

Feature [%]

Types SER | CER | C-AER
lexical 8.8 6.7 4.6
+ transition 43 3.3 3.2
+ prior 2.1 1.6 1.5
+ capitalization 1.8 1.4 1.4
+ pre- & suffixes 1.6 1.2 1.3
+ compound 1.1 0.8 0.9

Table 8: Dependence on the number of in-

cluded feature types on different error rates for the
TELDIR corpus.

Feature [%]

Types SER | CER | C-AER
lexical 17.3 8.4 5.9
+ transition 13.5 5.6 54
+ prior 127 | 5.1 4.9
+ capitalization 12.0 | 4.8 4.9
+ pre- & suffixes 96| 3.6 4.4
+ compound 9.0 3.6 4.1

vergence problems occur. Due to the manual an-
notation using initial and non-initial concepts, we
implicitly model a one-to-one alignment from nat-
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ural language words to semantic concepts whereas
the translation approach tries to learn the hidden
alignment automatically. We investigated the ef-
fect of this difference by keeping the segmenta-
tion of the training data fixed for the translation
approach. This approach is referred to as Model
5*, and the results are shown in table 5 and ta-
ble 6. As can be seen from these tables, this variant
of the translation approach has a somewhat lower
error rate, but is still outperformed by the ME ap-
proach.

6 Summary

In this paper, we have investigated two approaches
for natural language understanding: the alignment
templates approach which is based on the source-
channel paradigm and the maximum entropy ap-
proach which directly models the posterior prob-
ability. Both approaches were tested on two dif-
ferent corpora. We have shown that within these
settings the maximum entropy method clearly out-
performs the alignment templates approach.
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